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Abstract

We study the problem of quantizing N sorted, scalar dat-
apoints with a fixed codebook containing K entries that are
allowed to be rescaled. The problem is defined as finding
the optimal scaling factor α and the datapoint assignments
into the α-scaled codebook to minimize the squared er-
ror between original and quantized points. Previously, the
globally optimal algorithms for this problem were derived
only for certain codebooks (binary and ternary) or under
the assumption of certain distributions (Gaussian, Lapla-
cian). By studying the properties of the optimal quantizer,
we derive an O(NK logK) algorithm that is guaranteed
to find the optimal quantization parameters for any fixed
codebook regardless of data distribution. We apply our al-
gorithm to synthetic and real-world neural network quan-
tization problems and demonstrate the effectiveness of our
approach.

1. Introduction

The appealing efficacy of modern deep neural networks

in a wide spectrum of tasks generally comes with a seem-

ingly sharp increase in network complexity. The result-

ing computation burden hinges network deployment to real-

world tasks that typically face stringent resources and con-

straints, e.g., mobile applications or autonomous driving. A

myriad of approaches has thus been proposed to reduce net-

work redundancy, quantization being the most popular and

simple-to-use approach. The central question behind quan-

tization is around weight simplification: how one could re-

assign a large number of high-precision weights from the

network, to a far less diverse set of points specified by a

codebook, hence drastically cut down on required compute.

Despite remarkable insights into this problem, theoretical

*Work performed during a Summer Internship at NVIDIA.

analysis lacks far behind, leaving no viable guarantees to

optimality of any sort even in the substeps of this process.

In this work we consider a general formulation of the

scaled codebook quantization problem: given a sorted1 data

vector w with elements w1 ≤ w2 ≤ · · · ≤ wN and a fixed

codebook C = {c1, c2, . . . , cK} ⊂ R such that c1 < c2 <
· · · < cK we would like to learn the optimal rescaling of

the codebook (by a scalar α > 0) and the corresponding

assignments of datapoints into the codebook entries so that

the �2 quantization error (MSE) is minimized:

min
α, z1,...,zN

LOSS(α,Z) =

N∑
n=1

K∑
k=1

znk(wn − α ck)
2

s.t. zTn1 = 1, zn ∈ {0, 1}K
(1)

Here, zn is a binary assignment vector defined for each dat-

apoint wn: if znk = 1 then the datapoint wn is assigned to

the codebook entry ck.

The problems of this type arise in various settings of sig-

nal processing and have recently gained a significant inter-

est in the field of neural network compression. For instance,

if we set C = {0,±1,±2... ± 27} we recover the symmet-

ric variant of INT8 quantization scheme of Jacob et al. [1]

which is particularly advantageous for efficient inference,

and currently has become a standard part of deep-learning

frameworks with many accompanying studies and imple-

mentations [2, 3]. With a codebook of C = {−1, 0, 1}
we recover the scaled ternary quantization scheme, and if

we set C = {0,±21,±22, . . . ,±2b} we recover a scaled

powers-of-two quantization scheme.

Previously, it was believed that the general formulation

of scaled quantization problem (1) is hard to optimize [4]

and requires exponential-time algorithm [5]. Therefore,

most of the approaches in the literature used heuristic search

or alternating optimization without any optimality guaran-

tees. In this paper, we present an optimal algorithm that

1We do not include the cost of sorting into our analysis.
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is guaranteed to find the solution of (1) in O(NK logK)
time using O(N) memory. While optimal algorithms are

known for special types of codebooks (see sec. 2), to the

best of our knowledge, this is the first result with a generic

algorithm that can handle any codebook C. Our approach

is based on studying the properties of the optimal quantizer

of (1) and leveraging possible shortcuts which we present

in sections 3–4. The numerical experiments are presented

in section 5.

2. Related work
The optimality properties of scalar MSE quantization

with adaptive codebook (where entries of C are learned)

have been studied by Lloyd [6] in the context of pulse-

code modulation. Lloyd gave the closed-form solutions for

quantizers of Gaussian and Laplacian distributions and in-

troduced an alternating optimization algorithm.

Unlike globally optimal solutions, the alternating opti-

mization (alt-opt) algorithms converge to a local minima of

the problem where no further improvement is possible. Yet,

it is a leading method in solving most of the special cases of

(1). For instance, Hwang and Sung [4] used the alt-opt al-

gorithm for a case of C = {−1, 0, 1}, Anwar et al. [7] used

it for the uniform integer codebooks, and Leng et al. [8]

employed it for the powers-of-two codebooks.

For some specific cases of problem (1) the optimal al-

gorithms have been derived: Rastegari et al. [9] gave a so-

lution for scaled binary quantization where C = {−1, 1},
Carreira-Perpiñán and Idelbayev [10] and Yin et al. [11]

gave a solution for optimal scaled ternarization with C =
{−1, 0, 1}. However, these algorithms cannot be general-

ized for the arbitrary codebooks and it is unclear how to

extend them. Our paper closes this gap.

2.1. Optimization of scaled INT8 quantization

The scaled INT8 quantization where datapoints are

quantized into the codebook of C = {0,±1,±2, . . . ,±27}
with appropriate rescaling parameter α has gained a signifi-

cant interest in neural network compression field where the

problem of (1) arises in a post-training quantization setting

[3, 12, 13, 14, 15] or as a proximal step in the quantization-

aware training setting [1, 4, 7, 10, 16].

The solutions to the INT8 version of (1) available in the

literature can be divided into the following categories: al-

ternating optimization solutions [4, 5, 7, 16, 17], heuris-

tics based on maximum values [1, 3] or percentiles [3],

grid search search techniques [4, 7, 18, 19], and analyti-

cal solutions assuming a certain distribution on datapoints

[12, 15, 20, 21, 22]. None of these approaches, except for

the finely-spaced grid search, can guarantee a global opti-

mum of INT8 quantization problem on arbitrary data. How-

ever, an exhaustive sweep through the entire search space

for α-values is expensive; thus, some approximations are

used: Hwang and Sung [4] first find locally optimal solution

using alt-opt and then improve it by a limited grid search;

Choukroun et al. [19] fix the number of points in the grid;

Liu et al. [18] give a heuristic rule on how finely to space

the grid.

2.2. Adaptive codebook for scalar quantization

If in (1) we allow the codebook entries to be learned

as well, we recover the adaptive codebook quantization

scheme which has been extensively studied in the literature.

In fact, it becomes a 1d version of the k-means problem;

however, unlike the higher dimensional cases, which are

NP-hard, the 1d version admits an efficient optimal solu-

tion. Bruce [23] gave a O(NK2) optimal algorithm using

dynamic programming (DP) for the 1d k-means. Wu and

Rokne [24] improved Bruce’s DP algorithm to have a run-

time of O(NK logK) using divide-and-conquer approach,

and Wu [25] further reduced the runtime to O(NK) using

a matrix search technique.

3. Characterization of the optimum
3.1. Locally optimal scale

For fixed values of the assignments vectors Z =
{z1, . . . , zN} we can solve for a locally optimal rescaling

by minimizing the objective of (1) wrt α:

min
α

N∑
n=1

K∑
k=1

znk(wn−αck)2⇐⇒min
α

K∑
k=1

∑
wn∈ck

(wn−αck)2

Here, the notation wn∈ck means all the points wn assigned

to the codebook value ck, i.e., those having znk = 1. With

fixed Z, the objective is convex wrt α, thus by setting the

derivative to zero and solving for α we get Z-induced opti-

mal scaling factor:

α∗(Z) =

∑K
k=1

∑
wn∈ck wnck∑K

k=1

∑
wn∈ck c

2
k

. (2)

We will be referring to eq. (2) as OPTSCALE(Z).

3.2. Locally optimal assignments

Given a fixed value of α, we can recover the locally op-

timal assignments by solving (1) wrt z1, . . . , zN :

min
z1,...,zN

N∑
n=1

K∑
k=1

znk(wn − α ck)
2

s.t. zTn1 = 1, zn ∈ {0, 1}K.
This separates over every (wn, zn)-pair into N problems of:

min
zn

K∑
k=1

znk(wn − α ck)
2 s.t. zTn1 = 1, zn ∈ {0, 1}K,
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Figure 1. The optimal assignments of the 1/α-scaled datapoints (blue dots) into the codebook entries (red crosses) is given by relative

ordering with respect to the midpoints between codebook entries (vertical dashed red lines). For example, with the given α value, the

datapoint w1 will be assigned to codebook entry c1, w2 and w3 to c2, and w4, w5, w6 to c3.

and has the solution of:

z∗nk(α) =

{
1, if ck = argminck∈C(wn − αck)

2

0, otherwise.
(3)

We will be referring to eq. (3) as OPTASSIGNMENT(α).
We can make the following characterization of α-

induced optimal assignments given by (3). Consider an ar-

bitrary point wn that is optimally assigned to the codebook

entry ck, i.e., z∗nk = 1. The ck is chosen because it has the

closest rescaled value αck to wn among codebook values

of ck−1, ck, ck+1. We can ignore other values as codebook

entries come pre-sorted. Thus, we have:

(wn − αck)
2 ≤ (wn − αck+1)

2

(wn − αck)
2 ≤ (wn − αck−1)

2.

Since α > 0 and ck−1 < ck < ck+1, we solve this system

of inequalities wrt wn and conclude that

z∗nk = 1 ⇐⇒ αmk−1 ≤ wn ≤ αmk. (4)

Here mk−1 and mk are the midpoints between consecutive

codebook entries defined as:

mk−1 =
ck−1 + ck

2
and mk =

ck + ck+1

2
,

and for convenience we set c0 = −∞ and cK+1 = +∞.

The midpoint characterization of (4) defines the fol-

lowing structure on the optimal α-induced assignments:

the scaled midpoints αm1, . . . , αmK−1 split the datapoints

w1, . . . , wN into K disjoint groups such that all datapoints

in a single group are assigned to the same codebook en-

try (see Fig. 1). Additionally, due to w being a sorted

vector, the datapoints that are optimally assigned to the

same codebook k form a continuous i-to-j chunk of w as

wi, wi+1, . . . , wj−1, wj with zik = · · · = zjk = 1.

3.3. Optimal solution

The globally optimal solution (α∗,Z∗) of (1) cannot be

locally improved by using the OPTSCALE or OPTASSIGN-

MENT, thus, the solution must satisfy the following fixed-

point conditions:

α∗ = OPTSCALE(Z∗) and Z∗ = OPTASSIGNMENT(α∗).
(5)

Additionally, the pair (α∗,Z∗) must attain the smallest loss

among all other fixed points (local solutions) satisfying (5).

An important question we need to ask is how many such

fixed points exist? We have the following result:

Lemma 3.1. The number of fixed points satisfying (5) is at
most NK + 1.

Proof. We can bound the total number of fixed points sat-

isfying (5) by bounding the total number of distinct locally

optimal assignments given by OPTASSIGNMENT. Say, we

are given Z = OPTASSIGNMENT(β) for some scaling fac-

tor β > 0. By the midpoint characterization (4) we know

that for all n, k such that znk = 1 we have:

βmk−1 ≤ wn ≤ βmk.

Therefore, a particular znk = 1 will remain unchanged as

long as β satisfies:

wn

mk
≤ β ≤ wn

mk−1
.

By intersecting it over every znk = 1 we define a region

R(β) =
⋂

n,k: znk=1

(
wn

mk
,

wn

mk−1

)
, (6)

such that for any scalar α ∈ R(β) the α-induced optimal

assignments are the same as the OPTASSIGNMENT(β):

∀α ∈ R(β) : OPTASSIGNMENT(α) ≡ OPTASSIGNMENT(β)

Since the optimal assignments for α ∈ R(β) remain the

same, there can be at most one locally optimal α computed

by OPTSCALE in this region R(β), which means each re-

gion R(β) contains at most one fixed point. By inspecting

(6), we observe that none of the points wn/mk can be con-

tained within any R(β), and can only be on the endpoints.
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Algorithm 1 Required pre-computation routines to calcu-

late the sums in O(1) time.

1 function PRECOMPUTE(w)

2 (s1, . . . , sn)← (0, . . . , 0)
3 (ssq

1 , . . . , s
sq
n )← (0, . . . , 0)

4 s1, s
sq
1 ← w1, w

2
1

5 for n = 2 . . . N do
6 sn ← sn−1 + wn

7 ssq
n ← ssq

n−1 + w2
n

1 function QUICKSUM(i, j)

2 return sj − si

1 function QUICKSUMSQ(i, j)

2 return ssq
j − ssq

i

Therefore, the regions of the form R(β) (with constant α-

induced assignments) are given by partitioning of the real

line by the points wn/mk. Since there are N × K such

points, the total number of regions will be NK + 1.

We have discovered that values of α are partitioned into

regions of form (6) where each region contains at most one

fixed point. Since each region can be characterized by its

left endpoint, let us number them as Rnk where the left

endpoint of Rnk is the point wn/mk; there is one special

regionR0 with the left endpoint of 0. Our globally optimal

algorithm will be based on finding optimal solution of ev-

ery regionRnk, enumerating over them using efficient data

structures, and selecting the best one.

4. Optimal algorithm
We construct the algorithm that checks every possible

fixed point of (1) belonging to α-regions with constant op-

timal assignments (regions R0,R11, . . . ,RNK) and keeps

track of the (α,Z)-pair corresponding to the minimal en-

countered loss value. The fixed-point candidates are gen-

erated by calculating OPTASSIGNMENT for every region’s

left endpoint (0 or wn/mk). We present the pseudocode in

Algorithm 2.

Implementation details and runtime The naive imple-

mentation of OPTASSIGNMENT requires O(NK) opera-

tions as we need to find a closest codebook entry for ev-

ery datapoint wn. Since the codebook entries are sorted, we

can use a binary search to find closest codebook entry in

O(logK) time, reducing the total runtime to O(N logK).
Better yet, due to the midpoint characterization (4) we know

that each codebook ck will be optimally assigned to a con-

tinuous block of datapoints wi, wi+1, . . . , wj−1, wj . There-

fore, we do not need to assign every datapoint, but only

Algorithm 2 The O(NK2 logN) implementation of our

optimal MSE quantization algorithm that learns α to quan-

tize the datapoints w using α-scaled codebook C. The

quick summation routines (QUICKSUM, QUICKSUMSQ)

and necessary precomputations are detailed in Alg. 1.

1 function LOSS(α,Zc)

2 L← 0
3 for k = 1 . . .K do
4 (i, j)← zc

k

5 L← L+QUICKSUMSQ(i, j)+(αck)
2×(j−i)

6 L← L− 2ck × QUICKSUM(i, j)

7 return L

1 function OPTSCALE(Zc)

2 enum, denom ← 0, 0
3 for k = 1 . . .K do
4 i, j ← zc

k

5 enum ← enum + ck × QUICKSUM(i, j)
6 denom ← denom + QUICKSUMSQ(i, j)

7 return enum/denom

1 function OPTASSIGNMENT(α)

2 Zc = (zc, . . . , zc
K)← (0, . . . ,0)

3 start ← BINARYSEARCH(w, αmk)
4 for k = 1 . . .K − 1 do
5 end ← BINARYSEARCH(w, αmk+1)
6 zc = (start + 1, end)
7 start ← end

8 return Zc

1 function OPTQUANT(w, C)

2 Zc
min = (zc

1, . . . , z
c
K)← (0, . . . ,0)

3 Lmin ←∞, αmin ←∞
4 for k = 1 . . .K − 1 do
5 mk = ck+ck+1

2

6 for n = 1 . . . N do
7 for k = 1 . . .K − 1 do
8 α = wn

mk

9 Zc ← OPTASSIGNMENT(α)
10 α← OPTSCALE(Zc)
11 L← LOSS(α,Zc)
12 if L ≤ Lmin then
13 Lmin ← L, Zc

min ← Zc, αmin ← α

14 return αmin,Zmin

need to find the indexes of i and j using binary search in

O(K logN). Most importantly, this observation also al-

lows us to store the assignment matrix Z much more com-
pactly as Zc: instead of storing the assignment vectors zn
per datapoint wn we simply store the (i, j) pair for every

codebook as zck = (i, j).

The implementation of OPTSCALE requires the sum

over the datapoints that are assigned to each codebook en-
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try ck. Thus a straightforward implementation will require

O(N + K) operations. However, if we pre-compute the

cumulative running sum over the sorted datapoints (wn-s)

using an additional storage of O(N), we can compute the

sums in O(1) (see Alg. 1). With such implementation, the

OPTSCALE computation becomes an O(K) operation.

Similarly, the evaluation of the LOSS given by (1) can be

computed in O(K) using our pre-computed running sums

as well. To show it, let us first expand the loss of (1):

LOSS(α,Z) =
K∑

k=1

N∑
n=1

znk(w
2
n − 2αwnck + (αck)

2).

Recalling that under the optimal assignments the points

with znk = 1 (for a fixed k) correspond to a continuous

block of weights wi, . . . , wj−1, the inner loop (over n) of

the above equation can be written as:

j−1∑
n=i

(w2
n − 2αckwn + (αck)

2) = QUICKSUMSQ(i, j)−
− 2ck × QUICKSUM(i, j) + (αck)

2 × (j − i)

Here, sum over w2
n is computed using QUICKSUMSQ(i, j),

and sum over wn is computed using QUICKSUM(i, j).
Finally, the main algorithm OPTQUANT iterates over the

steps OPTASSIGNMENT, OPTSCALE, and LOSS using two

loops over N and K, which results in an algorithm with the

complexity of O(NK2 logN).

4.1. Improving the runtime

We can drive the complexity of the Alg. 2 to be

O(NK logK) if we change the order of the evaluations

over the α-regions R0,R11, . . . ,RNK given by the corol-

lary of Lemma 3.1.

Consider the calculation of locally optimal assignments

for two neighboring α-regions Ra = (a, b) and Rb =
(b, c). What is the difference between the optimal as-

signments for α1 ∈ Ra and the optimal assignments

for α2 ∈ Rb? Assuming datapoints wn are distinct,

Algorithm 3 The improvement to O(NK logN) of our

scaled codebook quantization algorithm comes from using

the min-heap data structure.

1 function OPTQUANT(w, C)

2 Lmin ←∞
3 endpoints ← empty MINHEAP

4 for k = 1 . . .K − 1 do
5 mk = ck+ck+1

2

6 for k = 1 . . .K do
7 INSERT(endpoints, (w1/mK , 1,K))

8 while endpoints.size > 0 do
9 α, n, k ← EXTRACTMIN(endpoints)

10 Z← OPTASSIGNMENT(α)
11 α← OPTSCALE(Zc)
12 L← LOSS(α,Zc)
13 if L < Lmin then
14 Lmin ← L, Zc

min ← Zc, αmin ← α

15 if n < N then
16 INSERT(endpoints, (wn+1/mk, n+ 1, k))

17 return αmin,Zmin

only a single datapoint will change its assignment. In-

deed, it is the datapoint wn which defines the bound-

ary between Ra and Rb with b = wn/ck for some n
and k. Hence, the OPTASSIGNMENT(α2) differs only

by a single znk value from the previously computed

OPTASSIGNMENT(α1), making the complexity of comput-

ing the OPTASSIGNMENT an O(1) operation. This region

evaluation ordering makes the computation of OPTSCALE

and LOSS an O(1) operation as well.

To make this evaluation strategy possible, we need to ex-

tract the region endpoints {wn/mk : ∀n, k} in the sorted

order, for which we will use a min-heap data structure [26,

ch. 6.1]. We will use region endpoints (wn/mk) as keys in

the heap, and we will store the corresponding n, k values as

satellite along the key. Implemented straightforwardly, we

Sampling distribution Quantization on N = 10 000 datapoints Same as on the left, but enlarged

Figure 2. Quantization of N = 10 000 datapoints sampled from the Gaussian mixture distribution. The probability density function of

the distribution is plotted on the left. For this particular distribution our algorithm achieves optimal MSE error which outperforms other

baselines (min-max and alt-opt). The gap between our optimal MSE and other methods is more visible when enlarged (on the right).
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would maintain a heap over all NK endpoints. However,

we can get away with a heap containing only K items. For

a midpoint mk′ the order of extraction of the mk′ related

region boundaries from the min-heap is the following:

w1

mk′
≤ w2

mk′
≤ · · · ≤ wN−1

mk′
≤ wN

mk′
.

Therefore, there is no need to maintain all of the mk′’s end-

points in the heap: once wn/mk′ is extracted, we simply

add wn+1/mk′ to the heap and still maintain the extrac-

tion order, which makes each region’s endpoint extraction

an O(logK) operation. Overall, we perform NK evalua-

tions of OPTASSIGNMENT, OPTSCALE, and LOSS, where

cost for an evaluation includes extracting an endpoint from

the min-heap: this yields a final runtime of O(NK logK).
See Alg. 3 for full details.

5. Experiments

In this section, we present numerical experiments to

demonstrate the benefits of our approach. To this end, we

conduct two experiments. First, we focus on quantizing

synthetic data and then, we focus on real-work applications

and apply the algorithm to quantizing the weights and acti-

vations of a neural network in a post-training quantization

process.

We implemented the O(NK logK) version (Alg. 3) of

our quantization algorithm in Python using the NumPy li-

brary [27]. We run the experiments on quantizing synthetic

data (sec. 5.1) and on quantizing the data coming from real-

world applications as part of the post-training quantization

of the weights and the activations of the neural-networks

(sec. 5.2).

INT4 INT8

Figure 3. Top: the MSE loss as a function of α for every possible locally optimal assignments when quantizing 10K datapoints sampled

from the synthetic distribution (Fig. 2, left); red cross corresponds to the found minimum value. Bottom: Results of the grid search

(similar to Choukroun et al. [19]) as a function of the resolutions of the grid (number of grid-point evaluations). We plot the difference

between achieved MSE and OPT MSE in log scale. For comparison, we give the results of quantization using min-max and alternating

optimization. The horizontal dashed red line marked with G∗ is the number of grid-point evaluation for which runtime of grid-search has

the same complexity as running our optimal algorithm.
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5.1. Synthetic experiments

Unlike other scaled codebook quantization approaches

(sec. 2), our algorithm does not require a specific data dis-

tribution on datapoints to produce the optimal MSE quan-

tization. To demonstrate this, we run our algorithm on

the datapoints sampled from a mixture of three Gaussians

with the mix-in proportions π = [0.3, 0.3, 0.4], means

μ = [−5, 1.5, 0] and standard deviations σ = [2, 4, 1]
(Fig. 5.1, left). We sample N = 10 000 datapoints from

this distribution and quantize using the K = 2b − 1 (b-bit)

codebook of C = {0,±1,±2, . . . ,±2b−1}. By varying the

value of b we obtain MSE error vs codebook size curve,

which we plot in Fig. 2.

To put our algorithm in perspective, we additionally

plot in Fig. 2 the quantization results using the follow-

ing baselines: the min-max quantization and the alternat-

ing optimization algorithm. The min-max quantization is

the widely used approach [1, 3, 13] where the α scale is

obtained by assuming the uniform distribution on the data-

points w. The alternating optimization (alt-opt) is the iter-

ative approach similar to k-means: given an initial value of

α we alternate between OPTASSIGNMENT and OPTSCALE

procedures. As we can see, our optimal algorithm achieves

the smallest quantization error when compared to the base-

lines and the min-max quantization has the worst MSE error

among all tested methods. The quantization error of alt-opt

algorithm is close to our optimal MSE, yet there is a consid-

erable gap which can be observed on the enlarged plot (see

Fig. 2, right). Note that since alt-opt’s performance is ini-

tialization dependent, it occasionally can find a pretty good

or even optimal solution, however, there is no guarantees or

rules of thumb that allows selecting the proper initialization.

Comparison to grid search methods We separately

compare our algorithm to the grid search approaches from

the literature where α-scales are evaluated over the grid

points. For this purpose, we reimplemented the grid search

of Choukroun et al. [19] and run it to quantize the N =
10 000 datapoints sampled from our synthetic distribution

(Fig. 2, left). We use b-bit symmetric integer codebook

C = {0,±1,±2, . . . ,±2b−1} with b = 4 (INT4) and b = 8
(INT8). The quality of the grid-search solution can be con-

trolled by varying the number of grid points G: more points

we evaluate over, the better is the found solution. The pa-

per of Choukroun et al. [19] does not provide runtime for

their algorithm; in our implementation it has the asymptotic

runtime of O(GK logN).

We give the results of quantization on the bottom of

Fig. 3. Since our algorithm achieves the optimal MSE error

(which we denote as OPT), we plot the log difference be-

tween grid-search-found MSE and our OPT over the num-

ber of the grid points G. We additionally plot the log gap

between OPT error and the quantization results using al-

ternating optimization and min-max approach. While the

grid search might be faster to finish for some values of G,

at certain value of grid-point evaluations G∗ it will require

the same amount of computation as our optimal algorithm.

We empirically compute this G∗ and highlight it on our

plots using a red dashed line. As we expected, the quality

of the grid-search optimization is indeed dependent on G.

However, even when we spend more runtime on grid search

INT8 quantization results, top-1 accuracy

Min-max weight with activation calibration our

Model FP32 Max Entropy 99.9% 99.99% 99.999% 99.9999% Q Q+B+S Q+B+Sv2

MobileNet-v1 71.88 69.84 70.99 70.76 70.89 70.67 70.44 70.78 71.08 71.12

MobileNet-v2 71.88 69.41 70.21 70.70 71.02 70.47 69.78 70.79 70.72 70.59

ResNet18 69.74 69.42 69.58 68.36 69.55 69.62 69.58 69.61 69.55 69.63
ResNet50 76.16 75.87 76.06 75.39 76.04 76.09 75.99 76.00 76.10 76.00

INT4 quantization results, top-1 accuracy

Min-max weight with activation calibration our

Model FP32 Max Entropy 99.9% 99.99% 99.999% 99.9999% Q Q+B+S Q+B+Sv2

MobileNet-v1 71.88 0.09 0.25 0.19 0.14 0.12 0.1 0.18 6.38 4.47

MobileNet-v2 71.88 0.11 0.47 0.38 0.13 0.11 0.08 3.49 5.46 4.24

ResNet18 69.74 0.84 42.81 41.07 31.30 19.19 7.15 44.74 57.85 58.05
ResNet50 76.16 0.21 52.44 53.45 37.03 7.40 0.93 53.81 63.74 63.73

Table 1. Comparison of top-1 accuracies on ImageNet2012 validation set when using the various post-training quantization recipes using

the code of Wu et al. [3] and when quantizing using our optimal MSE quantization. Here, Q stands for simple weight and activation

quantization, and Q+B+S is quantization with bias and scale correction, and Q+B+Sv2 is quantization with bias and scale correction with

per-channel/per-neuron granularity.
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(with G ≥ G∗) there is still a measurable gap in MSE error.

Interestingly, for INT4 codebook the alternating optimiza-

tion achieves a better MSE and is the closest to our OPT

result, yet, for the INT8 case the alt-opt solution is no bet-

ter than min-max solution. Overall, none of the baselines is

able to give optimal (or close to optimal) MSE solution that

runs in reasonable time.

5.2. Compression of neural networks

Our quantization algorithm can be used as a drop re-

placement for many neural network quantization setups.

Some of such approaches would use the quantization of the

form (1) once at the end of the training (post-training), while

others will apply it on the fly (e.g., Learning-Compression

algorithm [10, 28, 29]). In this section, we explore the post-

training quantization of the neural networks where both

weights and the activations are quantized using b-bit integer

codebooks of C = {0,±1,±2, . . . ,±2b−1}. We use a sin-

gle codebook per layer, and apply quantization to all fully

connected and convolutional layers. To quantize the acti-

vations, we use the standard calibration approach [3, 13]

where we collected the activation values computed during

the forward pass of a small batch (512) of train images.

We do not perform any finetuning after the quantization.

We evaluate models trained on ImageNet using the PyTorch

[30]; the pre-trained models were obtained from the official

PyTorch repository through torchvision. The full precision

top-1 accuracies of the used models are given in FP32 col-

umn in Table 1.

Our results can be significantly improved when com-

bined with bias and scale correction. Indeed, the quantized

weights and activations coming from the optimization of the

MSE loss (eq. 1) will not be optimal wrt the model loss,

unless the ‖W −Q‖ ≈ 0. Here, we denoted by Q the

optimally compressed version of W. A simple, yet surpris-

ingly effective way to improve the performance is to correct

for the effects of quantization by altering the layer’s bias

[14, 15] and weight scales [31]. If we denote the input to the

quantized layer as x, and its output as y, the bias and scale

correction can be formulated as the problem over (x,y)-
pairs on the calibration dataset (usually sampled from the

train data) as

mins,b
∑

x,y ‖y − sQx− b‖2,
where b is the layer’s new bias and s is the scale correction.

The solution of this optimization problem can be computed

in closed form during the calibration stage with:

s =

∑
y,z(y

T z− zT ȳ)∑
z(z

T z− zT z̄)
,

b = ȳ − αz̄.

Here, we used z as a shorthand for Qx, i.e. z ≡ Qx, and

ȳ and z̄ are the sample averages over all ys and zs, respec-

tively. The scale s can be introduced for the entire layer, or

per neuron/channel (if the layer is followed by batch nor-

malization layer).

In Table 1 we report post-training quantization results us-

ing our algorithm which include: regular quantization (Q),

quantization and bias/scale correction per layer (Q+B+S),

and quantization with bias/scale correction per channel or

neuron (Q+B+Sv2). We compare our results to the state-of-

the-art recipes available in the literature. In particular, we

compare to the recipe of Wu et al. [3] which uses the min-

max approach for the weight quantization, and give vari-

ous heuristics for the activation quantization. These strate-

gies include: a) min-max quantization, b) optimizing the

scale α to minimize the entropy between quantized and the

original activation distribution, and c) choosing the α-scale

based on the percentiles (so that α-scaled codebook cov-

ers x% of the data). As we show in Table 1, quantizing

both weights and activations using our single MSE opti-

mal algorithm performs on par or better comparing to the

heuristic calibrations. For example, our INT8 quantization

results outperform most of the heuristic calibration strate-

gies, and when combined with scale/bias correction we get

the smallest performance drop when compared to the per-

formance of the full precision network. The advantage of

the optimal post-training quantization gets even more ap-

parent when we quantize using an INT4 codebook: for ex-

ample we can achieve an accuracy of 63.75% on ResNet50

by simply replacing the calibration strategies with our opti-

mal MSE quantizer.

6. Conclusion

We have presented the derivation of an efficient and

globally optimal solution for the general formulation of

scaled fixed codebook quantization problem of (1), which

runs in O(NK logK) time. The formulation we are solv-

ing includes many important quantization problems as a

particular case (e.g., INT8, binarization, etc). To achieve

the globally optimal minimum squared error solution, we

do not assume any specific data distribution nor do we per-

form a heuristic search. We empirically demonstrated that

the proposed algorithm could be used as a drop replacement

in many quantization and compression settings where prob-

lem (1) is being solved. For a neural network compression

setting, our algorithm can be used as an initial quantiza-

tion point or as a solution of proximal step problems like

in [8, 10, 28, 29, 32]. The quantization problems of the

same type occur in novel number representation formats de-

veloped by Intel [33], and Xilinx [34] for which our algo-

rithm is optimal too. The derived algorithm is of interest

for the signal compression field in general, and might be

used in other compression problems: e.g., in compressed

image/video storage formats like JPEG or H.264.
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