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ABSTRACT

We address the problem of similarity metric selection in pairwise
affinity clustering. Traditional techniques employ standard algebraic
context-independent sample-distance measures, such as the Euclidean
distance. More recent context-dependent metric modifications em-
ploy the bottleneck principle to develop path-bottleneck or path-
average distances and define similarities based on geodesics deter-
mined according to these metrics. This paper develops a principled
context-adaptive similarity metric for pairs of feature vectors utiliz-
ing the probability density of all data. Specifically, based on the pos-
tulate that Euclidean distance is the canonical metric for data drawn
from a unit-hypercube uniform density, a density-geodesic distance
measure stemming from Riemannian geometry of curved surfaces is
derived. Comparisons with alternative metrics demonstrate the su-
perior properties such as robustness.
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1. INTRODUCTION

We consider the problem of clustering a dataset using pairwise-affinity
methods, which are based on an affinity or similarity functionw(x,y)
that defines how close two data pointsx, y are, as opposed to feature-
based methods such ask–means, which work directly with the fea-
ture vectorsx andy. Examples of pairwise-affinity methods are
hierarchical (agglomerative and divisive) clustering [1] and spectral
clustering [2], among others. They have the advantage of dealing
more easily with clusters of complex shapes, since they do not im-
pose a model (e.g. Gaussian-shaped clusters) on the data. While
different methods use the affinities in different ways (e.g. sequen-
tially merging data points in agglomerative clustering vs projecting
the data on the eigenspace of an affinity matrix in spectral cluster-
ing), the definition of affinity is of paramount importance in all them,
and it is the focus of this paper.

Most work uses an affinity functionw(x,y) that depends only
on the feature vectors for the pointsx andy, and more specifically
on the distance betweenx andy. For example, the popular Gaussian
affinity wσ(x,y) = exp (−‖x − y‖ /σ2), which also introduces a
scale parameterσ that offers more flexibility but has to be tuned to
each particular dataset, often by trial and error, for the method to
succeed. We call this acontext-independentaffinity function, in that
it does not depend on the rest of the data set (other thanx andy).
However, this is a very limited representation of the metric structure
of the feature space, which in our view is determined by the dataset.
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Refer to fig. 1. On the left, we have 3 points which are equidis-
tant from each other, and sowσ(A, B) = wσ(A, C) = wσ(B, C).
However, in the context of the dataset shown on the right (repre-
sented as a density rather than a finite dataset) and from a clustering
point of view, it makes intuitively little sense for the points to be
equidistant. In order to go fromA to B we have to traverse a low-
density region, while fromA to C there are paths (not necessarily
straight) traversing high-density regions. Our objective is to define
context-dependentaffinity functions where the context is given by
the entire dataset (a global context). While this might be achieved
by working directly with the dataset points (e.g. by defining a par-
ticular type of graph with appropriate edge weights), we aim at a
more general framework informed by differential geometry concepts
where we define a density-dependent metric on the feature space. By
basing our metric on aprobability density functionp(x), applicable
to any pointx in the space, we are also able to define affinities be-
tween any pair of points in the space, not just between the points in
the dataset. In practice, the density is estimated from the data ei-
ther nonparametrically (e.g. with a kernel density estimate) or para-
metrically (e.g. with a Gaussian mixture trained by EM). A second
component of our affinity definition is that ofpaths, more specifi-
cally geodesics—paths that extremise a cost functional. This cap-
tures the idea of fig. 1(right) where, of the many paths joiningA and
C, we care about the one that is as short as possible in Euclidean
distance while traversing high-density regions; this will be made
specific in section 2. In summary, we propose a context-dependent
affinity functionwp(x,y) defined as the largest path affinity of all
paths joiningx andy, where the path affinity depends on the path
and the densityp, and is essentially the line integral along the path of
a function ofp. Thus, we call this ideaaffinity by density geodesics.

The reason why we expect density geodesics to work with clus-
tering is that the corresponding affinities should make the cluster
structure obvious. From fig. 1(right), the affinities between every
pair of points in the left cluster (e.g.A, C) will be high (and similar
in magnitude), while the affinities between points in different clus-
ters will all be low. Thus, the affinity matrix will have a blocky as-
pect with near-zero across-cluster affinities and high within-cluster
affinities (and so will its eigenvectors). A spectral algorithm will
map the dataset to a structure consisting of widely separated, point-
like clusters, which is trivial to cluster. Note, however, that this idea
does not work for dimensionality reduction with pairwise-affinity
methods such as Isomap [3] or Laplacian eigenmaps [4], because
the internal metric structure of a cluster is almost completely erased.

Although our general formulation of clustering based on a met-
ric induced by the data density is new to our knowledge, previous
work has considered (separately) the ideas of paths between data
points and of using the data density for clustering. In path-based
clustering [5], one assumes a neighbourhood graph (e.g.k–nearest-
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Fig. 1. Points A, B, C are equidistant in Euclidean distance (left),
but the data distribution (right) suggests A and C are very close to
each other and very far from B.

neighbours) on the dataset, and defines a distance (inverse affinity)
as a minimax distance

dnm = min
P∈Pnm

max
l=1,...,|P |

d(Pl, Pl+1)

wherePnm = “all paths joining data pointsxn andxm”. Thus,
the distance is the smallest bottleneck (= longest link) overPnm. Its
motivation is, as in fig. 1(right), to obtain low across-cluster affinities—
the bottleneck being the distance between the two clusters, which
dominates other intermediate links. However, the minimax distance
has the undesirable property that it does not change if we change the
link distances (other than the bottleneck), and is sensitive to outliers.
Also, for overlapping clusters, a bottleneck may not exist (particu-
larly for large datasets), even if the density across clusters is much
lower than within clusters. Besides, the minimax distance only ap-
plies to points in the dataset, unlike our affinity, which is defined on
the entire space. Several modifications have tried to address the sen-
sitivity to outliers, by using bagging [6] and by normalising link dis-
tances by the node degree [7]. In the method of [8], the minimax dis-
tancednm is modulated by a Gaussian,exp (−dnm/σ2), and fur-
ther the “max” is softened via another user parameter to interpolate
smoothly between the two extreme cases of the maximum (= path
bottleneck) and the mean (= path length). However, they applied this
not to clustering but to transductive SVMs. Finally, the bottleneck
geodesics [9] seek paths that are both short and dense. They definea
local density estimate at each data pointxn as

∑

n∼m ‖xn − xm‖−2

(wheren ∼ m is a link in a neighbourhood graph). They then com-
bine this with the path length in various ways, e.g. by normalising
the link length by the density estimate, or by normalising the path
length by the path bottleneck. Like the other methods, this yields
affinities only for the dataset points.

An alternative approach to introducing context in the definition
of pairwise affinities is by constructing better neighbourhood graphs.
The usual graphs (k–nearest-neighbours,ǫ–ball, fixed grid for image
segmentation) enforce global parameters for each data point no mat-
ter its context, so every point must havek neighbours or connect to
all points at distanceǫ or less. In the perturbation approach of [10],
multiple graphs are built on jittered duplicates of the dataset and then
combined into an average graph that adapts locally to the data and is
by construction more robust to noise. However, in this method point
pairs such as(A, C) in fig. 1 are still assigned a low affinity, and the
path in the graph counts distances but not density.

2. DENSITY GEODESICS

We consider the data probability density function (pdf)p : R
n →

R
+ as a metric-imposing mass distribution that distorts the Euclidean

nature ofRn. Therefore, affinity estimates of pairs of data based on
Euclidean metrics are inaccurate. A geometrically consistent mea-
sure of distance in a pdf-warped space must properly take into ac-
count local and directional stretching effects imposed on the data
when transforming its density top from uniform . In a differential
geometric framework, the infinitesimal length of a curve segment
depends on its direction (tangent vector), the local stretching (Rie-
mann metric of smooth pdf manifolds), and for clustering purposes,
a measure that promotes large density while penalizing low density.
The latter is especially useful for distinguishing clusters separated by
valleys or gaps in data density. The former two are useful for making
the metric locally invariant to stretching and is a natural consequence
of change of variables for contour integration when transforming the
data with a nonlinear map from uniform top density.

Let f : R
n → [0, 1]n be an invertible map that transforms pdfp

to a uniform one in the unit hypercube (note that such a mapping can
always be constructed using conditional cumulative densities derived
from p [11]). Due to change of variables, the Euclidean length of a
curve in the unit-cube under a uniform density has to be modified
to utilize a metricM(x) = (∇T f(x)∇f(x))−1. Assuming a density
penalizing/promoting measureh, we define the length of a curvec in
R

n under pdfp as

lc
.
=

∫ 1

0

h(p(c(t)))(ċT (t)M(c(t))ċ(t))1/2dt (1)

Under this definition of curve length, the distance between two points
x and y is the length of the shortest curve (geodesic) connecting
them:d(x, y) = minc lc such thatc(0) = x andc(1) = y. The min-
imization of the functional in (1) requires calculus of variations and
is computationally expensive. For a given iid data set{x1, . . . , xN}
with sufficiently largeN drawn fromp, a simple yet sufficient ap-
proximation to the geodesic could be determined by restricting the
search to the paths over a fully- or partially-connected neighborhood
graph. We utilize theǫ-ball neighborhood graph where an edge is
included in the graph if the length of the straight line connectingxi

to xj as measured by (1),lij < ǫ and employ a shortest path search
algorithm [12].

In pairwise affinity clustering, for sharp block-diagonal affinity
matrices one needs to penalize geodesics that pass through relatively
low density regions and promote geodesics that remain in high den-
sity regions. The bottleneck clustering principle [5] is also aimed
at achieving this, however, the length of a curve is measured not
as an integral over the curve but as an extremum of local length,
which occurs at such valleys. By selecting monotonically decreasing
h : R → R such thatlimp→0 h(p) = ∞ and limp→∞ h(p) = 0,
this could be achieved. Alternatively, one could simply select the
neutral measure ofh(p) = 1.

2.1. Case Studies in 1-Dimension

We present three specific examples in 1D, constructed to illustrate
certain aspects of the proposed metric, while avoiding the geodesic
search step: (1) distances under a uniform density; (2) piecewise
uniform clusters; and (3) distances under an arbitrary pdfp.

Uniform Density:Consider distance between two pointsa/ε and
b/ε, where{a, b} ∈ [0, 1], under a uniform density in the interval
[0, 1/ε]. The function that maps this density to a uniform in[0, 1] has
slopeε, thus, the metric isM(x) = 1/ε2, x ∈ [0, 1]. For the contour
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Fig. 2. Gaussians dataset
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Fig. 3. Rings dataset
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c connectinga to b, we haveċ = |b−a|/ε. Assumingh(p) = 1 and
substituting all expressions in (1), we obtainl[a/ε,b/ε] = |b− a|/ε2.
The inverse square dependency of this metric onε is intuitively inter-
preted as one factor coming from the scaling of the actual Euclidean
distance and another from the local stretching of the density.

Piecewise Uniform Clusters:Consider a piecewise uniform den-
sity and its local metric

p(x) =







1/2 − ε if x ∈ [0, 1] ∪ [2, 3]
2ε if x ∈ [1, 2]
0 otherwise

M(x) =







1/(1 − 2ε)2 if x ∈ [0, 1] ∪ [2, 3]
1/(2ε)2 if x ∈ [1, 2]

∞ otherwise

(2)

For {a, b} ∈ [0, 1] andc ∈ [2, 3], we are interested in the distances
d(a, b) andd(a, c) assumingh(p) = 1. For d(a, b), we haveċ =
|b − a| and the integral can be computed over the segment[0, 1] as
l[a,b] = 2|b − a|/(1 − 2ε). For d(a, c), the integral needs to be
computed in three segments. Lettingc(t1) = 1 andc(t2) = 2 for
the curve connectinga to c, one can writel[a,c] = |b− a|{2t1/(1−
2ε)+(t2−t1)/(2ε)+2(1−t2)/(1−2ε)}. Note thatlimε→0 l[a,b] =
2|b − a|, while limε→0 l[a,c] = ∞.

Arbitrary PDF: For a univariate pdfp(x), the invertible function
that maps the random variable to a uniform in[0, 1] is its cumulative
density function (cdf). Consequently, its derivative is the pdf, thus
the metric becomesM(x) = p−2(x). For an arbitraryh(p) mea-
sure, by substitutingM(x) andċ(t) = (b − a) in (1), one can write

d(a, b) = |b − a|
∫ 1

0
h(p(a + (b − a)t))p−1(a + (b − a)t)dt. This

shows that appropriate selection ofh(p) will modify the Euclidean
distance in the desirable manner.

2.2. Omitting Directional Dependency Multidimensional Case

In implementation, numerical integration of (1) considering the lo-
cal tangent length(ċ(t)T M(c(t))ċ(t))1/2 is computationally expen-
sive. In certain situations, significant gain in speed are achieved
by dropping this term from the integrand without much impact on
performance. Forx on the line segment that connectsxi and xj ,
lij , if we assume that the metric isM(x) = I‖xi − xj‖

2, letting
ċ(t) = ‖xi − xj‖

−1, the integrand reduces to

llij
=

∫ 1

0

h(p(lij(t)))dt (3)

This corresponds to assuming that the metric is simple scaling along
the data connected by the graph, but employs different scaling fac-
tors depending on specific data pairs.

3. EXPERIMENTAL RESULTS

In our experiments we concentrate on spectral clustering, but our
definition is equally applicable to hierarchical clustering and other
affinity methods. We compare the Euclidean distance (yielding the
widely used usual Gaussian affinity), low density separation (LDS)
algorithm [8], and density geodesics. All three examples have two
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Fig. 4. Bridge dataset
.

natural clusters, and we use the eigengap between the second and
third eigenvalues to evaluate the quality of the affinity matrix. As
the difference between these two eigenvalues approaches to -1, the
desired two cluster solution is more healthy.

In Figure 2, we present result for an easy clustering problem with
two Gaussian clusters with 100 samples each. As all the clusters are
well seperated, all three methods return blockwise distance matrices
for this example. The peak performance of LDS is greater than Eu-
clidean distances, yet still lower then density geodesics. The interval
of sigma values that gives thecorrectclustering result is much wider
for the density geodesics. As some inter-cluster Euclidean distances
are less than some in-cluster Euclidean distances, ring dataset lays
a harder clustering problem, and has been widely used in clustering
papers. In this example, density geodesics also demonstrate supe-
rior performance as compared to LDS and Euclidean distance, with
a bigger eigengap for a wider interval ofσ. Results are given in Fig-
ure 3. One problem with bottleneck methods is that due to noise or
heavytailed distrubutions a bottleneck may not exist. Here we show
an example where two Gaussian clusters are next to eachother. The
pdf drops significantly at the cluster boundary, yet there is no strong
bottleneck due to the samples around the boundary. As shown in
Figure 4, density geodesics provide a better eigengap for a wider
range ofσ in this example as well.

4. DISCUSSION

The problem of affinity measure selection is at the core of similarity-
based clustering techniques. Various propositions include the usual
algebraic distance measures as well as path-bottleneck geodesics
along certain neighborhood graphs. Intuitively, the distance (in-
verse affinity) between two data points cannot be assessed with-
out any regard to the context set forth by the distribution of other
data samples. In principle, distances between pairs should be influ-
enced strongly by the probability distribution of data. Stating from
the postulate that Euclidean distances are canonical for data points
drawn from unit-uniform densities, we develop a principled path-
length measure rooted in Riemannian geometry. It has been demon-
strated theoretically and through analytical calculations for specific
one-dimensional case studies that the proposed distance metrics sat-
isfy desirable invariance properties. For high dimensional cases, in
order to reduce the computational complexity, the metric is simpli-
fied and the geodesic search problem is approximately solved uti-
lizing shortest path search over a discretized graph. Experimental
results demonstrate that the proposed distance metric yields blocky

affinity matrices which will lead to clear cluster separations.
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