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Counterfactual explanations

A counterfactual explanation seeks the minimal change to a
given feature vector that will change a classifier’s decision in a
prescribed way.

Consider following example:

Loan application is denied by bank (classifier).
Applicant ask: “what should I change to get it approved”?
Bank replies: “If annual income had been $45,000 instead of
$30,000, the loan would have been approved”.

Counterfactual explanation is important to interpret a
black-box decision for a given instance.

Mathematically, the problem can be formulated as: given a
source instance x, target class y and a classifier T , find the
closest instance x to x such that x is classified y (T (x) = y).

Here, we focus on decision tree classifiers (also regression
trees).
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Decision trees are important machine learning models

Decision trees are important, particularly in applications
where interpretability is desirable, such as business, law,
and medicine.

Decision trees and forest regularly appeared as the most
used machine learning models in surveys from Kaggle and
kdnuggets.

Thus, solving counterfactual explanations for decision
trees is important in practice.
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Tree alternating optimization (TAO)

Traditionally, decision trees have been trained with a recursive
partition procedure, such as CART and C4.5. However, this
produces sub-optimal trees and does not work well with
oblique trees (having hyperplane split).

Tree alternating optimization (TAO) is a recently proposed
algorithm that can achieve highly accurate oblique or
axis-aligned trees.

TAO can also train sparse oblique trees (having hyperplane
splits with few nonzero weights) that are not only highly
accurate but also small (shallow and with few nodes) and very
interpretable.

Stronger predictive power of sparse oblique decision trees
together with their interpretability and fast inference makes
them useful for other uses, such as in understanding deep
neural networks or compressing deep neural networks.
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Learning a single tree with TAO: general formulation

TAO finds good approximate optima of an objective function over a
tree with predetermined structure and it applies to trees beyond
axis-aligned splits.

We consider trees whose nodes make hard decisions (not soft trees).
Optimizing such trees is difficult because they are not differentiable.
Assuming a tree structure T is given (say, binary complete of depth
∆), consider the following optimization problem over its parameters:

E(Θ) =

N∑

n=1

L(yn,T(xn;Θ)) + λ
∑

nodes i

φi(θi)

given a training set {(xn,yn)}
N
n=1. Θ = {θi} is a set of parameters

of all tree nodes. The loss function L(y, z) is 0/1 classification loss
(although it is possible to use other losses, such as logistic or
hinge). The regularization term φi (e.g. ℓ1 norm) penalizes the
parameters θi of each node.

Source: Carreira-Perpiñán & Zharmagambetov, FODS 2020
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Learning a single tree with TAO: separability of nodes

TAO algorithm is based on 3 theorems: separability condition, reduced
problem over a leaf, reduced problem over a decision node. Here, we
briefly mention them.

1. Separability condition

Consider any pair of nodes i and j. Assume the parameters of all other
nodes (Θrest) are fixed. If nodes i and j are not descendants of each
other, then E(Θ) can be rewritten as:

E(Θ) = Ei(θi) + Ej(θj) + Erest(Θrest)

In other words, the separability condition states that any set of
non-descendant nodes of a tree can be optimized independently. Note
that Erest(Θrest) can be treated as a constant since we fix Θrest.
Source: Carreira-Perpiñán & Zharmagambetov, FODS 2020

6 / 35



Learning a single tree with TAO: leaves

All leaves are non-descendants of each others. Therefore, we can optimize
over each of them independently (according to separability condition).

2. Reduced problem over a leaf

Assume node i is a leaf, then the optimization of E(Θ) over θi can be
equivalently rewritten as:

min
θi

Ei(θi) =
∑

n∈Ri

L(yn,gi(xn; θi)) + αφi(θi)

The reduced set Ri contains the training instances that reach leaf i.
Each leaf i has a predictor function gi(x; θi): RD → C (we use a
constant or linear classifier) that produces the output class. Therefore,
solving the reduced problem over a leaf i amounts to fitting the leaf’s
predictor gi to the instances in its reduced set to minimize the original
loss (e.g. misclassification error).
Source: Carreira-Perpiñán & Zharmagambetov, FODS 2020
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Learning a single tree with TAO: decision nodes

To optimize decision (internal) nodes, we again consider a set of
non-descendant (e.g. all nodes at the same depth) nodes. Optimizing
over the parameters of one decision node is given by the following
theorem.

3. Reduced problem over a decision node

If i is a decision node, the optimization of E(Θ) over θi can be
equivalently rewritten as:

min
θi

Ei(θi) =
∑

n∈Ri

lin(fi(xn; θi)) + αφi(θi)

where Ri is the reduced set of node i and (assuming binary trees)
fi(x; θi): RD → {left, right} is a decision function at node i which
sends instance xn to the corresponding child of i. We consider oblique
trees, having hyperplane decision functions “go to right if
wT

i x+ wi0 ≥ 0” (where θi = {wi, wi0}). lin(·) is the loss incurred if xn

chooses the right or left subtree.
Source: Carreira-Perpiñán & Zharmagambetov, FODS 2020
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Learning a single tree with TAO: decision nodes (cont.)

The reduced problem over a decision node can be equivalently rewritten
as a weighted 0/1 loss binary classification problem on the node’s
reduced set instances:

min
θi

Ei(θi) =
∑

n∈Ri

Lin(yin, fi(xn; θi)) + αφi(θi)

where the weighted 0/1 loss Lin(yin, ·) for instance n ∈ Ri is defined as
Lin(yin, y) = lin(y)− lin(yin) ∀y ∈ {left, right}, where
yin = argminy lin(y) is a “pseudolabel” indicating a child which gives
the lowest value of the loss L for instance xn under the current tree.
For hyperplane nodes, this is NP-hard, but can be approximated by using
a convex surrogate loss (we use the logistic loss). Hence, if φi is an ℓ1
norm, this requires solving an ℓ1-regularized logistic regression.
Source: Carreira-Perpiñán & Zharmagambetov, FODS 2020
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Pseudocode for TAO

TAO repeatedly alternates optimizing over sets of nodes by training a
(binary) classifier in the decision nodes and a (multiclass) classifier in the
leaves, while monotonically decreasing the obj. function E(Θ).

input training set; initial tree T(·;Θ) of depth ∆
N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively
R1 ← {1, . . . , N}
repeat

for d = 0 to ∆
parfor i ∈ Nd

if i is a leaf then
θi ← train classifier gi on reduced set Ri

else

θi ← train decision function fi on Ri

compute the reduced sets of each child of i
until stop
prune dead subtrees of T
return T

Source: Carreira-Perpiñán & Zharmagambetov, FODS 2020
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Basic formulation of the counterfactual explanation
problem

Given an input instance x ∈ R
D, classifier T , and target class y

min
x∈RD

E(x;x) s.t. T (x) = y, c(x) = 0, d(x) ≥ 0

where E(x;x) is a cost of changing features of x, and c(x) and d(x) are

problem-dependent equality and inequality constraints.

How to solve this optimization problem:

If T is differentiable with respect to x the problem can be
solved using gradient based methods, for example if T is a
neural net.

With decision trees T is not differentiable, this makes
problem nondifferentiable and gradient-based methods are
not applicable. However, this problem can be solved
exactly and efficiently.
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Counterfactual solution for decision tree

A trained decision tree can be regarded as the partition of
the input space into disjoint regions, where each region
corresponds to one leaf.

Therefore, finding the closest instance to the source
instance having a desired target label can be done by
finding closest instance in each leaf region, and picking
the best among them.

For each leaf, the region is defined by a polytope that acts
as linear constraints. So, finding the counterfactual in a
leaf becomes a quadratic/linear program that can be
solved effectively.
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Counterfactual explanations in decision trees
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The tree has L leaves, and it partitions the input space into L

polytopes.

Each polytope is defined by the intersection of arbitrary hyperplanes
( “if wT

i z+ bi ≥ 0 then go to right child, else go to left child”) found in
the path from root to a leaf.

Source instance x is in white class.

The counterfactual instance subject to being in dark grey class is
x∗, which is closest to x.
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Counterfactual explanations in decision trees

Original problem:

min
x∈RD

E(x;x) s.t. T (x) = y, c(x) = 0, d(x) ≥ 0. (1)

Theorem

Problem (1) is equivalent to:

min
i∈L

min
x∈RD

E(x;x) s.t. yi = y, hi(x) ≥ 0, c(x) = 0, d(x) ≥ 0.

Solving problem (1) is equivalent to solving it within each
leaf’s region and then picking the leaf with the best solution.
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Counterfactual explanations in oblique trees

In an oblique decision tree each leaf region is an polytope defined

by intersection of arbitrary hyperplanes found in the path from

root to leaf.

For each target leaf the problem becomes:

min
x∈RD

E(x;x) s.t. yi = y, hi(x) ≥ 0, c(x) = 0, d(x) ≥ 0.

hi(x) is the set of hyperplanes that represents decision
rule of the nodes in the path from root to leaf i.

hi(x) forms set of linear constraints.

If E is ℓ2 or ℓ1 distance, then the problem becomes QP or
LP, which can be solved very effectively.
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Counterfactual explanations in axis-aligned trees

In an axis-aligned decision tree each leaf region is an axis-aligned
boxes defined by intersection of axis-aligned hyperplanes found in
the path from root to leaf.

Theorem

In problem (1), assume that each constraint depends on a single
element of x (not necessarily the same) and that the objective
function is separable, i.e., E(x;x) =

∑
D

d=1 Ed(xd;xd). Then the
problem separates over the variables x1, . . . , xD.

This applies to axis-aligned trees because each of the
constraints hi(x) ≥ 0 in the path from the root to leaf i
involve a single feature of x (they are bound constraints).

This means that, in axis-aligned tree within each leaf, we can
solve for each xd independently, by minimizing Ed(xd;xd)
subject to the constraints on xd.
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Counterfactual explanations in axis-aligned trees cont.

Theorem

Consider the scalar constrained optimization problem, where the bounds can

take the values ld = −∞ and ud = ∞:

min
xd∈R

Ed(xd;xd) s.t. ld ≤ xd ≤ ud.

Assume Ed is convex on xd and satisfies Ed(xd;xd) = 0 and Ed(xd; xd) ≥ 0
∀xd ∈ R. Then x∗

d, defined as the median of xd, ld and ud, is a global

minimizer of the problem:

x
∗
d = median(xd, ld, ud) =











ld, xd < ld

ud, xd > ud

xd, otherwise

.

This makes solving the counterfactual explanation problem
exceedingly fast for axis-aligned trees.
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Exploring different types of counterfactual explanation
questions

Finding the closest boundary. The minimum-distance change
to x that changes its original class k.

Find the counterfactual explanation in every leaf except
the ones with label k.

Pick the counterfactual with the lowest cost.
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Exploring different types of counterfactual explanation
questions

Critical attribute for change to the target class y. Which
attribute has the lowest cost to change the class of x to a
target class y, if changing only one attribute?

For given a attribute d, add all other attributes to the
equality constraint (c(x) = 0) and solve the
counterfactual problem as described in previous slides.

Repeat above step for each attribute in x.

Pick the attribute for which the counterfactual (x∗) has
the lowest cost.
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Exploring different types of counterfactual explanation
questions

Critical attribute for changing the class. Which attribute has
the lowest cost to change the class of x to any other class if
changing only one attribute?

For given a attribute d, add all other attributes to the
equality constraint (c(x) = 0) and find the closest
boundary.

Repeat above step for each attribute in x.

Pick the attribute for which the counterfactual (x∗) has
the lowest cost.
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Use case study 1a

Multiclass classification {excellent, good, satisfactory, sufficient or fail}.

Attribute x,
source instance

school GP
sex male
age 18

parent’s status together
mother’s job services
father’s job services
guardian mother

previous class failures 2
school support no
family support no
study time⋄ 1

plan for higher education no
internet access yes

family relationship‡ 3
free time‡ 2

going out frequency‡ 5
health‡ 5

absences‡ 4
Grades fail

⋄ 1– <15 min, 2– 15 to 30 min., 3– 30 min. to1 hour or 4 – > 1 hour). ‡ from 1 – very low to 5 – very high.
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Use case study 1a

Multiclass classification {excellent, good, satisfactory, sufficient or fail}.

Attribute x,
source instance

x
∗
1
,

target class excellent

school GP =
sex male =
age 18 =

parent’s status together =
mother’s job services teacher
father’s job services teacher
guardian mother =

previous class failures 2 1
school support no =
family support no =
study time⋄ 1 =

plan for higher education no yes
internet access yes =

family relationship‡ 3 =
free time‡ 2 =

going out frequency‡ 5 =
health‡ 5 =

absences‡ 4 =
Grades fail excellent

⋄ 1– <15 min, 2– 15 to 30 min., 3– 30 min. to1 hour or 4 – > 1 hour). ‡ from 1 – very low to 5 – very high.
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Use case study 1a

Multiclass classification {excellent, good, satisfactory, sufficient or fail}.

Attribute x,
source instance

x
∗
1
,

target class excellent
x
∗
2
,

closest class

school GP = =
sex male = =
age 18 = =

parent’s status together = =
mother’s job services teacher =
father’s job services teacher =
guardian mother = =

previous class failures 2 1 1
school support no = =
family support no = =
study time⋄ 1 = =

plan for higher education no yes =
internet access yes = =

family relationship‡ 3 = =
free time‡ 2 = =

going out frequency‡ 5 = =
health‡ 5 = =

absences‡ 4 = =
Grades fail excellent sufficient

⋄ 1– <15 min, 2– 15 to 30 min., 3– 30 min. to1 hour or 4 – > 1 hour). ‡ from 1 – very low to 5 – very high.
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Use case study 1b

Multiclass classification {excellent, good, satisfactory, sufficient or fail}.

Attribute x,
source instance

school MS
sex male
age 17

parent’s status together
mother’s job other
father’s job other
guardian mother

previous class failures 0
school support no
family support no
study time⋄ 2

plan for higher education yes
internet access yes

family relationship‡ 4
free time‡ 4

going out frequency‡ 3
health‡ 5
absences 4
Grades fail

⋄ 1– <15 min, 2– 15 to 30 min., 3– 30 min. to1 hour or 4 – > 1 hour). ‡ from 1 – very low to 5 – very high.
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Use case study 1b

Multiclass classification {excellent, good, satisfactory, sufficient or fail}.

Attribute x,
source instance

x
∗
1
,

target class satisfactory

school MS =
sex male =
age 17 =

parent’s status together =
mother’s job other =
father’s job other =
guardian mother =

previous class failures 0 =
school support no =
family support no =
study time⋄ 2 =

plan for higher education yes =
internet access yes =

family relationship‡ 4 =
free time‡ 4 1

going out frequency‡ 3 =
health‡ 5 =
absences 4 =
Grades fail satisfactory

⋄ 1– <15 min, 2– 15 to 30 min., 3– 30 min. to1 hour or 4 – > 1 hour). ‡ from 1 – very low to 5 – very high.
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Use case study 1b

Multiclass classification {excellent, good, satisfactory, sufficient or fail}.

Attribute x,
source instance

x
∗
1
,

target class satisfactory
x
∗
2
,

closest class

school MS = =
sex male = =
age 17 = =

parent’s status together = =
mother’s job other = =
father’s job other = =
guardian mother = =

previous class failures 0 = =
school support no = =
family support no = =
study time⋄ 2 = =

plan for higher education yes = =
internet access yes = =

family relationship‡ 4 = =
free time‡ 4 1 =

going out frequency‡ 3 = 2
health‡ 5 = =
absences 4 = =
Grades fail satisfactory sufficient

⋄ 1– <15 min, 2– 15 to 30 min., 3– 30 min. to1 hour or 4 – > 1 hour). ‡ from 1 – very low to 5 – very high.
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Exploring different types of counterfactual explanation
questions

Robust counterfactuals. Here, we want to find the
counterfactuals that are well inside a leaf region rather than on
the boundary, so they are more robust to flipping their class
due to small changes.

This problem can easily be solved by shrinking the leaf
region size. That is for solving the counterfactual problem
in a leaf region, the constraint “hi(x) ≥ 0” becomes
“hi(x) ≥ ǫ”, where ǫ > 0.
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Use case study 2

Binary classification {bad credit and good credit}. x is classified as bad credit (using
a pre-trained tree), and target class is good credit.

Attribute
x,

source instance

existing checking < 0 DM
duration 15 months

credithistory critical account

purpose
furniture/
equipment

credit amount 1478
savings < 100 DM

employment since ≥ 7 years
iInstallment rate 4
status and sex male : single
other debtors none
residence since 4

property car or other
age 44

other installment plans none
housing own

existing credits 2
job skilled employee

people liable 2
telephone yes

foreignworker yes
Credit Bad

28 / 35



Use case study 2

Binary classification {bad credit and good credit}. x is classified as bad credit (using
a pre-trained tree), and target class is good credit.

Attribute
x,

source instance
x
∗
1
,

ǫ = 0.00

ℓ2 = 1.73

existing checking < 0 DM =

duration 15 months 16 months

credithistory critical account =

purpose
furniture/
equipment

=

credit amount 1478 =

savings < 100 DM =

employment since ≥ 7 years =

iInstallment rate 4 =

status and sex male : single =

other debtors none =

residence since 4 =

property car or other =

age 44 =

other installment plans none stores
housing own =

existing credits 2 =

job skilled employee =

people liable 2 =

telephone yes =

foreignworker yes =

Credit Bad Good

29 / 35



Use case study 2

Binary classification {bad credit and good credit}. x is classified as bad credit (using
a pre-trained tree), and target class is good credit.

Attribute
x,

source instance
x
∗
1
,

ǫ = 0.00

x
∗
2
,

ǫ = 0.10

x
∗
3
,

ǫ = 0.20

x
∗
4
,

ǫ = 0.25

ℓ2 = 1.73 ℓ2 = 1.73 ℓ2 = 2.00 ℓ2 = 2.23

existing checking < 0 DM = = = =

duration 15 months 16 months = = 16 months

credithistory critical account = =

delay in
paying off
in the past

delay in
paying off
in the past

purpose
furniture/
equipment

= = = =

credit amount 1478 = = = =

savings < 100 DM = = = =

employment since ≥ 7 years = = = =

iInstallment rate 4 = = = =

status and sex male : single = = = =

other debtors none = = = =

residence since 4 = 3 3 3
property car or other = = = =

age 44 = = = =

other installment plans none stores stores = =

housing own = = = =

existing credits 2 = = 1 1
job skilled employee = = = =

people liable 2 = = = =

telephone yes = = = =

foreignworker yes = = = =

Credit Bad Good Good Good Good
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Regression Trees

We can also use our approach to explore more practical
problems that are related to the regression trees.
Consider a regression tree T :

T (x) is the predicted value of the source instance (x).
T (x∗) represents the predicted value of the counterfactual
(x∗).
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Exploring different types of counterfactual explanation
questions

T (x∗) > T (x): find the minimum change in x that increase
its predicted value.

Consider the leaves whose label is larger than the T (x) as
target leaves.

Find counterfactual (x∗) in each target leaf.

Pick the x
∗ with the lowest cost.
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Exploring different types of counterfactual explanation
questions

T (x∗) ≥ T (x) + β: find the minimum change in x that
increase its predicted value atleast by β.

Consider the leaves whose label is larger than or equal to
T (x) + β as target leaves.

Find counterfactual (x∗) in each target leaf.

Pick the x
∗ with the lowest cost.
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Exploring different types of counterfactual explanation
questions

α ≥ T (x∗) ≥ β: find the minimum change in x that change
its predicted value between α and β.

Consider the leaves with label between α and β.

Find counterfactual (x∗) in each target leaf.

Pick the x
∗ with the lowest cost.
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Use case study 3

Regression task to predict Median home value.

Attribute
x, source
instance

crime rate 2.37
residential land zoned proportion 0.0
proportion of non-retail business 19.58

tract bounds river 0
nitric oxides concentration 0.87
avg. rooms per dwelling 4.92

proportion of units before 1940 95.70
distances to Boston employment centres 1.46

accessibility to highways 5.00
property-tax rate 403.00
pupil-teacher ratio 14.70

proportion of african american by town 391.71
% lower status of the population 29.53
Median home value in $1000’s 14.74
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Use case study 3

Regression task to predict Median home value.

Attribute
x, source
instance

T (x∗) >
T (x)

crime rate 2.37 2.15
residential land zoned proportion 0.0 0.02
proportion of non-retail business 19.58 19.48

tract bounds river 0 =
nitric oxides concentration 0.87 0.39
avg. rooms per dwelling 4.92 5.13

proportion of units before 1940 95.70 95.67
distances to Boston employment centres 1.46 1.17

accessibility to highways 5.00 5.04
property-tax rate 403.00 =
pupil-teacher ratio 14.70 14.47

proportion of african american by town 391.71 =
% lower status of the population 29.53 29.39
Median home value in $1000’s 14.74 15.96
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Use case study 3

Regression task to predict Median home value.

Attribute
x, source
instance

T (x∗) >
T (x)

T (x∗) ≥
T (x) + 5

crime rate 2.37 2.15 1.93
residential land zoned proportion 0.0 0.02 =
proportion of non-retail business 19.58 19.48 =

tract bounds river 0 = 1
nitric oxides concentration 0.87 0.39 0.39
avg. rooms per dwelling 4.92 5.13 5.73

proportion of units before 1940 95.70 95.67 95.71
distances to Boston employment centres 1.46 1.17 =

accessibility to highways 5.00 5.04 5.1
property-tax rate 403.00 = =
pupil-teacher ratio 14.70 14.47 14.58

proportion of african american by town 391.71 = =
% lower status of the population 29.53 29.39 29.54
Median home value in $1000’s 14.74 15.96 20.52
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Use case study 3

Regression task to predict Median home value.

Attribute
x, source
instance

T (x∗) >
T (x)

T (x∗) ≥
T (x) + 5

25 ≥ T (x∗)
≥ 30

crime rate 2.37 2.15 1.93 1.81
residential land zoned proportion 0.0 0.02 = 0.03
proportion of non-retail business 19.58 19.48 = 19.48

tract bounds river 0 = 1 =
nitric oxides concentration 0.87 0.39 0.39 0.385
avg. rooms per dwelling 4.92 5.13 5.73 8.09

proportion of units before 1940 95.70 95.67 95.71 95.66
distances to Boston employment centres 1.46 1.17 = 1.16

accessibility to highways 5.00 5.04 5.1 5.41
property-tax rate 403.00 = = 402.99
pupil-teacher ratio 14.70 14.47 14.58 14.60

proportion of african american by town 391.71 = = 391.67
% lower status of the population 29.53 29.39 29.54 29.41
Median home value in $1000’s 14.74 15.96 20.52 29.14
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Conclusion

Classification and regression trees are important, particularly
in applications where interpretability is desirable, such as
business, law, and medicine.

Sparse Oblique decision trees, trained by the TAO algorithm,
can be surprisingly accurate and interprtable.

The counterfactual explanation problem for classification trees
(axis-aligned and oblique) is nonconvex and nondifferentiable
but can be solved exactly and efficiently.

Proposed approach can handle several useful distance
functions and linear constraints (equality and inequality); and
is applicable to both continuous and categorical variables.

The formulation can be applied to answer a variety of
practical questions and is fast enough for interactive use.
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