
Pushing the Envelope of Gradient Boosting Forests via
Globally-Optimized Oblique Trees

Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán, Dept. Computer Science & Engineering, UC Merced

1 Abstract
Ensemble methods based on decision trees, such as Random Forests or boosted

forests, have long been established as some of the most powerful, off-the-shelf

machine learning models, and have been widely used in computer vision and

other areas. In recent years, a specific form of boosting, gradient boosting (GB),

has gained prominence. This is partly because of highly optimized implemen-

tations such as XGBoost or LightGBM, which incorporate many clever modifica-

tions and heuristics. However, one gaping hole remains unexplored in GB: the

construction of individual trees. To date, all successful GB versions use axis-

aligned trees trained in a suboptimal way via greedy recursive partitioning. We

address this gap by using a more powerful type of trees (having hyperplane splits)

and an algorithm that can optimize, globally over all the tree parameters, the ob-

jective function that GB dictates. We show, in several benchmarks of image and

other data types, that GB forests of these stronger, well-optimized trees consis-

tently exceed the test accuracy of axis-aligned forests from XGBoost, LightGBM

and other strong baselines. Further, this happens using many fewer trees and

sometimes even fewer parameters overall.

Work supported by NSF award IIS–2007147

2 Gradient Boosting (GB) Forests
• Ensembles of decision trees have long been established as some of the most

powerful, off-the-shelf machine learning models.
• In recent years, one type of forest, Gradient Boosting (GB), has gained promi-

nence due to their:
- Strong empirical performance on many problems

- The development of extremely efficient implementations such as XGBoost or LightGBM.

• They typically require little effort on hyperparameter tuning and are thus con-

sidered “off-the-shelf”.

• Given the tremendous effort put on the development and refinement of the

popular GB toolkits, how can we further improve GB forests?

3 Modeling high-order feature interactions:

axis-aligned trees vs oblique trees

x32 < 1.2

x51 < −2.0

x2 ≥ 3.4

Only 3 features participate in the rout-

ing function of the above leaf. Max-

imum order of feature interactions is

limited by the depth ∆ in axis-aligned

trees.

xTw1 < 3.2

xTw2 ≥ 0.5

Each decision node is a function of all

the features. Their non-linear combi-

nation is a much complex order-D in-

teraction. For modeling complex func-

tions, a forest of oblique trees should

achieve higher accuracy and require

fewer trees.

4 Learning oblique trees in the GB framework
To learn oblique trees in GB, we build on a recent algorithm, tree alternating optimiza-

tion (TAO). Given a decision tree of some predetermined structure τ (x;Θ) with parameters

Θ = {(wi,wi0)}i∈D ∪ {θi}i∈L, decision nodes in set D, leaves in set L, we optimize:

min
Θ

N∑

n=1

l(gn,Hn, τ (xn;Θ)) + α
∑

i∈D

‖wi‖1 with l(g,H,γ) = gTγ + 1
2
γTHγ. (1)

TAO is based on two theorems. First, eq. (1) separates over any subset of non-descendant

nodes (e.g. all the nodes at the same depth); this follows from the fact that the tree makes

hard decisions. Second, optimizing over the parameters of a single node i simplifies to a

well-defined reduced problem over the instances that currently reach node i (the reduced

set Ri ⊂ {1, . . . ,N}). The form of the reduced problem depends on the type of node:

Decision node It is a weighted 0/1 loss binary classification problem, where the two classes

correspond to the left and right child, which are the only possible outcomes for an

instance. Child lefti (righti) incurs a loss (weight) given by the prediction of the leaf

reached from the left (right) child’s subtree. Thus, each instance is assigned as

pseudolabel the child with lower loss. This problem is NP-hard but can be well

approximated with a convex surrogate; we use ℓ1-regularized logistic regression where

each instance is weighted by the loss difference between the winner and the other child.

Leaf The reduced problem consists of optimizing the original loss but over the leaf classifier

on its reduced set:

min
θi

∑

n∈Ri

gT
nθi +

1

2
θT

i Hnθi. (2)

This is solved similarly as in XGBoost and other frameworks.

Given an initial tree structure with initial parameter values, the resulting algorithm repeatedly

visits nodes in reverse breadth-first search order. Each iteration trains all nodes at the same

depth (in parallel) from the leaves to the root, by solving either an ℓ1-regularized logistic

regression at each decision node, or the above exact solution as each leaf.

(Q1 + Q4)− (Q2 + Q3) ≥ P

(Q2 + Q3)− (Q1 + Q4) ≥ Pclass 1

class 1 class 2

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

E
te

s
t
(%

)

Number of trees T in XGBoost
0 200 400 600 800 1000

0

5

10

15

20

25

30

E
te

s
t
(%

)

Number of trees T in SPORF

Consider a synthetic binary classification of MNIST digit images where class 1 satisfies that

(Q1 + Q4) − (Q2 + Q3) ≥ P or (Q2 + Q3) − (Q1 + Q4) ≥ P, where the 28×28 pixel image is

split into 4 quadrants 1 2
3 4 and Qi is the sum of the [0, 1] pixel intensities in quadrant i , and

P = 30. Class 1 is an “(anti)diagonally dominant” image like or . A single depth-2 tree

trained with TAO achieves a near-perfect training/test error of 0.0%/0.96%. XGBoost forests

do much worse. A recent algorithm to train oblique forests (SPORF) performs far worse than

the XGBoost, suggesting that proper oblique tree optimization is essential.

4 Experiments: classification and regression

Pendigits News20 MNIST

Forest Etest (%) #pars. T ∆

LightGBM 3.49±0.00 90k 1k 11

XGBoost 3.46±0.00 18k 1k 4

XGBoost 3.46±0.00 137k 10k 4

LightGBM 3.31±0.00 895k 10k 4

GB-TAO 3.15±0.25 1.3k 1 8

SPORF 2.91±0.09 (1.6M) 1k 20

SPORF 2.87±0.01 (105k) 100 20

GB-TAO 2.17±0.02 13k 10 7

GB-TAO 2.00±0.04 44k 30 7

Forest Etest (%) #pars. T ∆

GB-sklearn 23.42±0.03 156k 2k 6

SPORF 22.51±0.09 (1.3M) 100 569

XGBoost 21.39±0.00 705k 20k 6

XGBoost 21.34±0.00 188k 6k 6

LightGBM 20.69±0.00 1.8M 20k 27

LightGBM 19.78±0.00 546k 6k 28

GB-TAO 18.13±0.01 479k 400 4

GB-TAO 18.76±0.01 746k 50 6

GB-TAO 16.65±0.04 1.6M 800 4

Forest Etest (%) #pars. T ∆

XGBoost 4.38±0.00 70k 100 10

GB-TAO 4.17±0.08 21k 1 12

SPORF 2.89±0.04 (143M) 1k 50

XGBoost 2.20±0.00 107k 1k 6

LightGBM 2.02±0.00 121k 1k 10

GB-TAO 1.94±0.00 671k 30 10

XGBoost 1.91±0.00 505k 10k 6

LightGBM 1.62±0.00 642k 10k 21

GB-TAO 1.55±0.02 7.2M 1.4k 7

CT-slice casp Year

Forest Etest (%) #pars. T ∆

LightGBM 1.53±0.00 153k 100 97

LightGBM 1.52±0.00 91k 1k 23

XGBoost 1.50±0.00 107k 100 10

GB-TAO 1.28±0.02 28k 1 8

GB-sklearn 1.26±0.03 900k 1k 10

XGBoost 1.26±0.00 767k 1k 10

GB-TAO 0.90±0.02 81k 30 4

GB-TAO 0.45±0.01 1.2M 100 6

Forest Etest (%) #pars. T ∆

XGBoost 3.66±0.00 119k 100 10

XGBoost 3.58±0.00 793k 1k 10

GB-sklearn 3.58±0.01 854k 1k 10

LightGBM 3.54±0.00 153k 100 114

GB-TAO 3.49±0.01 256k 50 12

LightGBM 3.48±0.00 766k 1k 109

GB-TAO 3.43±0.00 481k 100 12

GB-TAO 3.39±0.01 887k 200 12

Forest Etest #pars. T ∆

GB-TAO 9.17±0.01 19k 1 8

XGBoost 9.05±0.00 153k 100 10

LightGBM 9.03±0.00 153k 100 37

GB-sklearn 8.96±0.02 171k 1k 6

LightGBM 8.92±0.00 1.5M 1k 43

XGBoost 8.91±0.00 1.8M 1k 10

GB-TAO 8.88±0.02 78k 20 6

GB-TAO 8.73±0.01 402k 100 6
Table 1: Comparison of different forest-based models for classification (top) and regression (bottom), sorted by decreasing test error. We report 0-1 test error or RMSE

Etest (mean±std over 5 repeats), and the number of parameters in the model. T refers to the number of trees. ∆ is the max depth of the forest.

pendigits real-sim news20

0 50 100 150 200
1

2

3

4

5

6

7

8 X
G

B
o
o
st

LightGBM

GB-TAO

E
te

s
t(
%
)

boosting steps

GB-sklearn

0 200 400 600 800
1

2

3

4

5

6

7

8

GB-TAO

boosting steps

LightGBM

GB-sklearn

XGBoost

0 50 100 150 200 250 300

16

18

20

22

24

26

28

GB-sklearn
XGBoost

GB-TAO

boosting steps

LightGBM

0 1 2 3 4

2

4

6

8

10

XGBoost

GB-TAO

E
te

s
t(
%
)

time (s)

LightGBM

GB-sklearn

0 100 200 300 400 500

2

4

6

8

GB-sklearn

LightGBM

GB-TAO

time (s)

XGBoost

0 200 400 600 800
15

20

25

30

35

GB-sklearn
XGBoost

LightGBM
GB-TAO

time (s)

Figure 1: Comparison of different GB forests as a function of the number of boosting steps M (top) and time (bottom). All methods except GB-sklearn are trained using

parallel processing on a shared memory system with 8 processors.


	References

