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ABSTRACT Refer to fig. 1. On the left, we have 3 points which are equidis-

o ) o _ . tant from each other, and sa, (4, B) = w,(A,C) = w,(B,C).
We address the problem of similarity metric selection in pairwiserjowever, in the context of the dataset shown on the right (repre-
affinity clustering. Traditional techniques employ standard algebraigented as a density rather than a finite dataset) and from a clustering
context-independent sample-distance measures, such as the Bucligfint of view, it makes intuitively little sense for the points to be
distance. More recent context-dependent metric modifications emsquidistant. In order to go from to B we have to traverse a low-
ploy the bottleneck principle to develop path-bottleneck or pathyensity region, while froma to C there are paths (not necessarily
average distances and define similarities based on geodesics deigfaight) traversing high-density regions. Our objective is to define
mined according to these metrics. This paper develops a principleghntext-dependerffinity functions where the context is given by
context-adaptive similarity metric for pairs of feature vectors utiliz- the entire dataset (a global context). While this might be achieved
ing the probability density of all data. Specifically, based on the pospy working directly with the dataset points (e.g. by defining a par-
tulate that Euclidean distance is the canonical metric for data drawficyar type of graph with appropriate edge weights), we aim at a
from a unit-hypercube uniform density, a density-geodesic distancgore general framework informed by differential geometry cotep
measure stemming from Riemannian geometry of curved surfaces jghere we define a density-dependent metric on the feature space. By
derived. Comparisons with alternative metrics demonstrate the Sisasing our metric on probability density functiom(x), applicable

perior properties such as robustness. to any pointx in the space, we are also able to define affinities be-
Keywords: Affinity based clustering, similarity clustering, context tWeen any pair of points in the space, not just between the points in
dependent distance measure the dataset. In practice, the density is estimated from the data ei-

ther nonparametrically (e.g. with a kernel density estimate) or para-
metrically (e.g. with a Gaussian mixture trained by EM). A second
1. INTRODUCTION component of our affinity definition is that giaths more specifi-

cally geodesics-paths that extremise a cost functional. This cap-
We consider the problem of clustering a dataset using pairwise-affinityres the idea of fig. 1(right) where, of the many paths joiningnd
methods, which are based on an affinity or similarity funciiqix, y)  C, we care about the one that is as short as possible in Euclidean
that defines how close two data poistsy are, as opposed to feature- distance while traversing high-density regions; this will be made
based methods such Asmeans, which work directly with the fea- specific in section 2. In summary, we propose a context-dependent
ture vectorsx andy. Examples of pairwise-affinity methods are affinity functionw,(x,y) defined as the largest path affinity of all
hierarchical (agglomerative and divisive) clustering [1] and spéctr paths joiningx andy, where the path affinity depends on the path
clustering [2], among others. They have the advantage of dealingnd the density, and is essentially the line integral along the path of
more easily with clusters of complex shapes, since they do not ima function ofp. Thus, we call this ideaffinity by density geodesics
pose a model (e.g. Gaussian-shaped clusters) on the data. While

the data on the eigenspace of an affinity matrix in spectral cluster-

h A e . : pair of points in the left cluster (e.gl, C) will be high (and similar
|ng),.the definition of aff|n|ty Is of paramount importance in all them, in magnitude), while the affinities between points in different clus-
and it is the focus of this paper.

o . ters will all be low. Thus, the affinity matrix will have a blocky as-
Most work uses an affinity functiow(x, y) that depends only y ky

he f for th : d d ificall pect with near-zero across-cluster affinities and high within-cluster
on thed(_eature vsctors or tde p;lntsan y'l anh more IspeCc; Ically  affinities (and so will its eigenvectors). A spectral algorithm will
opf_t e distance Etweecnan y. For exazlmp eh,_the ﬁ)Opy ar daussmn map the dataset to a structure consisting of widely separated, point-
a |r|1|ty wo (X, ) _hepr(f_ I ~ y'l(l/”_g_’l_w kI)C ﬁso mttzo uceza like clusters, which is trivial to cluster. Note, however, that this idea
scale parameter that offers more flexibility but has to be tuned o o5 ot work for dimensionality reduction with pairwise-affinity
each particular datgset, often by trial and error, for.the .method 0 ethods such as Isomap [3] or Laplacian eigenmaps [4], because
_succeed. We call this @ntext-independetffinity function, in that 4 internal metric structure of a cluster is almost completely erased.
it does not depend on the rest of the data set (otherthandy).

However, this is a very limited representation of the metric structure  Although our general formulation of clustering based on a met-
of the feature space, which in our view is determined by the datasefi¢ induced by the data density is new to our knowledge, previous
work has considered (separately) the ideas of paths between data
*This work is partially supported by NSF grants ECS-0524@88,ECS-  points and of using the data density for clustering. In path-based
0622239. clustering [5], one assumes a neighbourhood graph kemparest-




2. DENSITY GEODESICS

We consider the data probability density function (paf) R™ —
R™ as a metric-imposing mass distribution that distorts the Euclidean
nature ofR™. Therefore, affinity estimates of pairs of data based on
Euclidean metrics are inaccurate. A geometrically consistent mea-
sure of distance in a pdf-warped space must properly take into ac-
count local and directional stretching effects imposed on the data
when transforming its density fo from uniform . In a differential
geometric framework, the infinitesimal length of a curve segment
depends on its direction (tangent vector), the local stretching (Rie-
Fig. 1. Points A, B, C are equidistant in Euclidean distance (left),mann metric of smooth pdf manifolds), and for clustering purposes,
but the data distribution (right) suggests A and C are very close t@ measure that promotes large density while penalizing low density.
each other and very far from B. The latter is especially useful for distinguishing clusters separated by
valleys or gaps in data density. The former two are useful for making
the metric locally invariant to stretching and is a natural consequence
of change of variables for contour integration when transforming the
data with a nonlinear map from uniform podensity.
neighbours) on the dataset, and defines a distance (inverse affinity) Let f: R™ — [0,1]" be an invertible map that transforms pif
as a minimax distance to a uniform one in the unit hypercube (note that such a mapping can
always be constructed using conditional cumulative densities derived
- . from p [11]). Due to change of variables, the Euclidean length of a
dnm = min —r (P, Pry1) curve in the unit-cube under a uniform density has to be modified
to utilize a metricM (x) = (VTf(x)Vf(x))~!. Assuming a density
penalizing/promoting measuhewe define the length of a curegn
whereP,.., = “all paths joining data points,, andx,,”. Thus, ~ R™ under pdfp as
the distance is the smallest bottleneekléngest link) overP,, .. Its 1
motivation is, as in fig. 1(right), to obtain low across-cluster affinities— le = / h(p(c(t)(E (DM (c(t))e(t))2dt (1)
the bottleneck being the distance between the two clusters, which 0
dominates oth_er intermediate Ilnk_s. However, the minimax dIStanC?Jnderthis definition of curve length, the distance between two points
has the undesirable property that it does not change if we change tiie - . -
. . . o, .~ X andy is the length of the shortest curve (geodesic) connecting
link distances (other than the bottleneck), and is sensitive to Oumer?hem'd(x ) — mine I such that(0) = x andc(1) — y. The min-
Also, for overlapping clusters, a bottleneck may not exist (particu- .. ’):( h_ f ¢ e lin (1 - cul - ]}/ e d
larly for large datasets), even if the density across clusters is muclmz"jltlon of the functiona in (1) requires caiculus of variations an
lower than within clusters. Besides, the minimax distance only ap'—S computationally expensive. For a given iid datafset, - . ., xx}
: ' with sufficiently largeN drawn fromp, a simple yet sufficient ap-

plies to points in the dataset, unlike our affinity, which is defined on S h desi d be d ined b e h
the entire space. Several modifications have tried to address the s roximation to the geodesic could be determined by restricting the

sitivity to outliers, by using bagging [6] and by normalising link dis- Search to the paths over a fully- or partially-connected neighborhood

tances by the node degree [7]. In the method of [8], the minimax disgraph. We utilize the-ball neighborhood graph where an edge is

tanced,m is modulated by a Gaussianp (—dnm /o2), and fur- included in the graph if the length of the straight line connecking

ther the “max” is softened via another user parameter to interpolatte0 X; as measured by (1);; < e and employ a shortest path search

smoothly between the two extreme cases of the maximamdth dlgorithm [12].
bottleneck) and the mear-(path length). However, they applied this In pairwise affinity clustering, for sharp block-diagonal affinity
not to clustering but to transductive SVMs. Finally, the bottleneckmatr'ces one needs to penalize geodesics that pass through relatively

; - low density regions and promote geodesics that remain in high den-
geodesics [9] seek paths that are both short and dense. Theyalefing. ) ! o i .
local density estimate at each data paintasy”, _ [x, — |2 glty regions. The bottleneck clustering principle [5] is also aimed

(where is a link in a neighbourhood graph). They then com- at achieving this, however, the length of a curve is measured not
e ) graph). y as an integral over the curve but as an extremum of local length,

bine this with the path length in various ways, e.g. by normalising . : . 4
the link length by the density estimate, or by normalising the pat%}lNhlcﬂg Ojcﬂirzl?és liﬁgﬁﬂeyf' hl?;)sﬂeggnsnrglci)rloton|CZI(II))/)dicr0easmg
. p—C - p—00 — Y

Ien_g_th by the path bottleneck. 'lee the other methods, this yIeml?his could be achieved. Alternatively, one could simply select the
affinities only for the dataset points. neutral measure df(p) = 1

An alternative approach to introducing context in the definition
of pairwise affinities is by const_ructing better n_eighbo_urhoqd graphsz_l_ Case Studiesin 1-Dimension
The usual graphg:f-nearest-neighbours;ball, fixed grid forimage
segmentation) enforce global parameters for each data point no mate present three specific examples in 1D, constructed to illustrate
ter its context, so every point must haveeighbours or connect to certain aspects of the proposed metric, while avoiding the geodesic
all points at distance or less. In the perturbation approach of [10], search step: (1) distances under a uniform density; (2) piecewise
multiple graphs are built on jittered duplicates of the dataset and themniform clusters; and (3) distances under an arbitraryppdf
combined into an average graph that adapts locally to the data and is Uniform Density:Consider distance between two poiafs and
by construction more robust to noise. However, in this method poinb/<, where{a, b} € [0, 1], under a uniform density in the interval
pairs such a4, C) in fig. 1 are still assigned a low affinity, and the [0, 1/¢]. The function that maps this density to a uniforniin1] has
path in the graph counts distances but not density. slopes, thus, the metric i84(z) = 1/, z € [0, 1]. For the contour



Fig. 3. Rings dataset

c connectinge to b, we have: = |b—a|/e. Assumingh(p) = 1and  d(a,b) = |b— a] fol h(p(a+ (b—a)t))p~*(a+ (b — a)t)dt. This
substituting all expressions in (1), we obtaify. ,/.] = |b—al|/s>.  shows that appropriate selection/efp) will modify the Euclidean
The inverse square dependency of this metrie @intuitively inter-  distance in the desirable manner.

preted as one factor coming from the scaling of the actual Euclidean

distance and another from the local stretching of the density. 2.2. Omitting Directional Dependency Multidimensional Case
Piecewise Uniform Cluster€onsider a piecewise uniform den-
sity and its local metric In implementation, numerical integration of (1) considering the lo-
cal tangent lengthé(t)”M (c(t))&(t))/? is computationally expen-
1/2—¢ if z€]0,1]U]2,3] sive. In certain situations, significant gain in speed are achieved
p(z) = 2e if x€l[l,2] by dropping this term from the integrand without much impact on
0 otherwise @ performance. For on the line segment that connestsandx;,
1/(1—2¢)? if 2 €[0,1]U[2,3] l;;, if we assume that the metric M (x) = I|jx; — x;||?, letting
M(z) = 1/(2¢)? if zell,2) ¢(t) = ||x: — x|/, the integrand reduces to
00 otherwise L
For {a,b} € [0,1] andc € [2, 3], we are interested in the distances by = /0 hip(li; (£)))dt )

d(a,b) andd(a, c) assumingh(p) = 1. Ford(a,b), we havec = . ) L )

|b — a| and the integral can be computed over the segrteiit as This corresponds to assuming that the metric is s]mple scalln.g along
liws) = 2|b — al/(1 — 2¢). Ford(a,c), the integral needs to be the data cor_mected by t_he graph, _but employs different scaling fac-
computed in three segments. Lettiag,) = 1 andc(t;) = 2 for ~ tors depending on specific data pairs.

the curve connecting to c, one can writd(, = |b— al{2t1/(1 —

2e)+(t2—1t1)/(2¢)+2(1—1t2)/(1—2¢)}. Note thatime—.o lfa,5) = 3. EXPERIMENTAL RESULTS

2|b — a|, while lim._.o l[a’c] = 00.

Arbitrary PDF: For a univariate pdf(x), the invertible function  In our experiments we concentrate on spectral clustering, but our
that maps the random variable to a unifornjlnl] is its cumulative  definition is equally applicable to hierarchical clustering and other
density function (cdf). Consequently, its derivative is the pdf, thusaffinity methods. We compare the Euclidean distance (yielding the
the metric becomed/(x) = p~2(x). For an arbitraryh(p) mea-  widely used usual Gaussian affinity), low density separation (LDS)
sure, by substituting/ (x) and¢(t) = (b — a) in (1), one can write  algorithm [8], and density geodesics. All three examples have two
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Fig. 4. Bridge dataset

““““

natural clusters, and we use the eigengap between the second affinity matrices which will lead to clear cluster separations.
third eigenvalues to evaluate the quality of the affinity matrix. As
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