
TPLP : Page 1–yy. © The Author(s), 2023. Published by Cambridge University Press 2023

doi:10.1017/xxxxx

1

Solving Recurrence Relations using Machine
Learning, with Application to Cost Analysis ∗

MAXIMILIANO KLEMEN
IMDEA Software Institute & Technical University of Madrid (UPM)

MIGUEL Á. CARREIRA-PERPIÑÁN
University of California, Merced

PEDRO LOPEZ-GARCIA
Spanish Council for Scientific Research & IMDEA Software Institute

Abstract

Automatic static cost analysis infers information about the resources used by programs without
actually running them with concrete data, and presents such information as functions of input
data sizes. Most of the analysis tools for logic programs (and other languages) are based on setting
up recurrence relations representing (bounds on) the computational cost of predicates, and solving
them to find closed-form functions that are equivalent to (or a bound on) them. Such recurrence
solving is a bottleneck in current tools: many of the recurrences that arise during the analysis
cannot be solved with current solvers, such as Computer Algebra Systems (CASs), so that specific
methods for different classes of recurrences need to be developed. We address such a challenge by
developing a novel, general approach for solving arbitrary, constrained recurrence relations, that
uses machine-learning sparse regression techniques to guess a candidate closed-form function, and
a combination of an SMT-solver and a CAS to check whether such function is actually a solution of
the recurrence. We have implemented a prototype and evaluated it with recurrences generated by
a cost analysis system (the one in CiaoPP). The experimental results are quite promising, showing
that our approach can find closed-form solutions, in a reasonable time, for classes of recurrences
that cannot be solved by such a system, nor by current CASs.

KEYWORDS: Cost Analysis, Recurrence Relations, Static Analysis, Machine Learning, Sparse
Linear Regression, Resource Usage Analysis.

1 Introduction and Motivation

The motivation of the work presented in this paper stems from automatic static cost anal-

ysis and verification of programs represented as Horn clauses (Debray et al. 1990; Debray

and Lin 1993; Debray et al. 1997; Navas et al. 2007; Serrano et al. 2014; Lopez-Garcia et al.

2016; 2018). The goal of such analysis is to infer information about the resources used by

programs without actually running them with concrete data, and present such information

as functions of input data sizes and possibly other (environmental) parameters. We assume

a broad concept of resource as a numerical property of the execution of a program, such as

∗ This paper is submitted for presentation only. It is under review for ICLP 2023. We thank John Gallagher,
Manuel Hermenegildo and José F. Morales for useful discussions and feedback, and their work as devel-
opers of the CiaoPP System. Research partially funded by MINECO MICINN PID2019-108528RB-C21
ProCode project, the Madrid M141047003 N-GREENS and P2018/TCS-4339 BLOQUES-CM programs,
and the Tezos foundation.

2 Maximiliano Klemen et al.

Fig. 1: Control flow diagram of our novel solver based on machine learning.

number of resolution steps, execution time, energy consumption, memory, number of calls to

a predicate, number of transactions in a database, etc. Estimating in advance the resource

usage of computations is useful for a number of applications, such as automatic program

optimization, verification of resource-related specifications, detection of performance bugs,

helping developers make resource-related design decisions, security applications (e.g., de-

tection of side channels attacks), or blockchain platforms (e.g., smart-contract gas analysis

and verification).

The challenge we address originates from the established approach of setting up recurrence

relations representing the cost of predicates, parameterized by input data sizes (Wegbreit

1975; Rosendahl 1989; Debray et al. 1990; Debray and Lin 1993; Debray et al. 1997; Navas

et al. 2007; Albert et al. 2011; Serrano et al. 2014; Lopez-Garcia et al. 2016), which are then

solved to obtain closed forms of such recurrences (i.e., functions that provide either exact,

or upper/lower bounds on resource usage in general). Such approach can infer different

classes of functions (e.g., polynomial, factorial, exponential, summation, or logarithmic).

The applicability of these resource analysis techniques strongly depends on the capabili-

ties of the component in charge of solving (or safely approximating) the recurrence relations

generated during the analysis, which has become a bottleneck in some systems.

A common approach to automatically solving such recurrence relations consists of using

a Computer Algebra System (CAS) or a specialized solver to find a closed form. However,

this approach poses several difficulties and limitations. For example, some recurrence re-

lations contain complex expressions or recursive structures that most of the well-known

CASs cannot solve, making it necessary to develop ad-hoc techniques to handle such cases.

Moreover, some recurrences may not have the form required by such systems because an

input data size variable does not decrease, but increases instead. Note that a decreasing-size

variable could be implicit in the program, i.e., it could be a function of a subset input data

sizes (a ranking function), which could be inferred by applying established techniques used

in termination analysis (Podelski and Rybalchenko 2004). However, such techniques are

usually restricted to linear arithmetics.

In order to address this challenge we have developed a novel, general method for solving

arbitrary, constrained recurrence relations. It is a guess and check approach that uses ma-

chine learning techniques for the guess stage, and a combination of an SMT-solver and a

Computer Algebra System for the check stage (see Figure 1). To the best of our knowledge,

there is no other approach that does this. The resulting closed-form function solutions can

be of different kinds, such as polynomial, factorial, exponential, summation, or logarithmic.

Solving Recurrence Relations using Machine Learning 3

The rest of this paper is organized as follows. Section 2 gives and overview of our novel

guess and check approach. Then Section 3 provides some background information and pre-

liminary notation. Section 4 presents a more detailed, formal and algorithmic description of

our approach. Section 5 describes the use of our approach in the context of static cost anal-

ysis. Section 6 comments on our prototype implementation and its experimental evaluation.

Finally, Section 7 summarizes some conclusions and lines for future work.

2 Overview of our Approach

We now give an overview of the two stages of our approach already mentioned: guess a

candidate closed-form function, and check whether such function is actually a solution of

the recurrence relation.

Given a recurrence relation for a function f(~x), solving it means to find a closed-form

function f̂(~x) that has the same domain as f(~x), and for all ~x in such domain, f̂(~x) = f(~x).

By a closed-form function f̂ we mean an expression that is built by using only elementary

arithmetic functions, e.g., constants, addition, subtraction, multiplication, division, expo-

nential, or even factorial functions. In particular, this means that f̂ does not contain any

subexpressions built by using the same function f̂ (i.e., f̂ is not recursively defined).

We will use the following recurrence as an example to illustrate our approach:

f(x) = 0 if x = 0
f(x) = f(f(x− 1)) + 1 if x > 0

(1)

2.1 The “guess” stage (sparse linear regression via Lasso)

We use a sparse linear regression mechanism (see Sec. 3 for more details), so that any

possible model we can obtain (which constitutes a candidate solution) must be a linear

combination of a predefined set of terms, but using a usually small subset of terms. That

is, a function f̂(~x) of the form:

f̂(~x) = β0 + β1 t1(~x) + β2 t2(~x) + · · ·+ βn tn(~x)

where the ti’s are arbitrary functions on ~x from a set T of candidate terms that we call base

functions, and the βi’s are the coefficients (real numbers) that are estimated by regression,

but so that only a few coefficients are nonzero. Currently, the set T is fixed, and contains

the base functions that are representative of the common complexity orders (in Sec. 7 we

comment on future plans to obtain it). For illustration purposes, assume that we use the

following set T of base functions:

T = {λx.x, λx.x2, λx.x3, λx.dlog2(x)e, λx.2x, λx.x · dlog2(x)e}

where each base function is represented as a lambda expression. Then, the sparse linear

regression is performed as follows:

1. Generate a training set S. First, a set Xtrain = {~x1, . . . , ~xk} of input values to the

recurrence function is randomly generated. Then, starting with an initial S = ∅, for

each input value ~xi ∈ Xtrain, a training case si is generated and added to S. For any

input value ~x ∈ Xtrain the corresponding training case s is a tuple of the form:

s = 〈b, c1, . . . , cn〉

where ci = [[ti]]~x for 1 ≤ i ≤ n, and [[ti]]~x represents the result (a scalar) of evaluating

the base function ti ∈ T for input value ~x, where T is a set of n base functions, as

4 Maximiliano Klemen et al.

already explained. The (dependent) value b (also a constant number) is the result of

evaluating the recurrence f(~x) that we want to solve or approximate, in our example,

the one defined in Eq. 1. Assuming that there is an ~x ∈ Xtrain such that ~x = 〈5〉, its

corresponding training case s in our example will be:

s = 〈f(5), [[x]]5, [[x
2]]5, [[x

3]]5, [[dlog2(x)e]]5, . . .〉
= 〈5, 5, 25, 125, 3, . . .〉

2. Perform the sparse regression in two steps using the training set S created above. In

the first step, we use linear regression with Lasso (`1) regularization (Hastie et al. 2015)

on the coefficients. This is a penalty term that encourages coefficients whose associated

base functions have a small correlation with the dependent value to be exactly zero.

This way, typically most of the candidate terms in T will be discarded, and only those

that are really needed to approximate our target function will be kept. The level of

penalization is controlled by a hyperparameter λ ≥ 0. As commonly done in machine

learning (Hastie et al. 2015), the value of λ that generalizes optimally on unseen (test)

inputs is found via cross-validation on a separate validation set (generated randomly

in the same way as the training set). The result of this step is a (column) vector ~β

of coefficients, and an independent coefficient β0. Finally, we generate a test set Xtest

(again, randomly in the same way as the training set) of input values to the recurrence

function to obtain a measure R2 of the accuracy of the estimation. Additionally, we

discard those terms whose corresponding coefficient is less than a given threshold ε.

The resulting closed-form expression that estimates the target function is

f̂(~x) = rmε(~β
T) · E(T, ~x) + β0

where E(T, ~x) is a vector of the terms in T with the arguments bound to ~x, and rmε

takes a vector of coefficients and returns another vector where the coefficients less

than ε are rounded to zero. Both the Lasso regularization and the pruning function

discard many terms from T in the final cost function.

3. Finally, our method performs again a standard linear regression (without Lasso regu-

larization) on the training set S, but without using those base functions corresponding

to the terms discarded previously by Lasso and the ε-pruning. In our example, with

ε = 0.001, we obtain:

f̂(x) = 1.0 x

with a value R2 = 1, which means that the estimation obtained predicts exactly the

values for the test set, and thus, it is a candidate solution for the recurrence in Eq. 1.

If R2 were less than 1, it would mean that the function obtained is not a candidate

(exact) solution, but a (possibly unsafe) approximation, as there are values in the test

set that cannot be exactly predicted.

2.2 The “check” stage

Once a function that is a candidate solution for the recurrence has been obtained, the

second step of our method tries to verify whether such a candidate is actually a solution.

To do so, the recurrence is encoded as a first order logic formula where the references to

the target function are replaced by the candidate solution whenever possible. Afterwards,

we use an SMT-solver to check whether the negation of such formula is satisfiable, in which

case we can conclude that the candidate is not a solution for the recurrence. Otherwise, if

such formula is unsatisfiable, then the candidate function is an exact solution. Sometimes,

Solving Recurrence Relations using Machine Learning 5

it is necessary to consider a precondition for the domain of the recurrence, which is also

included in the encoding.

To illustrate this processs, Expression (2) below shows the recurrence relation we target

to solve, followed by the candidate solution obtained previously using linear regression:

f(x) = 0 if x = 0
f(x) = f(f(x− 1)) + 1 if x > 0

f̂(x) = x if x ≥ 0

(2)

Now, Expression (3) below shows the encoding of the recurrence as a first order logic

formula.

∀x ·
(

(x = 0 =⇒ f(x) = 0) ∧ (x > 0 =⇒ f(x) = f(f(x− 1)) + 1)
)

(3)

Finally, Expression (4) below shows the negation of such formula, as well as the references to

the function name substituted by the definition of the candidate solution. We underline both

the subexpressions to be replaced, and the subexpressions resulting from the substitutions.

∃x · ¬(((x = 0 =⇒ x = 0) ∧ (x > 0 =⇒ x = x− 1 + 1))) (4)

It is easy to see that Formula (4) is unsatisfiable. Therefore, f̂(x) = x is an exact solution

for f(x) in Eq. 1.

For some cases where the candidate solution contains transcendental functions, our im-

plementation of the method uses a Computer Algebra System to perform simplifications

and transformations, in order to obtain a formula supported by the SMT-solver. We find

this combination of CAS and SMT-solver particularly useful, since it allows solving more

problems than only using one of these systems in isolation.

3 Preliminaries

Recurrence relations. A recurrence relation of order k, k > 0, for a function f , is a set of

equations that give k initial values for f , and an equation that recursively defines any other

value of f as a function g that takes k previous values of f as parameters. For example, the

following recurrence relation of second order (k = 2), with g being the arithmetic addition

+, defines the Fibonacci function:

f(n) =

{
1 if n = 0 or n = 1

f(n− 1) + f(n− 2) if n ≥ 2
(5)

A challenging class of recurrences that we can solve with our approach are “nested” recur-

rences, e.g., recurrences of the form f(n) = g(f(f(n− 1))).

We use the last letters from the alphabet to denote variables, and the first letters from

the alphabet to denote constants and coefficients. We use f, g to represent functions, and

e, t to represent arbitrary expressions. We use ϕ to represent arbitrary boolean constraints

over a set of variables. Sometimes, we also use β to represent coefficients obtained with

linear regression. In all cases, the symbols can be subscribed. We use ~x to denote a finite

sequence 〈x1, x2, . . . , xn〉, for some n > 0. Given a sequence S and an element x, 〈x|S〉 is a

new sequence with first element x and tail S.

6 Maximiliano Klemen et al.

Given a piecewise function:

f(~x) =



e1(~x) if ϕ1(~x)

e2(~x) if ϕ2(~x)

...
...

ek(~x) if ϕk(~x)

(6)

where f ∈ D → R+, with D = {~x|~x ∈ Zm∧ϕpre(~x)} for some boolean constraint ϕpre, and

ei(~x), ϕi(~x) are arbitrary expressions and constraints over ~x respectively. We say that ϕpre
is the precondition of f , and that f is a constrained recurrence relation if and only if:

• ∃i ∈ [1, k] such that ei contains a call to f .

• ∃i ∈ [1, k] such that ei does not contain any call to f (i.e., it is in closed form).

• ϕpre |=
∨

1≤i≤k
ϕi.

Given a concrete input ~d ∈ D, we evaluate f(~d) deterministically, assuming the evaluation

of f as a nested if-then-else control structure as follows:

if ϕ1(~d) then

return e1(~d)

else

if ϕ2(~d) then

return e2(~d)

else

· · ·
end if

end if

More formally, let def(f) denote the definition of a (piecewise) constrained recurrence re-

lation f represented as the sequence 〈(e1(~x), ϕ1(~x)), . . . , (ek(~x), ϕk(~x))〉, where each element

of the sequence is a pair representing a case. The order of such sequence determines the eval-

uation strategy. Then, the evaluation of f for a concrete value ~d, denoted EvalFun(f(~d)),

is defined as follows:

EvalFun(f(~d)) = EvalBody(def(f), ~d)

EvalBody(〈(e, ϕ)|Ps〉, ~d) =

{
[[e]]~d if ϕ(~d)

EvalBody(Ps, ~d) if ¬ϕ(~d)

Our goal is to find a function f̂ ∈ D → R+ such that for all ~d ∈ D:

• If EvalFun(f(~d)) terminates, then EvalFun(f(~d)) = [[f̂]]~d, and

• f̂ does not contain any recursive call in its definition.

In particular, we look for a definition of the form:

f̂(~x) = β0 + β1 t1(~x) + β2 t2(~x) + · · ·+ βn tn(~x) (7)

where βi ∈ R, and ti are expressions over ~x, not including recursive references to f̂ . If the

above conditions are met, we say that f̂ is a closed form for f .

Solving Recurrence Relations using Machine Learning 7

To illustrate the need of introducing an evaluation strategy for the recurrence that is

consistent with the termination of the program, consider the following Prolog program

which does not terminate for a call p(X) where X is bound to an integer:

1 p(X) :- X > 0, X1 is X + 1, p(X1).

2 p(X) :- X = 0.

The following recurrence relation for its cost (in resolution steps) can be set up:

Cp(x) = 1 if x = 0
Cp(x) = 1 + Cp(x+ 1) if x > 0

(8)

A CAS will give the closed form Cp(x) = 1−x for such recurrence, however, the cost analysis

should give Cp(x) =∞.

Linear Regression. Linear regression (Hastie et al. 2009) is a statistical technique used

to approximate the linear relationship between a number of independent variables and

a dependent (output) variable. Given a vector of independent (input) variables X =

(X1, . . . , Xp)
T ∈ Rp, we predict the output variable Y using the formula

Y = β0 +

p∑
i=1

βiXi (9)

which is defined through the vector of coefficients β = (β0, . . . , βp)
T ∈ Rp. Such coeffi-

cients are estimated from a set of observations {yi, xi1, . . . , xip}ni=1 so as to minimize a loss

function, most commonly the sum of squares

β = arg min
β∈Rp

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

(10)

Sometimes (as is our case) some of the input variables are not relevant to explain the

output, but the above least-squares estimate will almost always assign nonzero values to

all the coefficients. In order to force the estimate to make exactly zero the coefficients of

irrelevant variables (hence removing them and doing feature selection), various techniques

have been proposed. The most widely used one is the Lasso (Hastie et al. 2015), which adds

an `1 penalty on β (i.e., the sum of absolute values of each coefficient) to Eq. 10:

β = arg min
β∈Rp

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj | (11)

where λ ≥ 0 is a hyperparameter that determines the level of penalization: the greater

λ, the greater the number of coefficients that are exactly equal to 0. The Lasso has two

advantages over other feature selection techniques for linear regression. First, it defines a

convex problem whose unique solution can be efficiently computed even for datasets where

either of n or p are large (almost as efficiently as a standard linear regression). Second, it

has been shown in practice to be very good at estimating the relevant variables.

4 Algorithmic Description of the Approach

In this section we describe our approach for generating and checking candidate solutions for

recurrences that arise in resource analysis. Algorithms 1 and 2 correspond to the guesser

and checker components, respectively, which are shown in Figure 1.

8 Maximiliano Klemen et al.

Algorithm 1: Candidate Solution Generation (Guesser).

Input : F ∈ D → R+: target recurrence relation.
ϕpre: precondition defining D.
T ⊆ D → R+: candidate terms.
Λ: range of values to automatically choose a Lasso hyperparameter λ ∈ R+.
k: indicates performing k−fold cross-validation, k > 2.
ε ∈ R+: threshold for term (ti ∈ T) selection.

Output: F̂ ∈ Exp: a candidate solution (or an approximation) for F .
S ∈ [0, 1]: score, indicates the accuracy of the estimation (R2).

1 I ← {~xi|~xi ∈ Zm ∧ ϕpre(~xi)}Ni=1 ; // N Random inputs for F

2 X ← {〈F (~x)|E(T, ~x)〉|~x ∈ I} ; // Training set

3 (~β′, β′0)← CV LassoRegression(X ,Λ, k);

4 (T ′,X ′)← RemoveTerms(T,X , ~β′, β′0, ε);
5 (~β, β0, S)← LinearRegression(X ′);
6 F̂ ← λ~x · ~βT × E(T ′, ~x) + β0;

7 return (F̂ , S);

Algorithm 1 receives a recurrence relation for a function F to solve, a set of candidate

terms, and a threshold to decide when to discard irrelevant terms. The output is a closed-

form expression F̂ for F , and a score S that reflects the accuracy of the approximation,

in the range [0, 1]. If S ∼ 1, the approximation can be considered a candidate solution.

Otherwise, F̂ is a (possibly unsafe) approximation. In line 1 we start by generating a set I
of random inputs for F . Each input ~xi is a m-tuple verifying precondition ϕpre, where m is

the number of arguments of F . In line 2 we produce the training set X . The independent

inputs are generated by evaluating the candidate terms in T = 〈t1, t2, . . . , tp〉 with each

tuple ~x ∈ I. This is done by using function E, defined as follows:

E(〈t1, t2, . . . , tp〉, ~x) = 〈t1(~x), t2(~x), . . . , tp(~x)〉

We also evaluate the recurrence equation for input ~x, and add the observed output F (~x) as

the first element in the vectors of the training set. In line 3 we generate a first linear model by

applying function CV LassoRegression to the generated training set. CV LassoRegression

performs a linear regression with Lasso regularization. As already mentioned, Lasso regu-

larization requires a hyperparameter λ that determines the level of penalization for the

coefficients. Instead of using a single value for λ, CV LassoRegression uses a range of pos-

sible values, applying cross-validation on top of the linear regression to automatically select

the best value for that parameter, from the given range. The result of this function is the

vector of coefficients ~β′, together with the intercept β′0. These coefficients are used in line 4

to decide which candidate terms are discarded before the last regression step. Note that

RemoveTerms removes the candidate terms from T together with their corresponding in-

put values from the training set X , returning the new set of candidate terms T ′ and its

corresponding training set X ′. In line 5, standard linear regression (without regularization

nor cross-validation) is applied, obtaining the final coefficients ~β and β0. Additionally, from

this step we also obtain the score S of the resulting model. In line 6 we set up the resulting

closed-form expression, given as a function on the variables in ~x. Note that we use the

function E to bind the variables in the candidate terms to the arguments of the closed-form

expression. Finally, the closed-form expression and its corresponding score are returned as

the result of the algorithm.

Solving Recurrence Relations using Machine Learning 9

Algorithm 2 mainly relies on an SMT solver and a Computer Algebra System. Concretely,

given the constrained recurrence relation F ∈ D → R+ defined as

F (~x) =



e1(~x) if ϕ1(~x)

e2(~x) if ϕ2(~x)

...
...

ek(~x) if ϕk(~x)

our algorithm constructs the logic formula:

s k∧
i=1

i−1∧
j=1

¬ϕj(~x)

 ∧ ϕi(~x) ∧ ϕpre(~x) =⇒ Eqi

{

smt

(12)

where Eqi is the result of replacing in F (~x) = ei(~x) each occurrence of F , if possible,

by the definition of the candidate solution F̂ (by using replaceCalls in line 4), and per-

forming a simplification by the CAS (by using simplifyCAS in line 6). A goal of such

simplification is to obtain (sub)expressions supported by the SMT-solver. The function

replaceCalls(expr, F (~x′), F̂ , ϕpre, ϕ) replaces every subexpression in expr of the form F (~x′)

by F̂ (~x′), if ϕpre(~x
′) ∧ ϕ =⇒ ϕpre(~x

′). The operation JeKsmt is the translation of any ex-

pression e to a SMT-LIB expression. Although all variables appearing in 12 are declared

as integers, we omit these details in Algorithm 2 and in Formula 12 for the sake of brevity.

Note that this encoding is consistent with the evaluation (EvalFun) described in Section 3.

Finally, the algorithm asks the SMT solver for models of the negated formula (line 17). If no

model exists, then it returns true, concluding that F̂ is an exact solution to the recurrence,

i.e., F̂ (~x) = F (~x) for any input ~x ∈ D such that EvalFun(F (~x)) terminates. Otherwise, it

returns false. Note that, if it is not possible to replace all occurrences of F by F̂ , or if after

performing the simplification by simplifyCAS there are subexpressions not supported by

the SMT solver, then the algorithm finishes returning false.

5 Our Approach in the Context of Static Cost Analysis

In this section, we describe how our approach could be used in the contex of the motivating

application, Static Cost Analysis. Although it is general, and could be integrated into any

cost analysis system based on recurrence solving, we illustrate its use in the context of the

CiaoPP system. Using a logic program, we first illustrate how the CiaoPP system sets up

recurrence relations representing the sizes of output arguments of predicates and the cost

of such predicates. Then, we show how our novel approach is used to solve a recurrence

relation that cannot be solved by CiaoPP.

Example 1

Consider predicate p/2 in Figure 2, and calls to it where the first argument is bound to a

non-negative integer and the second one is a free variable. Upon success of these calls, the

second argument is bound to an non-negative integer too. Such calling mode, where the

first argument is input and the second one is output, is automatically inferred by CiaoPP

(see (Hermenegildo et al. 2005) and its references).

The CiaoPP system first infers size relations for the different arguments of predicates,

using a rich set of size metrics (see (Navas et al. 2007; Serrano et al. 2014) for details).

Assume that the size metric used in this example, for the numeric argument X is the actual

10 Maximiliano Klemen et al.

Algorithm 2: Solution Checking (Checker).

Input : F ∈ D → R+: target recurrence relation.
ϕpre: precondition defining D.

F̂ ∈ Exp: a candidate solution for F .
Output: true if F̂ is a solution for F , false otherwise.

1 ϕprevious ← true ;
2 Formula← true ;
3 foreach (e, ϕ) ∈ def(F) do

4 Eq ← replaceCalls(“F (~x)− e = 0”, F (~x), F̂ , ϕpre, ϕ);
5 if ¬containsCalls(Eq, F) then

6 Eq ← simplifyCAS(inlineCalls(Eq, F̂ , def(F̂)));
7 if supportedSMT (Eq) then
8 Formula← “Formula ∧ (ϕpre ∧ ϕprevious ∧ ϕ =⇒ Eq)”;
9 ϕprevious ← “ϕprevious ∧ ¬ϕ” ;

10 else
11 return false;
12 end

13 else
14 return false;
15 end

16 end
17 return (6|=SMT J¬FormulaKSMT);

1 :- entry p/2: nnegint*var.

2 p(X,0):-

3 X=0.

4 p(X,Y):-

5 X>0,

6 X1 is X - 1,

7 p(X1 ,Y1),

8 p(Y1 ,Y2),

9 Y is Y2 + 1.

Fig. 2: A program with a nested recursion.

value of it (denoted int(X)). The system will try to infer a function Sp(x) that gives the

size of the output argument of p/2 (the second one), as a function of the size (x) of the

input argument (the first one). For this purpose, the following size relations for Sp(x) are

automatically set up (the same as Eq. 1 used in Sec. 2 as example):

Sp(x) = 0 if x = 0
Sp(x) = Sp(Sp(x− 1)) + 1 if x > 0

(13)

The first and second recurrence correspond to the first and second clauses respectively (i.e.,

base and recursive cases). Once recurrence relations (either representing the size of terms,

as the ones above, or the computational cost of predicates, as the ones that we will see

later) have been set up, a solving process is started.

Nested recurrences, as the one that arise in this example, cannot be handled by most

state-of-the-art recurrence solvers. In particular, the modular solver used by CiaoPP fails

to find a closed-form function for the recurrence relation above. In contrast, the novel

Solving Recurrence Relations using Machine Learning 11

approach that we propose, squetched in next section, obtains the closed form Ŝp(x) = x,

which is an exact solution of such recurrence (as shown in Section 2).

Once the size relations have been inferred, CiaoPP uses them to infer the computational

cost of a call to p/2. For simplicity, assume that in this example, such cost is given in terms

of the number of resolution steps, as a function of the size of the input argument, but note

that CiaoPP’s cost analysis is parametric with respect to resources, which can be defined by

the user by means of a rich assertion language, so that it can infer a wide range of resources,

besides resolution steps. Also for simplicity, we assume that all builtin predicates, such as

arithmetic/comparison operators have zero cost (in practice there is a “trust”assertion for

each builtin that specifies its cost as if it had been inferred by the analysis).

In order to infer the cost of a call to p/2, represented as Cp(x), CiaoPP sets up the

following cost relations, by using the size relations inferred previously:

Cp(x) = 1 if x = 0
Cp(x) = Cp(x− 1) + Cp(Sp(x− 1)) + 1 if x > 0

(14)

We can see that the cost of the second recursive call to predicate p/2 depends on the

size of the output argument of the first recursive call to such predicate, which is given

by function Sp(x), whose closed form Sp(x) = x is computed by our approach, as already

explained. Plugin such closed form into the recurrence relation above, it can be solved now

by CiaoPP, obtaining Cp(x) = 2x+1 − 1.

6 Implementation and Experimental Evaluation

We have implemented a prototype of our novel approach and performed an experimental

evaluation in the context of the CiaoPP system, by solving recurrences generated during

static cost analysis. Our prototype takes a recurrence and returns a closed form obtained

together with two measures: 1) the accuracy of the estimation (score) of the candidate

closed-form solution generated by the machine learning phase, and 2) an indication of

whether such closed form is an exact solution of the recurrence (i.e., if it has been formally

verified). It is implemented in Python 3, using Sympy (Meurer et al. 2017) as Computer

Algebra System, and Scikit-Learn (Pedregosa et al. 2011) for the regression with Lasso

regularization. We use Z3 (de Moura and Bjørner 2008) as SMT-Solver, and Z3Py (Z3Py

2010) as interface. The solver is pre-configured with a set of global parameters:

• An integer k > 2, to perform k−fold cross-validation. This means that the training

set is split into k parts or folds. Then, each fold is taken as the validation set, training

the model with the remaining k− 1 folds. Finally, the performance measure reported

is the average of the values computed in the k iterations.

• A range of real values Λ, to automatically choose a λ for Lasso regularization that

maximizes the performance of the model via cross-validation.

• A set of basic symbolic functions T , to form the candidate terms ti to be used in the

expression obtained by the algorithm.

• Optionally, a precondition ϕpre on the arguments of the recurrence to solve.

Our experimental results are shown in Table 1. Column Bench shows the name that

we have assigned to each recurrence that we have chosen (which is inspired by the Horn-

clause program such recurrence originated from during cost/size analysis), and Column

Recurrence shows their definitions, where we use the same function symbol, f , for all of

them. Such recurrences are challenging for CiaoPP, either because they cannot be solved

by any of the back-end solvers, or because they are necessarily over-estimated in the solving

12 Maximiliano Klemen et al.

Table 1: Closed forms obtained with the previous (CF) and new solver (CFNew).

Bench Recurrence CF CFNew T (s)

merge-sz f(x, y) =


max(f(x− 1, y),

f(x, y − 1)) + 1 if x > 0 ∧ y > 0

x if x > 0 ∧ y ≤ 0

y if x ≤ 0 ∧ y > 0

− x+ y 0.92

merge f(x, y) =


max(f(x− 1, y),

f(x, y − 1)) + 1 if x > 0 ∧ y > 0

0 otherwise

− max (0, x+ y − 1) 0.71

nested f(x) =

{
f(f(x− 1)) + 1 if x > 0

0 otherwise
− x 0.13

open-zip f(x, y) =


f(x− 1, y − 1) + 1 if x > 0 ∧ y > 0

f(x, y − 1) + 1 if x ≤ 0 ∧ y > 0

f(x− 1, y) + 1 if y ≤ 0 ∧ x > 0

0 otherwise

− max (x, y) 0.12

div f(x, y) =

{
f(x− y, y) + 1 if x >= y

0 otherwise
−

⌊
x
y

⌋
0.13

div-ceil f(x, y) =


f(x− y, y) + 1 if x >= y

1 if x < y ∧ x > 0

0 otherwise

−
⌈

x
y

⌉
0.12

s-max f(x, y) =

{
max(y, f(x− 1, y)) + 1 if x > 0

y otherwise
x+ y x+ y 0.12

s-max-1 f(x, y) =

{
max(y, f(x− 1, y + 1)) + 1 if x > 0

y otherwise
− 2x+ y 0.14

sum-osc f(x, y) =


f(x− 1, y) + 1 if x > 0 ∧ y > 0

f(x+ 1, y − 1) + y if x ≤ 0 ∧ y > 0

1 otherwise

− x+ y2

2
+ 3y

2
0.13

process. Some recurrences, like nested, are problematic even for most of the current state-

of-the-art solvers. Column CF shows the closed forms obtained by our previous recurrence

solver, and Column CFNew shows the closed forms obtained by our approach, applying

Algorithms 1 and 2. All of them have been verified as exact solutions to the recurrences by

Algorithm 2.

Finally, Column T(s) shows the total time, in seconds (executing on a MacBook Pro

machine, 2.4GHz Intel Core i7 CPU, 8 GB 1333 MHz DDR3 memory), needed to obtain

the closed forms and verify them. For all the experiments, we have set k = 2, in order to

perform 2−fold cross-validation. We have also set the range for λ to 100 values taken from

the interval [0.001 1]. Regarding the set T of candidate terms, for recurrences with one or

two arguments, we provide a predefined set of representative functions of the most common

complexity orders, as well as some compositions of them. For recurrences with three or more

arguments, we provide an initial set of simple functions, that are combined automatically to

generate the basic functions ti for the set T . Finally, as a default precondition, we assume

that the initial values for the variables that are the arguments of the recurrences are all

Solving Recurrence Relations using Machine Learning 13

greater than or equal to zero, i.e., ϕpre =
∧

x∈Args
(x ≥ 0), where Args is the set of arguments

of the recurrence.

As we can see, none of the recurrences are solvable by the current CiaoPP solver, except

s-max. The specialized solver for such recurrence has been developed relatively recently. In

contrast, our new solver is able to infer exact closed-forms functions for all the recurrences

in a reasonable time.

7 Conclusions and Future Work

We have developed a novel approach for solving or approximating arbitrary, constrained

recurrence relations. It consists of a guess stage that uses a sparse linear regression via Lasso

regularization and cross-validation to infer a candidate closed-form solution, and a check

stage that combines a SMT-solver and a Computer Algebra System to verify that such

candidate is actually a solution. We have implemented a prototype and evaluated it with

recurrences that are generated by the cost analysis module of the CiaoPP system, and are

not solvable by it. The experimental results are quite promising, showing that our approach

can find exact, verified, closed-form solutions, in a reasonable time, for such recurrences.

Since our technique uses linear regression with a randomly generated training set (by

evaluating the recurrence to obtain the dependent value), it is not guaranteed that a solution

can be found. Even if an exact solution is found in the first stage, it is not always possible

to prove its correctness in the second stage. Therefore, in this sense, this approach is not

complete. However, it is able to find some solutions that current state-of-the-art solvers

are unable to find. As a proof of concept, we have considered a particular deterministic

evaluation for constrained recurrence relations, and the verification of the candidate solution

is consistent with this evaluation. However, it is possible to implement different evaluation

semantics for the recurrences, adapting the verification stage accordingly. Note that we need

to require the termination of the recurrence evaluation as a precondition for the conclusions

obtained. This is also due to the particular evaluation strategy of recurrences that we are

considering. In practice, non-terminating recurrences can be discarded in the first stage,

by setting a timeout. Our approach can also be combined with a termination prover in

order to guarantee such precondition. Finally, note that an alternative use of our tool is to

omit the verification stage, using only the closed-form function inferred by the first stage,

together with an error measure. This can be useful in some applications (e.g., granularity

control in parallel/distributed computing) where it is enough to have good although unsafe

approximations.

As a future work, we plan to fully integrate our novel solver into the CiaoPP system,

combining it with its current set of back-end solvers in order to impove the static cost

analysis. We also plan to further refine and improve our algorithms in several directions. As

already explained, currently the set T of base functions is fixed, user-provided. We plan to

automatically infer it by using different heuristics. We can perform an automatic analysis

of the recurrence we are solving, to extract some features that allow selection of the terms

that most likely are part of the solution. For example, if the recurrence has a nested, double

recursion, then we can select a quadratic term, etc. Also, machine learning techniques may

be applied to learn a good set of base functions from some features of the programs.

14 Maximiliano Klemen et al.

References

Albert, E., Arenas, P., Genaim, S., and Puebla, G. 2011. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46, 2, 161–203.

de Moura, L. M. and Bjørner, N. Z3: An Efficient SMT Solver. In Ramakrishnan, C. R.
and Rehof, J., editors, Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008 2008, volume 4963 of Lecture Notes in Computer
Science, pp. 337–340. Springer.

Debray, S. K. and Lin, N. W. 1993. Cost analysis of logic programs. ACM TOPLAS, 15, 5,
826–875.

Debray, S. K., Lin, N.-W., and Hermenegildo, M. V. Task Granularity Analysis in Logic
Programs. In Proc. PLDI’90 1990, pp. 174–188. ACM.

Debray, S. K., Lopez-Garcia, P., Hermenegildo, M. V., and Lin, N.-W. Lower Bound Cost
Estimation for Logic Programs. In ILPS’97 1997, pp. 291–305. MIT Press.

Hastie, T., Tibshirani, R., and Wainwright, M. 2015. Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman & Hall/CRC.

Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. 2009. The Elements of Statistical
Learning—Data Mining, Inference and Prediction. Springer-Verlag, second edition.

Hermenegildo, M. V., Puebla, G., Bueno, F., and Lopez-Garcia, P. 2005. Integrated Pro-
gram Debugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao
System Preprocessor). Science of Computer Programming, 58, 1–2, 115–140.

Lopez-Garcia, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., and Hermenegildo,
M. V. 2018. Interval-based Resource Usage Verification by Translation into Horn Clauses and an
Application to Energy Consumption. Theory and Practice of Logic Programming, Special Issue
on Computational Logic for Verification, 18, 2, 167–223.

Lopez-Garcia, P., Klemen, M., Liqat, U., and Hermenegildo, M. V. 2016. A General Frame-
work for Static Profiling of Parametric Resource Usage. TPLP (ICLP’16 Special Issue), 16, 5-6,
849–865.

Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O., Kirpichev, S. B., Rocklin, M., Ku-
mar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E.,
Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry,
M. J., Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and
Scopatz, A. 2017. Sympy: symbolic computing in python. PeerJ Computer Science, 3, e103.

Navas, J., Mera, E., Lopez-Garcia, P., and Hermenegildo, M. User-Definable Resource
Bounds Analysis for Logic Programs. In Proc. of ICLP’07 2007, volume 4670 of LNCS, pp.
348–363. Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Podelski, A. and Rybalchenko, A. A Complete Method for the Synthesis of Linear Rank-
ing Functions. In 5th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’04) 2004, Lecture Notes in Computer Science, pp. 239–251. Springer.

Rosendahl, M. Automatic Complexity Analysis. In Proc. of FPCA’89 1989, pp. 144–156. ACM
Press.

Serrano, A., Lopez-Garcia, P., and Hermenegildo, M. V. 2014. Resource Usage Analysis of
Logic Programs via Abstract Interpretation Using Sized Types. TPLP, ICLP’14 Special Issue,
14, 4-5, 739–754.

Wegbreit, B. 1975. Mechanical Program Analysis. Comm. of the ACM, 18, 9, 528–539.

Z3Py 2010. Z3 api in python. https://ericpony.github.io/z3py-tutorial/guide-examples.

htm. Accessed: 2010-09-30.

