
TOWARDS BETTER DECISION FORESTS: FOREST ALTERNATING OPTIMIZATION
Miguel Á. Carreira-Perpiñán and Magzhan Gabidolla and Arman Zharmagambetov, EECS, UC Merced

1 INTRODUCTION
Decision forests (ensembles of decision trees) are widely recognized as among

the most accurate ML models for many tasks. However, neither the individual

trees nor the forest are constructed to optimize a specific loss function.

In a series of papers, we have given algorithms that optimize very general types

of losses (in the sense of monotonically decreasing the loss over iterations) over

a single tree (axis-aligned or oblique), in combination with popular ensembling

mechanisms (bagging, AdaBoost, gradient boosting), and here over all the forest

parameters jointly, in all cases consistently improving over the state-of-the-art

(such as XGBoost or LightGBM).

Work partially supported by NSF award IIS–2007147.

2 SINGLE TREE: TREE ALTERNATING OPTIMIZATION (TAO)
A scalable algorithm that can take a tree of arbitrary but parametric form and

monotonically decrease an objective function of the form loss + regularization:

min
τ

∑

n

L(yn, τ (xn; {wi})) + λ
∑

i∈ nodes of τ

φ(wi) (1)

We focus on oblique trees (which are far more powerful than axis-aligned ones):

• Decision nodes: (sparse) hyperplane

• Leaf nodes: constant label or value

No gradient descent (the tree defines a piecewise constant function) but alternat-

ing optimization over the nodes. Based on two theorems:

• Separability condition: the objective function separates over nodes which are

not descendant of each other.
• Reduced problem over a node: optimizing over a node’s parameters takes a

special form that can be solved exactly or approximately:
• decision node: weighted 0/1 loss binary classification

• leaf node: majority vote or average

TAO operates on an initial tree structure. The final structure is usually a subset of

this because pruning occurs automatically via a ℓ1 penalty on the decision nodes’

weights: φ(wi) = ‖wi‖1. This also sparsifies the decision hyperplanes.

The table below shows how a single TAO tree improves upon the traditional CART

on test accuracy for several classification benchmarks:

Algorithm MNIST Letter SensIT Pendigits Spambase

CART 88.05 86.07 81.00 91.62 89.62

TAO 94.74 90.41 85.44 96.80 93.31

Examples of tree-based models trainable with TAO:

• [1]: sparse oblique tree

• [4]: tree of neural nets

• [7]: softmax tree

• [8]: nonlinear embeddings with trees

• [12]: semi-supervised learning with trees

• [11]: clustering with trees

3 FOREST: TAO + BAGGING/BOOSTING
Using TAO as base learner with any ensembling mechanism results in better

forests (higher accuracy, fewer trees):

• bagging [2], [3]

• AdaBoost [5], [6], [10]

• gradient boosting [9]

We use sparse oblique trees, which are a much stronger learner than the tradi-

tional axis-aligned trees:

• more powerful model: oblique rather than axis-aligned tree

• better optimization: TAO rather than CART/C5.0/etc.

This results in more accurate forests; the ensemble is diverse enough.

The table below shows how simple TAO trees in bagging outperform other estab-

lished tree ensembles for regression problems.
cpuact (N=8k,D=21) CT slice (N=54k,D=384)

Forest Etest T ∆

CART 3.63±0.32 1 25
Bagging-TAO 2.71±0.04 1 6
Random Forest 2.62±0.04 100 36
AdaBoost 2.61±0.16 100 10
Random Forest 2.60±0.01 1k 37
XGBoost 2.60±0.00 100 10
XGBoost 2.57±0.00 1k 10
AdaBoost 2.56±0.11 1k 10
Bagging-TAO 2.39±0.05 30 7

Forest Etest T ∆

CART 2.71±0.06 1 51
Bagging-TAO 1.54±0.05 1 7
AdaBoost 1.48±0.03 100 10
XGBoost 1.45±0.00 100 10
AdaBoost 1.31±0.01 1k 10
XGBoost 1.18±0.00 1k 10
Random Forest 1.03±0.01 100 71
Random Forest 0.97±0.01 1k 78
Bagging-TAO 0.89±0.02 30 7

0 2 4 6 8

10
5

16

18

20

22

24

26

28

GB-sklearn

XGBoost

LightGBM
GB-TAO

number of parameters
0 50 100 150 200 250 300

16

18

20

22

24

26

28

GB-sklearn
XGBoost

GB-TAO

boosting steps

LightGBM

Figure: Comparison of methods for news20 dataset.

However, while each individual tree is well optimized, the forest is not. Trees are

added independently (bagging) or greedily (boosting).

References:
[1] Alternating optimization of decision trees, with application to learning sparse oblique trees, NEURIPS 2018.

[2] Smaller, more accurate regression forests using tree alternating optimization. ICML 2020.

[3] Ensembles of bagged TAO trees consistently improve over random forests, AdaBoost and gradient boosting.

FODS 2020.

[4] Learning a tree of neural nets. ICASSP 21.

[5] Improved boosted regression forests through non-greedy tree optimization. IJCNN 21.

[6] Improved multiclass AdaBoost for image classification: The role of tree optimization. ICIP 2021.

[7] Softmax tree: An accurate, fast classifier when the number of classes is large. EMNLP 2021.

[8] Learning interpretable, tree-based projection mappings for nonlinear embeddings. AISTATS 2022.

[9] Pushing the envelope of gradient boosting forests via globally-optimized oblique trees. CVPR 22.

[10] Improved multiclass AdaBoost using sparse oblique decision trees. IJCNN 22.

[11] Optimal interpretable clustering using oblique decision trees. KDD 2022.

[12] Semi-supervised learning with decision trees: Graph Laplacian tree alternating optimization. NEURIPS 2022.

4 FOREST ALTERNATING OPTIMIZATION (FAO)

In this work, we take this one step further and optimize globally over all the parameters (decision & leaf nodes) of a forest having a

fixed number of trees of given structure, monotonically decreasing an objective function of the form loss + regularization:

min
τ 1,...,τ T

∑

n

L(yn,F(xn)) + λ

T∑

t=1

∑

i∈ nodes of τ t

φ(wti) (2)

where F(x) =
∑T

t=1 τ t(x) is a forest of T trees.

Alternating optimization over trees:

• If we fix all trees but one, the resulting problem over that tree can be optimized by TAO.

• Also, if we fix all the decision nodes of all the trees, the resulting problem over all the trees’ leaves can be optimized exactly.

As with a single tree, each individual tree’s structure is still pruned automatically via an ℓ1 penalty on the decision nodes’ weights.

τ1(x) τ2(x)

min
τ1

N∑

n=1

(

yn − (τ1(xn) + τ2(xn)︸ ︷︷ ︸
F (xn)

)

)2

⇔ min
τ1

[
N∑

n=1

(

yn − τ2(xn)︸ ︷︷ ︸

y1
n

−τ1(xn)

)2]

0 0 1 0 1 0 0 0

1 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 1 0 0

=

θ11

θ11

θ12

θ12

θ13

θ13

θ14

θ14

θ21

θ21

θ22

θ22

θ23

θ23 θ24

θ24

x1x1, x2x2 x3 x3, x4x4 x5x5

y1

y2

y3

y4

y5

FAO is very good at optimizing the model. The plot

shows how 30 trees trained with FAO can exceed

the training accuracy of 60 greedily added GB trees.

However, the resulting forest can easily overfit:

the plot shows the increasing test error of FAO

trained on 10 trees of various initialization.

To obtain better generalization we train multiple

small FAO forests on different random initializa-

tions, and just average their predictions.

20 40 60 80

0.5

1

1.5

2

30 40 50 60 70

0.05

0.1

0.15

0.2

0.25

GB

FAO

E
tr

a
in

Tree additions/FAO iterations

Starting FAO

from 30 GB trees

5 10|0 5 10 15 20 25

1

2

3

4

E
rm

s
e

Tree
additions

←−−FAO iterations−−→

GB

Bagged TAO Etest

Etrain

FAO starts

init. random trees

0 20 40 60 80 100
2

2.2

2.4

2.6

Bagged TAO

avg-FAO

GB-TAOE
te

s
t

number of trees

Some experiment results:
MNIST (N = 60k ,D = 784,K = 10) SUSY (N = 4.5M,D = 18,K = 2) casp (N = 45k ,D = 9)

Forest Etest (%) #pars. T ∆

SPORF 2.89±0.04 (143M) 1k 50

XGBoost 2.20±0.00 107k 1k 6

LightGBM 2.02±0.00 121k 1k 10

XGBoost 1.91±0.00 505k 10k 6

GB-TAO 1.65±0.02 3M 500 7

LightGBM 1.62±0.00 642k 10k 21

GB-TAO 1.55±0.02 7.2M 1.4k 7

avg-FAO 1.48±0.06 658k 60 6

avg-FAO 1.39±0.04 968k 90 6

avg-FAO 1.33±0.04 4.9M 300 8

Forest Etest (%) #pars. T ∆

SPORF 19.91 (271M) 100 102

SPORF 19.73 (2.7B) 1k 109

XGBoost 19.63 151k 300 8

XGBoost 19.62 196k 100 10

LightGBM 19.62 153k 100 23

LightGBM 19.60 230k 300 21

XGBoost 19.59 2.0M 1k 10

LightGBM 19.57 1.5M 1k 23

avg-FAO 19.51 233k 50 8

avg-FAO 19.50 459k 100 8

Forest Etest rmse #pars. T ∆

XGBoost 3.66±0.00 119k 100 10

XGBoost 3.58±0.00 793k 1k 10

LightGBM 3.54±0.00 153k 100 114

GB-TAO 3.49±0.01 256k 50 12

LightGBM 3.48±0.00 766k 1k 109

avg-FAO 3.45±0.02 359k 50 12

GB-TAO 3.43±0.00 481k 100 12

avg-FAO 3.40±0.01 711k 100 12

GB-TAO 3.39±0.01 887k 200 12

avg-FAO 3.37±0.01 1.4M 200 12

