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ABSTRACT

Ensemble methods based on trees, such as Random Forests, Ad-
aBoost and gradient boosting, are widely recognized as among the
best off-the-shelf classifiers: they typically achieve state-of-the-art
accuracy in many problemswith little effort in tuning hyperparam-
eters, and they are often used in applications, possibly combined
with other methods such as neural nets. While many variations of
forest methods exist, using different diversity mechanisms (such as
bagging, feature sampling or boosting), nearly all rely on training
individual trees in a highly suboptimalway using greedy top-down
tree induction algorithms such as CART or C5.0. We study forests
where each tree is trained on a bootstrapped or random sample
but using the recently proposed tree alternating optimization (TAO),
which is able to learn trees that have both fewer nodes and lower
error. The better optimization of individual trees translates into
forests that achieve higher accuracy but using fewer, smaller trees
with oblique nodes. We demonstrate this in a range of datasets
and with a careful study of the complementary effect of optimiza-
tion and diversity in the construction of the forest. These bagged
TAO trees improve consistently and by a considerable margin over
Random Forests, AdaBoost, gradient boosting and other forest al-
gorithms in every single dataset we tried.
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1 INTRODUCTION

We consider ensembles of trees (forests) for classification. These
are among the most successful and widely used of all classifiers
(in isolation or combined with other models, such as deep nets for
feature extraction), and they have received much praise in the sta-
tistical and machine learning literature [8, 11, 28]. They are widely
used in many applications. For example, in computer vision they
are used for body and visual tracking [17, 61], face and object de-
tection [54, 59], shape recognition [1], and others [16].

The success of forests is due to their ability to achieve low bias
and low variance by combining weakly correlated trees, for which
different ensembling mechanisms exist. Random Forests [7] rely
mostly on variance reduction via averaging. Boosting, in its vari-
ous forms [24, 53], aims at reducing both bias and variance. How-
ever, what is common to all these approaches is the way they con-
struct the individual trees: they use a top-down induction algo-
rithm such as CART [9] that recursively splits nodes. It is well
known [28] that CART-type algorithms are highly suboptimal tree
optimizers: the greedy nature of the splits they create means that
suboptimal splits propagate down the tree. In fact, those algorithms
ignore the exact form of the objective function altogether while
growing the tree. (They do consider it when pruning the tree, but
by this time it is too late: the split parameters cannot be changed,
one can only remove nodes.) This has led to a perception that
decision trees are generally low-accuracy models in isolation [28,
p. 352], although combining a large number of trees does produce
much more accurate models.

A recent algorithm, TreeAlternatingOptimization (TAO) [12, 13],
may change this situation. TAOmonotonically decreases a desired
objective function over a decision tree of given structure and finds
much better approximate optima thanCART-type algorithms. This
motivates us to consider how well trees trained with TAO instead
of CART would do when ensembled. While a better optimization
of individual trees lowers their bias, it may also decrease their di-
versity and result in worse forests [36, p. 247]. We convincingly
show that TAO forests do in fact work very well, even exceeding
the accuracy of the state-of-the-art forest classifiers while using
smaller forests. We do this by an extensive comparison across mul-
tiple datasets with Random Forests, AdaBoost, XGBoost [14] and
other forest classifiers in section 5; and by a careful study of several
diversitymechanisms that can be used to combine TAO trees in sec-
tion 6. Before doing that, we review related work (section 2) and
TAO in particular (section 3), and discuss the ensembling mecha-
nism we propose (section 4).
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2 RELATED WORK

The literature of ensemble learning for classification is huge [36,
65]. The most successful ensembles are forests, made of trees. We
review tree learning and tree ensembling.

2.1 Learning a single tree

Finding optimal decision trees or even constant-factor approxima-
tions is NP-hard in most formulations of the problem [26, 31]. As
any textbook on statistical learning [6, 28, 43] or specialized re-
view of tree induction [9, 40, 46, 47, 50, 51] will show, the estab-
lished way to learn classification trees from data is top-down in-
duction. This grows the tree greedily and recursively. Starting at
the root, a node is split into two children by optimizing a “purity”
criterion (typically the Gini index or entropy), which seeks an axis-
aligned or hyperplane partition of the space such that the training
instances reaching each child belong to one class (or as few classes
as possible). This is recursively repeated until each leaf contains
instances from the same class (or some other stopping criterion
is satisfied). Then, the resulting, usually large tree is optionally
pruned in order to reduce overfitting. This is done by removing
subtrees to optimize a cost-complexity tradeoff (note that we can
remove nodes but we cannot change the node parameters them-
selves). Various refinements may be combined with this, leading
to slightly different algorithms such as CART [9], ID3 [46] or C4.5
and C5.0 [47]. Multiple public and commercial implementations of
these exist, e.g. [35, 45, 56].

The vast majority of papers and software focus on axis-aligned
trees. Oblique trees, having a hyperplane split, have also beenwidely
researched, involving approximate purity optimization over the
hyperplane parameters [9, 44], or other split criteria such as lin-
ear discriminant analysis [23, 41], linear perceptrons [58], logistic
regression [52, 57] or linear SVMs [3, 4, 10]. While oblique trees
provide a more flexible model than axis-aligned ones, their opti-
mization is slower and much less accurate than for axis-aligned
splits. The small accuracy improvement that these oblique trees
produce does not compensate for the increased complexity of the
tree, and indeed oblique trees are rarely used in practice. The re-
cently proposed TAO algorithm [12, 13] can find much better optima

of a regularized loss function over axis-aligned, oblique and other

trees. We describe it later.

2.2 Ensembling trees into a forest

Classification forests usually combine trees bymajority voting, where
each tree is trained by a CART-style algorithm but without the
pruning stage, in order to reduce bias. Various mechanisms are
used to introduce diversity among the trees, which is necessary
for the forest to improve over a single tree. These involve train-
ing each tree independently on different samples (bootstrapped
or random subsets) or different feature subsets, both of which are
very successfully combined in Random Forests [7] and their varia-
tions [5, 25]. Boosting creates a stagewise additive model by train-
ing trees sequentially, each one trying to reduce the residual error
given all previous trees. This can be done by reweighting the sam-
ples, as in AdaBoost [53], or by an approximate functional gradient,
as in gradient boosting [14, 24]. While these are the most widely
used forests, many other variations exist [16, 17, 34, 54]. As with

single tree learning, most forests use axis-aligned trees, although a
few have proposed oblique trees [7, 22, 42, 61]; however, their accu-
racy has not been found uniformly better than that of axis-aligned
forests. Forests have also been combined with neural nets [34]. Fi-
nally, the high accuracy of forests comes at a computational price:
they contain many, very deep trees, particularly for large datasets,
which makes storage and inference costly. This has led to various
works trying to reduce the size of a trained forest [65].

3 TAO: TREE ALTERNATING OPTIMIZATION

We give a brief description of the TAO algorithm, proposed in
[13] in special form and in [12] in general form. TAO operates
very differently from CART-style algorithms. There is no recur-
sive growing of a large tree (using a heuristic split criterion) and
then pruning it to avoid overfitting. TAO is much closer to the way
we typically train a neural net via principled, efficient optimization
methods. In a neural net, we select a fixed parametric architecture
(number of layers and units, etc.), randomly initialize its param-
eters, and then iteratively update them so the objective function
decreases, usually via a gradient-based method. In TAO, we select
a tree structure1 (e.g. a complete tree of given depth), randomly
initialize its parameters (in the decision and leaf nodes), and then
iteratively update all the parameters so the objective function de-
creases. TAO manages this via alternating optimization over the
tree nodes, rather than via gradient-based methods, since the tree
is nondifferentiable. And, with an appropriate regularization term
on the parameters (e.g. ℓ1), TAO can also prune the tree structure,
for example if all the parameters in a node become zero—just as the
Lasso “prunes” input features whose weights become zero [27].

In more detail, consider a tree T with nodes i and parameters
Θ = {θ i } (e.g. θ i can be the weights and bias of a hyperplane
decision node), and the objective function E:

min
Θ

E(Θ) =
N∑

n=1

Ln(yn ,T(xn ;Θ)) + λ
∑

nodes i

ϕi (θ i ) (1)

where the RHS contains two terms: the first is the loss (on each in-
put instance xn with ground-truth labelyn ) and the second is a reg-
ularization term on the nodes’ parameters. In [13], the loss was the
0/1 classification loss and ϕi (θ i ) = ‖θ i ‖1 (an ℓ1 sparsity penalty).
However, the argument below readily extends to any loss (super-
vised or unsupervised) that separates additively over instances and
any regularization that separates additively over nodes [12]. TAO
is based on two theorems which we describe in English (see [12]
for formal statements, proofs and further explanations). Define the
reduced set of node i (whether decision node or leaf) as the training
instances that reach i under the current tree.

Separability condition If nodes i and j in the tree (whether
decision or leaves) are not descendants of each other (e.g. all
nodes at the same depth), then E can be written equivalently
as a separable function of the parameters of i and j. (This
follows from the fact that the reduced sets of i and j are
disjoint, because the tree makes hard, not soft, decisions, by

1It is possible to build a (say) CART tree and initialize TAO from it; TAO will then
improve this tree. However, we find that using a complete tree of large enough depth
∆ (i.e., having 2∆ leaves) with random parameters at the nodes works better. This also
makes TAO self-standing.
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sending an instance down exactly one child at each decision
node.)

Reduced problem The problem of optimizing E over the pa-
rameters θ i at a decision node i is equivalent to a weighted
0/1 loss binary classification problem over the node’s de-
cision function on its reduced set, where each instance is
“pseudolabeled” as the child (left or right) that leads to a
lower value of E under the current tree. (This follows from
the fact that all a decision node can do with an instance is
send it down its left or right child, and the ideal choice is
the one that results in the best prediction downstream from
that node.)
Optimizing E over a leaf i is equivalent to training its model
parameters θ i on its reduced set to optimize E.

The separability condition allows us to optimize E separately (and in

parallel) over the parameters of any set of nodes that are not descen-

dants of each other (fixing the parameters of the remaining nodes).
This has two advantages: 1) we expect a deeper decrease of the
loss, because we optimize over a large set of parameters exactly; 2)
the computation is fast: the joint problem over the set of nodes be-
comes a collection of smaller independent problems each over one
node that can be solved in parallel (if so desired). The node sets can
be derived via breadth-first or depth-first search. The reduced prob-
lem theorem implies that optimizingE over a decision node’s parame-

ters reduces to optimizing a binary classifier (defined by those param-

eters) with the 0/1 loss with certain “pseudolabels”. While optimizing
the 0/1 loss in general is NP-hard [30], we can approximate2 it by
a surrogate loss (e.g. logistic or hinge loss). Regularization terms
over the tree parameters carry over to the reduced problem. As an
example proposed in [13], sparse oblique trees use oblique (hyper-
plane) decision nodes with an ℓ1 penalty; the reduced problem can
be solved by an ℓ1-regularized linear SVMor logistic regression [27,
sections 3.2 and 3.6], a convex problem for which well-developed
code exists, such as LIBLINEAR [21].

Finally, as TAO iterates, the root-leaf path followed by each train-
ing instance changes and so does the reduced set at each node.
This can cause dead branches (whose reduced set is empty) and
pure subtrees (which contain instances from a single class). They
can be pruned after convergence. This means that TAO can actu-

ally modify the tree structure, by reducing the size of the tree; this
is very significant with sparsity penalties. By starting with a deep
enough tree structure and running TAO over a regularization path
over λ ∈ (0,∞), we obtain a collection of trees with progressively
fewer nodes and nonzero parameters at the nodes. We can select λ
by cross-validation.

Effectively, what TAO does is repeatedly train a simple binary

classifier at each decision node and a simpleK-class classifier at each

leaf while monotonically decreasing the objective function E. After
each iteration the reduced set on which each classifier or predictor
is trained changes.

2We can always guarantee a monotonic decrease in E(Θ) by not updating the param-
eters θ i in the rare case where the surrogate solution over node i increases E (we
only observe this near convergence, and the increase is tiny).

The experiments in [13, 64] with single decision trees convinc-
ingly show that TAO does indeed find trees of much lower classi-
fication error than traditional algorithms such as CART. Our ex-
periments in this paper confirm this with single trees and, further,
show that ensembling such trees yields classifiers of astounding
accuracy and small size.

4 TAO FORESTS: ENSEMBLING TAO TREES

We will use the name TAO tree to mean a tree trained with TAO
and TAO forest to mean a forest of TAO trees. We consider two
types of TAO trees (and forests), according to the type of classifier
at the leaves: TAO-c uses a constant label and TAO-l uses a linear
softmax classifier. Both of these use oblique (hyperplane) decision
nodes. (TAO can also train axis-aligned trees, regression trees and
others [12], but we focus here on oblique trees for classification.)

There are many potentially effective ways to ensemble trees. In
this paper we focus on one simple way: each tree is trained in-
dependently and the ensemble prediction is obtained by majority
voting (TAO-c) or by averaging class probabilities (TAO-l). Diver-
sity among the trees can be introduced via different mechanisms,
which we study empirically in section 6. Based on that, we rec-
ommend a procedure which achieves close-to-best accuracy and is
simple (having few, intuitive hyperparameters).We train each tree

using all available features, taking as initial tree a complete binary

tree of depth ∆ with random node parameters, on a random sam-

ple of around 90% of the training set (or, more simply but usually

with slightly lower accuracy, on a bootstrapped sample). Also, we
use a small sparsity penalty λ in order to remove unnecessary pa-
rameters without increasing the tree bias3. Hence, the TAO forest
has two hyperparameters: the number of trees T and the depth ∆

of each tree. This is the procedure we use when comparing with
other algorithms in section 5.

5 EXPERIMENTS: TAO FORESTS VS
STATE-OF-THE-ART FORESTS

We report an extensive comparison acrosswell-known benchmarks
of different characteristics (sample size N , dimensionality D, num-
ber of classes K ; feature vectors that are dense, sparse or from pre-
trained deep nets; etc.) and types (images, documents, etc.); and
multiple forest-basedmethods:AdaBoost, RandomForests (RF), gra-
dient boosting (XGBoost version), and a few variations proposed
in the literature. In all datasets, TAO forests achieve the highest accu-

racy of any forest method, often by a large margin, while also using

the smallest number of trees and smallest tree depth, and being also

competitive in number of parameters and inference FLOPS. Let us
see this in detail.

5.1 Experiment setup

5.1.1 Comparison algorithms. We restrict our comparison to forest-
based algorithms:

Random Forests (RF) [7] uses an ensemble of independent
trees, each trained on a bootstrap subset of the training data
(bagging). Each tree is trained using CART but each node

3One can also select λ by, say, cross-validation, but in the context of forests this is
probably not worth the effort.
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split can only use features from a random subset of sizem.
We do not restrict the max_depth hyperparameter and allow
each tree to grow fully, as is recommended for RFs [7].

AdaBoost [53] is one of the earliest boosting frameworks. It
uses a set of “weak learners” (typically shallow trees) which
are trained sequentially. At each boosting iteration, the train-
ing instances are reweighted so the new learner focusesmostly
on those instances misclassified by previous classifiers.

Gradient boosting [24] is a generalization of AdaBoost as
an approximate gradient optimization in function space of
stagewise additive models. We use the the highly optimized
XGBoost implementation [14]. We use the Python API pro-
vided by the authors (CPU version).

Alternating Decision Forests (ADF) [54]: we comparewith
their published results (we do not run their algorithm). This
algorithm essentially trains a random forest using a combi-
nation of boosting and greedy tree growing.

Shallow Neural Decision Forests (sNDF) [34]:we compare
with their published results. We do not compare with other
versions of the NDF since we consider only oblique or axis-
aligned trees. A sNDF is a forest of soft oblique decision
trees (i.e., an input instance follows all paths in the tree, each
with a different probability).

Oblique Random Forests [42]: we compare with their pub-
lished results. This algorithm, which is restricted to binary
classification only, modifies regular Random Forests so that
each hyperplane split (decision node) is given by a logistic
regression learnt on the training points reaching that node
(a related paper uses a linear SVM instead [61]).

Refined Random Forest (rRF) [48]: this takes as input a pre-
trained forest and globally optimizes over the parameters on
the leaves, which results in an improved prediction error.

Note that, although Random Forests, AdaBoost and gradient
boosting are considered to be robust to hyperparameter choice,
sometimes they do require some tuning to do their best, depend-
ing on the dataset. We explored as best as we could their hyper-
parameters, often improving over reported results in the literature
(e.g. for RF in several datasets in [54]). In particular, we tried dif-
ferent choices of the number of trees and maximum depth (see the
tables). In agreement with previous work, we found that for Ran-
dom Forests it is best to let the trees grow fully, and that the de-
fault value of m =

√
D for the number of features each tree uses

worked about optimally. In AdaBoost and XGBoost, we tune the
most important hyperparameters max_depth, n_estimators and
learning_rate on a subset of the training data for each dataset
separately. All other parameters, such as criterion, booster, etc., are
set to their default values. For RF and AdaBoost, we use the Python
implementation in scikit-learn [45].

We ran our experiments (for all methods) in a computer with an
Intel Xeon CPU E5-2699 v3 @ 2.30GHz and 128 GB RAM. We did
not use any GPUs.

5.1.2 TAO. We use oblique decision trees (having a hyperplane
function at each decision node) with constant leaves (TAO-c) or
linear softmax leaves (TAO-l). We take as initial tree a complete bi-
nary tree of given depth (∆ in the tables) with random parameters
at each node. We train each TAO tree on a 90% random sample of

Dataset Ntrain Ntest D K

Letter 16 000 4 000 16 26
MNIST 60 000 10 000 784 10
Char74k 66 707 7 400 64 62
ImageNet 62 855 12 800 8192 64
R8 5 485 2 189 400 8
RCV1 15 564 518 571 47 236 53
SensIT 78 823 19 705 100 3
SUSY 4.5M 0.5M 18 2

Table 1: Datasets used in our experiments: number of points

for training and test (Ntrain, Ntest), number of features D,

number of classes K .

the training data using 40 iterations and a small sparsity penalty of
λ = 0.01.We report themean error (training and test) and standard
deviation over 5 independent runs.

We implemented TAO in Python 2.7.15 with process level paral-
lel processing. In TAO, the node optimization involves an ℓ1-regularized
logistic regression at each decision node and (for TAO-l) either
an ℓ1-regularized logistic regression (for K = 2 classes) or an ℓ1-
regularized linear softmax (forK > 2 classes) in each leaf. We solve
the logistic regression using LIBLINEAR [21] and the linear soft-
max using SAGA [19], both of which are available inside scikit-
learn [45].

5.1.3 Forest size: number of parameters and FLOPS. For eachmethod’s
forest, we report its total number of parameters and (estimated)
FLOPS for inference:

Total number of parameters We count the parameters for
each node of each tree (decision nodes and leaves). In a de-
cision node we count the number of nonzero weights (and
the bias), which is 2 for an axis-aligned tree and D+1 for an
oblique tree (where D is the number of features). In a leaf,
we count one for constant-label leaves, D + 1 for a logistic
regression classifier (K = 2) and DK for a linear softmax
classifier (with K > 2).

Inference FLOPS We take the inference time (FLOPS) for one
instance along one tree as the number of nonzero parame-
ters it encounters in the root-leaf path it follows. We repeat
this for each tree in the forest and average over all training
instances.

For the forests created by some algorithms, we do not have access
to the actual forest, in which case we report an upper bound and
mark it with parentheses in the tables. This is computed as follows:

Total number of parameters For each tree of depth ∆ (but
not necessarily complete), the maximum number of deci-
sion nodes and leaves is max(N , 2∆) − 1 and max(N , 2∆),
respectively, where N is the number of training points. We
then count the number of parameters as above and multiply
it times the number of trees.

Inference FLOPS We assume that each root-leaf path has a
depth exactly equal to ∆.

5.1.4 Datasets. Table 1 summarizes the characteristics of the datasets
used in our experiments. Section 8.1 has a description of the datasets.
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5.2 Results

Tables 2–6 show the results (sorted by decreasing test error). We in-
clude results with the samemethod but different forest sizeT (num-
ber of trees) and (maximum) depth ∆ of each tree. Some results are
quoted from published work; we obtained the rest ourselves using
existing method implementations. We observe the following.

Our results for AdaBoost, RF and XGBoost are in overall agree-
ment with previous works.Which of them has highest accuracy de-
pends on the dataset, although (with well-set hyperparameters and
especially with sufficiently many trees) they generally are close to
each other. RFs are simplest to use in terms of hyperparameters
and are extremely fast to train. XGBoost (a highly optimized im-
plementation of gradient boosting for trees) takes much longer to
train. It also generates forests with many more trees: each itera-
tion (each new additive model) of a gradient boosting forest adds
K trees if there are K classes [24].

Let us now look at TAO. First, consider the case of a single TAO
tree (T = 1 in the tables). It is remarkable that, in many cases, a
single TAO tree already performs very well compared with state-of-

the-art forest methods, exceeding the accuracy of small forests, par-
ticularly if the TAO tree has linear leaves (TAO-l). This is extreme
in ImageNet, where a single TAO-l tree beats all AdaBoost, RF and
XGBoost forests. This amplifies the experimental findings of [13],
which showed that TAO could learn constant-label trees of much
higher accuracy that traditional tree learning algorithms such as
CART. All these results show that TAO is able to find good optima
of the tree learning problem, and makes decision trees—long con-
sidered as low-accuracy models—serious contenders in terms of
accuracy.

Second, consider the case of TAO forests (T > 1). TAO trees
with constant leaves (TAO-c) already achieve higher accuracy than
most forest methods. However, we will focus on TAO trees with
linear leaves (TAO-l), which we find always beat TAO-c and use
smaller trees. We see that TAO-l has the lowest test error in all

datasets, often by a considerable margin over the other forest meth-

ods. Also, TAO-l forests have few, shallow trees. TAO-l forests use
few trees (up to 30 in all datasets), much less than the other forest
methods, which need 100s or 1000s of trees to achieve their best ac-
curacy and yet cannot match the accuracy of TAO-l. TAO-l forests
also use shallow trees (depth up to 7 in all datasets), far shallower
than the other forest methods, whose depth can exceed 100. This
is because such methods use axis-aligned trees which are typically
unbalanced and grown very deep. The TAO-l trees are mostly com-
plete but pruning of nodes does occur during TAO training.

Consider now the number of parameters and inference time.
Most forest methods use axis-aligned trees, where each decision
node thresholds a single input feature, while we use oblique trees
in theTAO forests we report. Compared to axis-aligned trees, oblique
trees are shallower and their forests require fewer trees. However,
each oblique node uses D + 1 parameters (hyperplane weights and
bias) while an axis-aligned node uses just 2 (feature index and bias).
TAO oblique trees use fewer than D + 1 parameters because we
run TAO with a tiny sparsity penalty, which does make a signifi-
cant number of parameters zero with essentially no error increase.
Which type of forest has higher number of parameters and infer-
ence time is an empirical question. As shown in the tables, when

we compare the most accurate TAO forests with the most accurate

AdaBoost, XGBoost or Random forests, the TAO forests usually have

lower number of parameters and FLOPS.
Table 5 uses a large dataset, SUSY [2], containing two highly

overlapping classes. Here, TAO-c and TAO-l achieve the same ac-
curacy, beating all other forest methods, and achieving an AUC
score very close to the best reported in [2], which used deep neu-
ral nets.

Finally, table 6 compareswith the “obliqueRandom Forest”method
of [42], which is restricted to binary classification only. It modifies
regular RFs so that each hyperplane split (decision node) is given
by a logistic regression learnt on the training points reaching that
node (a related paper uses a linear SVM instead [61]). We ran TAO-
c on binary classification problems derived from MNIST reported
in [42]; its advantage is clear.

5.3 Runtime

Training a TAO oblique tree depends on the tree size, dataset size
and number of iterations. To give an idea, using our unoptimized
Python implementation4 in a single CPU of a PC, training a TAO-c
tree of depth 8 for 20 iterations on MNIST takes 14 minutes; and
training a TAO-c tree of depth 13 and a TAO-l tree of depth 3 for
40 iterations on ImageNet take 409 and 295 minutes, respectively.
It is hard to compare runtimes with RF and XGBoost because of
the difference in accuracy, but if we consider the most accurate
forest of each type, then RF (8.4 minutes on ImageNet) is faster by
about an order of magnitude than TAO and XGBoost (493 minutes
on ImageNet), which have comparable runtimes. We provide a full
comparison of runtimes on ImageNet (see table 4) since it was the
most time consuming dataset for most of the methods. Note the
TAO trees are independent and can be trained in parallel, or even
in a distributed system. They are also more suited to hardware ac-
celerations than axis-aligned trees: since they are oblique, they use
vector (rather than scalar) operations that are suited to GPUs; since
they have a complete binary structure, they can be stored without
pointers in an array as a binary heap [15].

6 EXPERIMENTS: STUDY OF DIVERSITY
MECHANISMS

Accurate forests aim at low bias and low variance [36, 65]. We
achieve low bias by using deep enough oblique trees and optimiz-
ing themwell with TAO.We train each tree independently in order
to decorrelate them with each other and reduce variance. Multiple
mechanisms exist to achieve this, some generic and widely used
with CART-style trees and some being specific to TAO trees (such
as using different initial trees, number of iterations, tree structures
or sparsity penalty). We study them systematically, as well as the
TAOhyperparameters, in experiments on two datasets, MNIST and
Letter. As we will see, some mechanisms work and some do not,
and the reasons have to do with how bias and variance interact.
We conclude with a recommendation.

4We now have a C implementation, which also runs LIBLINEAR with lower accuracy,
which is several times faster than the Python code used in this paper.
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Forest Etest (%) #params. FLOPS T ∆

CART 12.11±0.04 5 957 (50) 1 50
TAO-c 5.25±0.20 24k 1 163 1 8
TAO-l 5.07±0.13 16k 1 194 1 5
AdaBoost 4.92±0.07 63k (1 000) 100 10
AdaBoost 3.18±0.05 611k (2 955) 100 30
RF 3.05±0.06 1M (3 482) 100 46
AdaBoost 2.96±0.05 5.9M (29k) 1k 30

M
N
IS
T
(6
0k
,7
84
,1
0)

RF 2.84±0.06 10M (35k) 1k 48
sNDF [34] 2.80±0.12 22M 22M 80 10
XGBoost 2.73±0.00 390k (17k) 1k 30
ADF [54] 2.71±0.10 (3.6M) (2 500) 100 25
TAO-c 2.31±0.08 1.2M 52k 40 8
XGBoost 2.17±0.00 540k (57k) 10k 30
TAO-l 2.11±0.09 469k 33k 30 5
rRF[48] 2.05±0.02 (160k) (2 500) 100 25
TAO-l 2.02±0.06 475k 38k 30 6

CART 13.06±0.15 2 985 (27) 1 27
TAO-c 9.59±0.31 9 904 111 1 11
TAO-l 6.60±0.33 6 449 192 1 6
XGBoost 4.40±0.00 268k (33k) 2.6k 30
XGBoost 4.00±0.00 551k (124k) 26k 30
RF 3.77±0.06 419k (2 836) 100 34
ADF [54] 3.52±0.12 (960k) (2 500) 100 25

Le
tt
er

(1
6k
,1
6,
26
)

RF 3.44±0.09 4.2M (28k) 1k 36
AdaBoost 3.01±0.06 271k (2 000) 100 20
rRF[48] 2.98±0.15 (180k) (2 500) 100 25
sNDF [34] 2.92±0.17 2.4M 2.4M 70 10
TAO-c 2.88±0.09 310k 3 210 30 11
AdaBoost 2.69±0.04 2.7M (20k) 1k 20
TAO-l 2.23±0.09 202k 6 150 30 6
TAO-l 2.09±0.10 276k 6 310 30 7

CART 32.14±0.15 20 157 (55) 1 55
TAO-c 23.94±0.37 46k 432 1 12
TAO-l 20.82±0.31 42k 2 839 1 4
XGBoost 18.08±0.00 1.7M (116k) 6.2k 50
AdaBoost 17.86±0.15 2.5M (5 980) 100 60
RF 17.33±0.14 2.6M (5 014) 100 65

C
h
ar
74
k
(6
7k
,6
4,
62
)

XGBoost 17.04±0.00 3.3M (923k) 62k 50
AdaBoost 16.93±0.18 25M (60k) 1k 60
ADF [54] 16.67±0.21 (4M) (2 500) 100 25
RF 16.61±0.14 26M (51k) 1k 65
sNDF [34] 16.04±0.20 59M 59M 200 12
rRF[48] 15.40±0.10 (1.1M) (2 500) 100 25
TAO-c 15.19±0.18 1.5M 13k 30 12
TAO-l 15.00±0.17 1.4M 92k 30 4

Table 2: Comparison on different datasets (MNIST, Letter,

Char74k; dataset specs indicated as (N ,D,K)) of different for-
est methods: TAO-c (constant leaves), TAO-l (linear softmax

leaves), AdaBoost, XGBoost, Random Forests (RF), Alternat-

ing Decision Forest (ADF) [54] and shallow Neural Decision

Forest (sNDF) [34]. We report the test error (%, avg±stdev
over 5 repeats), number of parameters and FLOPS (numbers

in parentheses are estimates), number of trees T and maxi-

mum depth of the forest ∆.

6.1 Training on different samples

Figures 1–2 show the training and test error of a TAO forest where
each tree is trained on a subset of the training set (of size N ): either
a bootstrap sample (N instances sampled with replacement) or a
random sample (M < N instances sampled without replacement).

Forest Etest (%) #params. FLOPS T ∆

CART 21.44±0.18 12 571 (82) 1 82
TAO-c 14.57± 0.09 3 480 307 1 7
TAO-l 14.44± 0.08 2 325 296 1 5
RF 13.91± 0.06 1.6M (5 201) 100 71
AdaBoost 13.83± 0.07 728k (5 607) 100 60

Se
n
sI
T
(7
9k
,1
00
,3
)

XGBoost 13.68± 0.00 1.1M (8 849) 300 50
RF 13.63± 0.08 16M (52k) 1k 76
AdaBoost 13.18± 0.08 7M (56k) 1k 60
XGBoost 13.14± 0.00 2M (66k) 3k 50
TAO-c 12.83± 0.06 422k 16k 30 9
TAO-l 12.79± 0.09 309k 20k 30 5

CART 17.60±0.17 731 (24) 1 24
TAO-c 6.64± 1.04 3 272 307 1 7
RF 6.16± 0.35 93k (1 996) 100 27
AdaBoost 5.85± 0.07 61k (1 906) 100 20
RF 5.57± 0.56 932k (20k) 1k 27

R
8
(5
k,
40
0,
8)

XGBoost 5.43± 0.00 44k (6 048) 800 30
AdaBoost 5.11± 0.09 593k (19k) 1k 20
XGBoost 5.01± 0.00 65k (12k) 8k 30
TAO-l 4.93± 0.09 825 286 1 2
TAO-c 3.98± 0.20 66k 6 913 20 7
TAO-l 3.61± 0.06 22k 6 380 20 2

CART 29.33±0.13 3 460 (150) 1 150
RF 19.84± 0.42 1M (20k) 100 233
RF 18.78± 0.37 10M (0.2M) 1k 233
TAO-c 17.96± 0.03 3.2M 37k 1 12
AdaBoost 16.81± 0.38 409k (9 926) 100 100

R
C
V
1
(1
6k
,4
7k
,5
3)

AdaBoost 15.95± 0.39 4M (99k) 1k 100
TAO-l 15.73± 0.21 14k 3 357 1 4
XGBoost 14.30± 0.00 244k (48k) 5.3k 30
XGBoost 13.84± 0.00 522k (151k) 53k 30
TAO-c 13.77± 0.02 84M 1.1M 30 12
TAO-l 13.29± 0.03 411k 98k 30 4

Table 3: Like table 2 but for SensIT, R8 and RCV1.

Forest Etest (%) #params. FLOPS T ∆ Time

AdaBoost >24 hours runtime 100 50
CART 44.62± 0.32 19 913 (296) 1 296 10.3
TAO-c 14.69± 0.18 3.7M 16k 1 13 409
RF 13.62± 0.32 2.6M (22k) 100 220 2.2
RF 12.67± 0.13 13M (109k) 500 218 4.2
RF 12.51± 0.11 25M (224k) 1k 220 8.4
XGBoost 12.51 596k (81k) 6.4k 50 417
XGBoost 11.01 782k (124k) 32k 50 453
XGBoost 10.78 973k (180k) 64k 50 493
TAO-l 10.77± 0.08 431k 431k 1 1 109
TAO-l 10.45± 0.19 1.1M 254k 1 3 295
TAO-c 08.25± 0.11 100M 0.5M 30 13 516
TAO-l 08.19± 0.13 32M 8.0M 30 3 361

Table 4: Like table 2 but for the ImageNet (= a subset of 64

classes of the full ImageNet, using VGG16 features). Addi-

tionally, we report the training time of the entire forest in

minutes.

We see that the best test accuracy occurs if usingM ≈ 90% samples
(although the optimal size will depend on the dataset), which is
generally quite better than with a bootstrap sample, and also faster
to train (since the samples are smaller). However, the bootstrap is
a simple, parameterless choice, and likely more useful with small
training sets.
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Forest AUC Etest(%) #params. FLOPS T ∆

AdaBoost – 21.14 150k (4 000) 500 8
RF 0.8584 20.97 252k (4 000) 500 8
BDT [2] 0.8630 – – – – –
XGBoost 0.8717 19.71 221k (4 000) 500 8
TAO-c – 19.65 128k 4 101 30 8
TAO-l 0.8744 19.64 34k 3 210 30 6
sNN [2] 0.8750 – – – – –
dNN [2] 0.8790 – – – – –

Table 5: Like table 2 but for SUSY (N=4.5M, D=18, K=2).

We also report the AUC score for those methods that out-

put class probabilities. The results of boosted decision trees

(BDT) and shallow/deep neural nets (sNN/dNN) are from [2].

Both sNN and dNN are multilayer perceptrons with tanh ac-

tivation; sNN has a single hidden layer with up to 10k units

and dNN has up to 6 hidden layers and up to 500 units each.

MNIST classes SVM kNN AdaBoost RF oRF TAO-c

digit-2 vs digit-4 1.3 0.4 2.4 1.7 1.5 0.5
digit-3 vs digit-8 2.3 3.6 3.1 3.2 4.3 0.8
even vs odd 7.4 7.2 9.1 7.8 9.8 1.5

Table 6: Comparison (test error) on MNIST binary classifi-

cation tasks of TAO, oblique Random Forest (oRF) [42] and

other methods (taken from [42]). For TAO we report mean

test error on 10-fold cross-validation, as in [42]. AdaBoost,

RF and oRF use T = 300 fully grown trees and TAO uses T =

30 trees of depth ∆ = 5.

6.2 Training using a different initial tree

Figures 1–2 also show the effect of having the initial tree parame-
ters (the hyperplane weights and bias) be random (the structure is
the same for all trees: complete of depth ∆). Clearly, using different
random parameters for each tree is better than using the same for
each tree. This makes intuitive sense in that different initial trees
will likely give rise to different local optima and further increase
diversity beyond the use of different samples.

6.3 Training on different feature subsets

Table 7 shows the training and test accuracy if training each tree
on a random subset of input features (without replacement). We
see that the best accuracy in both training and test occurs if us-
ing all features and decreases the fewer features are used (whether
picked locally at each node or globally at each tree). This is in stark
contrast to what happens with trees in the Random Subspace [29],
Random Forest [7] and Extremely Randomized Trees [25] methods,
which greatly benefit from using a quite small subset of features for
each tree (

√
D in RF by default). We believe the reason is the TAO

optimization, which will achieve a more accurate tree (lower bias)
if using all features, even if this may decrease diversity somewhat.
CART works very differently: by partitioning the input space ever
more finely, it can always achieve low training error even if not us-
ing all features, and indeed RF grows trees fully without pruning
(although each individual tree is very deep and grossly overfits).

A related diversity mechanism is to train each tree on a ran-
dom rotation of the features [49]. However, this is ineffective with
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Figure 1: Diversitymechanism (MNIST): training each of the

T trees on a bootstrapped (dashed horizontal lines) or ran-

dom data subset (solid lines, with size given by the X axis as

a percentage of the total training set). All trees are complete

of depth 8 and their initial parameters are random. The T

trees in the forest use the same initial random tree (top) or

each uses a different initial random tree (bo�om).
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Figure 2: Like fig. 1 but for Letter dataset. All trees have

depth 11.

oblique trees because we can absorb the rotation, or indeed any
linear transformation, in each decision node hyperplane.

6.4 Number of TAO iterations: interaction with
tree depth and number of trees

Figures 3–4 explore the interaction of the number of TAO itera-
tions I that are run to train each tree and the two forest hyperpa-
rameters: tree depth ∆ (the same for each tree, which is complete)
and number of trees T . The results make sense. More iterations
monotonically decrease the training error but eventually increase
the test error, indicating overfitting (for a model of constant size).
The fewer the trees, the fewer TAO iterations are needed for over-
fitting to occur. This clearly shows the effectiveness of TAO’s opti-

mization and its strong benefit in reducing bias.

While some papers (e.g. [7]) originally claimed that Random
Forests or boosting do not overfit as a function of the number of
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Sizem = Dα of T = 10 T = 20
feature subset Etrain (%) Etest Etrain (%) Etest

α = 1 (all features) 0.99 3.16 0.77 2.79

α = 9/10 1.26 3.18 1.10 2.81
α = 8/10 1.90 3.57 1.51 3.03

Lo
ca
l

α = 7/10 2.88 4.02 2.51 3.86
α = 6/10 4.47 5.32 3.78 4.48
α = 5/10 6.76 7.52 5.50 5.95

α = 9/10 1.24 3.20 1.11 2.88
α = 8/10 1.98 3.63 1.63 3.18

G
lo
ba
l

α = 7/10 4.19 4.65 3.88 4.21
α = 6/10 5.11 6.13 5.01 5.68
α = 5/10 12.17 13.41 11.79 12.25

Table 7: Diversity mechanism (MNIST): training each of the

T trees on a different, random feature subset of sizem = Dα

where D is the total number of features. “Local” means each

node picks m features at random, “global” means each tree

picksm features at random, the same for each node. All trees

are complete of depth 8 and their initial parameters are ran-

dom.

trees, in fact they do, as argued in [28, sec. 15.3.4]. This is to be ex-
pected as the number of parameters grows. What happens is that
overfitting enters very slowly because the trees are poorly opti-
mized, and this produces huge forests. It would be better to achieve
forests of the same accuracy but which overfit much faster, so we
need fewer trees. This is exactly what happens with TAO forests.

Fig. 5 compares TAO, RF and XGBoost as a function of the num-
ber of treesT . All of them reduce both training and test error asT
increases; RF and XGBoost even reach zero training error because
their trees are so deep. In contrast, TAO uses shallower trees that
do not reach zero training error but greatly lower the test error,
even with just 10 trees.

6.5 Ensembling the regularization path

The regularization path over the ℓ1 sparsity hyperparameter λ ∈
(0,∞) in eq. (1) provides a way to generate a collection of diverse
trees spanning a range of depths and number of nodes: from a com-
plete tree of depth∆ for λ = 0 to a single-node tree for large enough
λ. Hence, we considered ensembling trees, each for a different λ
value.

Table 8 shows that, while the forest-over-λ improves signifi-
cantly over the best single tree, it does quite worse compared to
training on bootstrap samples. Two possible reasons are that many
of the trees are small and the bias increases, and that many trees
share subtrees, which reduces diversity.

6.6 Random tree structures

Since TAO uses a given tree structure, this provides another source
of diversity: rather than using the same structure for each tree
(complete of depth ∆), we can generate a random structure for
each tree (and initialize its parameters randomly). The number of
tree structures grows faster than exponentially with either the tree
depth or number of nodes, which provides considerable potential
for diversity among the trained trees. We considered a simple dis-
tribution over structures (see section 8.2), where all tree levels are
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Figure 3: Training (column 1) and test error (column 2) on

MNIST for TAO forests as a function of 3 factors: tree depth

∆, number of TAO iterations I and number of trees T . Each

row fixes one factor and varies the other two.
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Figure 4: Like fig. 3 but for Letter dataset.
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Figure 5: Training (column 1) and test error (column 2) on

MNIST (row 1) and Letter (row 2) for TAO forests (80 itera-

tions, tree depth 11), and XGBoost and Random Forests (tree

depth 25) as a function of the number of treesT .

Method T = 10 T = 20
Etrain (%) Etest Etrain (%) Etest

forest-over-λ 1.15 3.71 0.89 3.50
best tree in regul. path 2.49 4.94 2.44 4.84
bootstrap 0.99 3.16 0.77 2.79

Table 8: Diversitymechanism (MNIST): forest-over-λ (row 1),

consisting of a forest of T trees, from a regularization path

usingT values λ ∈ [0.002, 200] (uniformly spaced in log scale).

For reference, we show the error of the best tree in the path

(row 2) and the error with bootstrap sampling (row 3, from

fig. 1).

complete up to depth ∆1, and then we split nodes recursively with
probability p and up to a maximum depth ∆2. Table 9 shows that
this can indeed improve the accuracy over using same-structure
trees (with the same number of nodes, for fairness). However, the
improvement seems marginal, and is probably not worth the effort.
That said, our exploration of structure distributions is limited, and
there may be better ones.

6.7 Discussion and recommendation

The previous considerations and experiments suggest that, roughly
speaking, the most accurate TAO forests may be achieved by, most
importantly, reducing bias, to capitalize on TAO’s optimization abil-
ity. Hence, we use all input features, and the largest forest (T trees
of depth ∆) and number of iterations I possible computationally,
unless overfitting is observed. Also, we use a small sparsity penalty
λ = 0.01, which helps to remove unnecessary features with essen-
tially no error increase5 . We diversify the trees by training them
independently on random (or bootstrap) samples and random ini-
tial trees (complete of depth ∆ but with random parameters). This
is what we used in section 5.

5This opens interesting possibilities for feature selection and ranking, although we
do not consider this here.

∆1\∆2 8 9 10 11 12 13 14

2 – 2.41 2.43 2.45 2.48 2.56 2.79
3 – 2.38 2.42 2.47 2.48 2.52 2.68
4 – 2.37 2.40 2.37 2.41 2.47 2.46
5 – 2.31 2.40 2.31 2.39 2.43 2.51
6 – 2.35 2.41 2.36 2.39 2.42 2.47
7 – 2.40 2.37 2.36 2.34 2.40 2.34
8 2.37 – – – – – –

Table 9: Diversity mechanism (MNIST): random tree struc-

tures (using T = 100 trees and 40 TAO iterations). An entry

at (∆1, ∆2) gives the test error (%) of a forest whose tree struc-

tures are complete up to depth ∆1 and containmore nodes at

random up to a depth ∆2; these nodes split with a probabil-

ity p, chosen so that the total number of nodes in the tree is

511 on average. The baseline is the entry at (8,8), which is a

complete binary tree of depth 8. Entries with lower or equal

error are boldfaced.

7 CONCLUSION

Random Forests (closely followed by AdaBoost and gradient boost-
ing) have long been considered the best off-the-shelf classifiers,
due to their ease of use and high accuracy. However, thesemethods
rely on heuristic tree learning algorithms such as CART. We show
that, by using the recently proposed TAO algorithm to learn each
tree instead of CART, and by ensembling trees trained on boot-
strapped or random data samples, we obtain smaller forests with
consistent, significant improvements in accuracy. This is a remark-
able result in that 1) it has immediate practical application in statis-
tics, machine learning, computer vision and other areas, and 2) it
opens new research directions in ensemble learning based on bet-
ter tree optimization. The improvement of TAO is not restricted to
classificationwith bagged trees: we have determined that TAO also
improves consistently in regression forests [63] and with boosting
instead of bagging (submitted).
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8 SUPPLEMENTARY MATERIAL

8.1 Datasets

Table 1 summarizes the characteristics of the datasets used in our
experiments, whose description is as follows (all classification tasks
have dense features unless otherwise stated):

Letter English letter recognition task from UCI dataset [39].
Each letter imagewas generated by randomly distorting pixel
images of the 26 uppercase letters from 20 different com-
mercial fonts. The features are image features such as edge
counts and statistical moments. We use the last 4 000 sam-
ples as test as in [54].

MNIST Handwritten digits recognition task [37]. The features
are the pixel grayscale values in [0,1] of each 28 × 28 digit
image. We use the training/test partition in [37].

Char74k Image classification task [18] where each image con-
tains a character in one 64 classes (0–9, A–Z, a–z). We used
the modified version of [54], as described in [62]: this uses
images resized into a grayscale image of 8 × 8 pixels, and
the features are the 64 pixel grayscale values. We split the
dataset randomly into 7 400 images as test and the rest as
training.

ImageNet subset ImageNet is a large-scale object recognition
dataset [20]. We use a subset of 64 classes (arbitrarily se-
lected, given in table 10) and use as features the output of
8 192 neurons from a pretrained deep net. Specifically, we
fine-tune a batch normalized version of VGG16 on 224×224
RGB images. For each class, we randomly select 100/200
images as validation/test, respectively, and use the rest for
training. The VGG16 architecture is the same as in [55], ex-
cept we replace the last maxpool layer with a pooling of size
3× 3 in order to obtain 8 192 dimensional features. We train
our modified network using SGD for 30 epochs with fixed
learning rate 0.001 and momentum rate 0.9. This network
achieves 1.08% train error and 8.79% test error (both top-1).

R8 Top 8 (by frequency) classes of the Reuters-21578 text cat-
egorization dataset. We use the preprocessed and stemmed
version6. We train the Doc2Vec model available from the
gensim package [60] on all the document collections and
obtain 400-dim word-embedding features.

RCV1 Text categorization dataset [38]. We obtained it from
the LIBSVM multiclass data collection7. The features are
sparse normalized log TFIDF vectors.

SensIT Moving vehicles type classification. Features: sensor
network data. Also from the LIBSVM multiclass data collec-
tion.

SUSY Classification of particle detector collision events, avail-
able in the UCI dataset [39]. We randomly select 90% of the
instances for training and the rest for test.

8.2 Generating random tree structures

In the main paper, we report results using a diversity mechanism
consisting of having the initial tree for each tree in the TAO forest
have a random structure. We describe this in detail here.

6https://www.cs.umb.edu/~smimarog/textmining/datasets
7http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

The motivation for this is the fact that the number of tree struc-
tures grows extremely fast with either the depth or the number
of nodes in a tree. Hence, we can expect significant diversity in a
TAO forest by using a random initial structure for each tree, while
still keeping the bias low thanks to TAO’s effective optimization.
Next, we characterize the number of structuresmore precisely, and
describe our sampling procedure.

8.3 Counting trees

Call n the number of nodes in the tree (including both leaves and
internal, or decision, nodes). The number of tree structures hav-
ing n nodes is known in several cases and can be found in [32], to
which the section and equation references below correspond. Sec-
tion 2.3.4.4 considers the following types of trees:

• Ordered trees, where the relative order of the subtrees of
each node matters (e.g. whether exchanging the left and
right child matters in a binary node). The number of binary
trees with n nodes is given in eq. 14 as bn =

1
n+1

(2n
n

)
(this

is also known as the nth Catalan number, Cn). Asymptoti-
cally (using the Stirling approximation) this is 4nn−3/2/

√
π .

It exceeds 10 thousand for n = 10 and 1 million for n = 14.
More generally, the number of t-ary trees (where each deci-
sion node has t children) with n nodes is given in exercise
2.3.4.4.11 as 1

(t−1)n+1
(
tn

n

)
.

• Oriented (or rooted or unordered) trees, where the relative
order of the subtrees of each node does not matter. The
exact formula is complicated (section 2.3.4.4 and exercises
2.3.4.4.1–2.3.4.4.2), but there is a simpler asymptotic expres-
sion (exercise 2.3.4.4.4, also [33] section 7.2.1.6 eq. (46)):An =
cαnn−3/2 where α ≈ 2.9558 and c ≈ 0.4399. This exceeds 10
thousand for n = 13 and 1 million for n = 18.

In the context of decision trees, ordered vs oriented trees work
as follows. Imagine a binary tree where we exchange the left and
right child of a given node (and adjust the decision function so
the tree predictive function remains unchanged). Then, as ordered
trees, the resulting tree is considered different from the original;
as oriented trees, both are considered the same tree. In parame-
ter space both trees are indeed different because they correspond
to different weight values and decision functions. But whether we
count ordered or oriented trees, both grow much faster than 2n

with the number of nodes n, which generates an enormous source
of diversity. With so many different structures, we can simply sam-
ple some of them to generate a forest with sufficiently many trees
for any practical purpose.

8.3.1 Sampling trees. We have to define a distribution over tree
structures. We do this as follows. First, define a split probability

profile Pd ∈ (0, 1) for d = 0, 1, 2 . . . which gives the probability
of splitting a node that is at depth d . For example, we can take
Pd = p with p ∈ [0, 1) (independent of the depth), Pd = pd , etc.
This induces a probability distribution over tree structures, from
which we can then sample a tree as follows:

• Start from a root node (we do not consider empty trees) at
depth d = 0.

• Split the node with probability Pd .
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anemone fish gasmask packet skunk
barn goldfish, Carassius auratus panpipe soup bowl
Bernese mountain dog Gordon setter passenger car space heater
bolete hartebeest pedestal spotlight
borzoi Ibizan hound pill bottle stretcher
bow iron platypus sunglasses
briard Italian greyhound pot swing
brown bear jack-o-lantern prairie chicken television
carousel jigsaw puzzle purse thatch
carpenters kit junco rain barrel tiger cat
cash machine knot ram, tup trolleybus
Chihuahua kuvasz red-backed sandpiper waffle iron
chocolate sauce lawn mower rubber eraser wall clock
cleaver leopard safety pin washing machine
dalmatian monastery saxophone white stork
flute mud turtle screwdriver yawl

Table 10: The 64 object classes we used in our subset of the ImageNet dataset.

• If we do split the node, repeat the procedure recursively for
each child at depth d + 1.

It is of interest to pick the profile {Pd }d≥0 so that the expected
number of nodes of the previous distribution equals a desired value.
Hence, let us now compute the expected number of nodes n (deci-
sion and leaf nodes) in the tree, for binary trees, where each split
produces two children (for t-ary splits, replace 2 with t in the equa-
tions below). Call nd the expected number of nodes in a subtree of
a node at depth d ≥ 0 (counting the node itself), so that n0 = n is
the expected number of nodes in the whole tree. Then, at a node at
depthd we have the node itself, which we either split into two chil-
dren (with probability Pd ), or do not split (with probability 1− Pd ).
By symmetry, the expected number of nodes of each child is the
same and equal to nd+1. Hence we have that nd must satisfy the
following equation:

nd = 1 + 0(1 − Pd ) + (nd+1 + nd+1)Pd = 1 + 2Pdnd+1,

for d = 0, 1, 2 . . . Applying this M + 1 times results in the expres-
sion

n = n0 = 1 + 2P0n1 = 1 + 2P0(1 + 2P1n2) = · · · =

1 +
M∑

i=1

i−1∏

d=0

(2Pd ) + nM+1
M∏

d=0

(2Pd ).

Assume the rightmost term tends to 0 as M → ∞. Then the final
expression is

n = 1 +
∞∑

i=1

i−1∏

d=0

(2Pd ). (2)

This series converges under some conditions:

• A necessary condition is that
∏

i−1
d=0 (2Pd ) → 0 as i → ∞.

This happens if there exist d0 ≥ 0 and Q ∈ (0, 12 ) satisfying
Pd ≤ Q ∀d ≥ d0.

• A sufficient condition is that the limit of the ratio of consecu-
tive terms, if it exists, be smaller than 1. Since

∏
i

d=0 (2Pd )/
∏

i−1
d=0 (2Pd ) =

2Pi , this implies limi→∞ Pi <
1
2 .

We can use those conditions to construct split probability profiles
and generate an enormous variety of distributions. Consider the
following profiles as simple examples:

(1) Pd = p ∈ (0, 12 ): n = 1/(1 − 2p) (by summing the geometric
series in eq. (2)).

(2) Pd = p
d with p ∈ (0, 1): n = ∑∞

i=0 2
ipi (i−1)/2.

(3) Pd = p
d+1 with p ∈ (0, 1): n = ∑∞

i=0 2
ipi (i+1)/2.

Profile 1 is not very useful because it generates very unbalanced
trees with a large depth variation. Profiles 2 and 3 decay quickly
with the depth so they generate less unbalanced trees, with a more
constrained depth variation. Profile 2 differs from profile 3 in that
profile 2 always splits the root. This is convenient since a single-
node tree is a constant or linear classifier (depending on the leaf
predictor type), which is useful to have in an ensemble but only
once (they are very redundant).

A more flexible and convenient profile has the form:

Pd =




1, 0 ≤ d ≤ ∆1

p, ∆1 < d ≤ ∆2

0, ∆2 < d .

(3)

This generates trees with depth between ∆1 and ∆2, having all lev-
els complete up to ∆1. This eliminates small trees, which are not
useful in forests, since they have high bias. If p is large enough but
not too large, then the trees will have all depth ∆2 with high prob-
ability, but will not be complete and will differ widely in structure
and number of nodes. These are just some possibilities. In practice,
we can pick the profile manually depending on the type of nodes
in the tree (axis-aligned or oblique), number of classes K , etc.

Given a profile {Pd }d≥0 from eq. (3), we can invert eq. (2) (ana-
lytically or using the bisectionmethod) to obtain values of (∆1,∆2,p)
that achieve a desired expected number of nodes n.
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