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Large Scale Image Retrieval

Searching a large database for images that match a query.
Query is an image that you already have.

Query
Database

Top retrieved image
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Image Representations

We compare images by comparing their feature vectors.

v Extract features from images and represent each image by the
feature vector.

Common features in image retrieval problem are SIFT, GIST, wavelet.
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K Nearest Neighbors Problem

We have N training points in D dimensional space (usually D > 100)
x i 2 RD ; i = 1; : : : ; N .
Find the K nearest neighbors of a query point xq 2 RD .

v Two applications are image retrieval and classi�cation.

v Neighbors of a point are determined by the Euclidean distance.

High dimensional space of features
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f 3 Query
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Exact vs Approximate Nearest Neighbors

Exact search in the original space is O(ND ) in both time and space.
This does not scale to large, high-dimensional datasets. Algorithms for approximate
nearest neighbors:

v Tree based methods

v Dimensionality reduction

v Binary hash functions
High dimensional space of features Low dimensional space of features
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Reduce the dimension
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Binary Hash Functions

A binary hash function h takes as input a high-dimensional vector
x 2 RD and maps it to an L-bit vector z = h(x) 2 f 0; 1gL .

v Main goal: preserve neighbors, i.e., assign (dis)similar codes to
(dis)similar patterns.

v Hamming distance computed using XOR and then counting.
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Binary Hash Function in Large Scale Image Retrieval

Scalability: we have millions or billions of high-dimensional images.

v Time complexity: O(NL ) instead of O(ND ) with small constants.
Bit operations to compute Hamming distance instead of �oating
point operations to compute Euclidean distance.

v Space complexity: O(NL ) instead of O(ND ) with small constants.

We can �t the binary codes of the entire dataset in memory, fur ther
speeding up the search.

Example: N = 1 000 000points, D = 300 dimensions, L = 32 bits (for a
2012 workstation):

Space Time
Original space 2.4 GB 20 ms

Hamming space 4 MB 30 � s
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Previous Works on Binary Hashing

Binary hash functions have attained a lot of attention in recent years:
v Locality-Sensitive Hashing (Indyk and Motwani 2008)

v Spectral Hashing (Weiss et al. 2008)

v Kernelized Locality-Sensitive Hashing (Kulis and Grauman 2009)

v Semantic Hashing (Salakhutdinov and Hinton 2009)

v Iterative Quantization (Gong and Lazebnik 2011)

v Semi-supervised hashing for scalable image retrieval (Wang et al. 2012)

v Hashing With Graphs (Liu et al. 2011)

v Spherical Hashing (Heo et al. 2012)

Categories of hash functions:

v Data-independent methods (e.g. LSH: threshold a random projection).

v Data-dependent methods: learn hash function from a training set.
F Unsupervised: no labels

F Semi-supervised: some labels

F Supervised: all labels
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Objective Functions in Dimensionality Reduction

Learning hash functions is often done with dimensionality reduction:

v We can optimize an objective over the hash h function directly, e.g.:
F Autoencoder: encoder (h ) and decoder (f ) can be linear, neural nets, etc.

min
h ;f

NX

n=1

kxn � f (h(xn))k2

v Or, we can optimize an objective over the projections Z and then
use these to learn the hash function h, e.g.:
F Laplacian Eigenmaps (spectral problem):

min
Z

NX

i;j =1

W ij kzi � zj k
2 s.t.

NX

i =1

zi = 0; ZT Z = I

F Elastic Embedding (nonlinear optimization):

min
Z ;�

NX

i;j =1

W +
ij kzi � zj k

2 + �
NX

i;j =1

W �
ij exp(� k zi � zj k

2)
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Learning Binary Codes

These objective functions are dif�cult to optimize because the codes
are binary. Most existing algorithms approximate this as follows:

1. Relax the binary constraints and solve a continuous problem to
obtain continuous codes.

2. Binarize these codes. Several approaches:
v Truncate the real values using threshold zero
v Find the best threshold for truncation
v Rotate the real vectors to minimize the quantization loss:

E(B ; R) = kB � VR k2
F s.t. RT R = I ; B 2 f 0; 1gNL

3. Fit a mapping to (patterns,codes) to obtain the hash function h.
Usually a classi�er.

This is a suboptimal, “�lter” approach : �nd approximate binary codes
�rst, then �nd the hash function. We seek an optimal, “wrapper”
approach: optimize over the binary codes and hash function jointly.
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Our Hashing Models: Continuous Autoencoder

Consider �rst a well-known model for continuous dimensiona lity
reduction, the continuous autoencoder:

v The encoder h: x ! z maps a real vector x 2 RD onto a
low-dimensional real vector z 2 RL (with L < D ).

v The decoder f : z ! x maps z back to RD in an effort to reconstruct
x.

The objective function of an autoencoder is the reconstruction error:

E(h; f ) =
NX

n=1

kxn � f (h(xn))k2

We can also de�ne the following two-step objective function :

�rst min E(f ; Z) =
NX

n=1

kxn � f (zn)k2
then min E(h) =

NX

n=1

kzn � h(xn)k2

In both cases, if f and h are linear then the optimal solution is PCA.
p. 10



Our Hashing Models: Binary Autoencoder

We consider binary autoencoders as our hashing model:

v The encoder h: x ! z maps a real vector x 2 RD onto a
low-dimensional binary vector z 2 f 0; 1gL (with L < D ). This will be
our hash function.We consider a thresholded linear encoder (hash function) h (x ) = � (Wx )

where � (t ) is a step function elementwise.

v The decoder f : z ! x maps z back to RD in an effort to reconstruct
x. We consider a linear decoder in our method.

Binary autoencoder: optimize jointly over h and f the reconstruction
error:

EBA(h; f ) =
NX

n=1

kxn � f (h(xn))k2 s.t. h(xn) 2 f 0; 1gL

Binary factor analysis: �rst optimize over f and Z:

EBFA(Z; f ) =
NX

n=1

kxn � f (zn )k2 s.t. zn 2 f 0; 1gL ; n = 1; : : : ; N

then �t the hash function h to (X ; Z). p. 11



Optimization of Binary Autoencoders: “�lter” approach

A simple but suboptimal approach:

1. Minimize the following objective function over linear functions f , g:

E(g; f ) =
NX

n=1

kxn � f (g(xn))k2

which is equivalent to doing PCA on the input data.

2. Binarize the codes Z = g(X ) by an optimal rotation:

E(B ; R) = kB � RZ k2
F s.t. RT R = I ; B 2 f 0; 1gLN

The resulting hash function is h(x) = � (Rg (x)).
This is what the Iterative Quantization algorithm (ITQ, Gong et al. 2011), a
leading binary hashing method, does.
Can we obtain better hash functions by doing a better optimization, i.e.,
respecting the binary constraints on the codes? p. 12



Optimization of Binary Autoencoders using MAC

Minimize the autoencoder objective function to �nd the hash function:

EBA(h; f ) =
NX

n=1

kxn � f (h(xn))k2 s.t. h(xn) 2 f 0; 1gL

We use the method of auxiliary coordinates (MAC) (Carreira-Perpiñán & Wang

2012, 2014). The idea is to break nested functional relationships judiciously
by introducing variables as equality constraints, apply a penalty method
and use alternating optimization.
We introduce as auxiliary coordinates the outputs of h, i.e., the codes
for each of the N input patterns and obtain a constrained problem:

min
h ;f ;Z

NX

n=1

kxn � f (zn )k2 s.t. zn = h(xn); zn 2 f 0; 1gL ; n = 1; : : : ; N:
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Optimization of Binary Autoencoders (cont.)

We now apply the quadratic-penalty method (we could also apply the augmented

Lagrangian):

EQ(h; f ; Z; � ) =
NX

n=1

�
kxn � f (zn )k2 + � kzn � h(xn )k2

�
s.t.

n
zn 2 f 0; 1gL

n = 1 ; : : : ; N:

Effects of the new parameter � on the objcetive function:

v During the iterations, we allow the encoder and decoder to be
mismatched.

v When � is small, there will be a lot of mismatch. As � increases,
the mismatch is reduced.

v As � ! 1 there will be no mismatch and EQ becomes like EBA.

v In fact, this occurs for a �nite value of � .
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A Continuous Path Induced by � from BFA to BA

The objective functions of BA, BFA and the quadratic-penalty objective
are related as follows:

EQ(h; f ; Z; � ) =
NX

n=1

�
kxn � f (zn )k2 + � kzn � h(xn)k2�

BFA: � ! 0+
BA: � ! 1

(h; f ; Z)( � )

h

f

Z

EBFA(Z; f ) =
P N

n=1 kxn � f (zn )k2

EBA(h; f ) =
P N

n=1 kxn � f (h(xn))k2
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Optimization of Binary Autoencoders using MAC (cont.)

In order to minimize:

EQ(h; f ; Z; � ) =
NX

n=1

�
kxn � f (zn)k2 + � kzn � h(xn)k2�

s.t. zn 2 f 0; 1gL ; n = 1; : : : ; N:

we apply alternating optimization. The algorithm learns the hash
function h and the decoder f given the current codes, and learns the
patterns' codes given h and f :

v Over (h; f ) for �xed Z, we obtain L + 1 independent problems for
each of the L single-bit hash functions, and for f .

v Over Z for �xed (h; f ), the problem separates for each of the N
codes. The optimal code vector for pattern xn tries to be close to
the prediction h(xn) while reconstructing xn well.

We have to solve each of these steps.
p. 16



Optimization over f for �xed Z (decoder given codes)

We have to minimize the following over the linear decoder f (where
f (x) = A x + b):

EQ(h; f ; Z; � ) =
NX

n=1

�
kxn � f (zn )k2 + � kzn � h(xn )k2

�
s.t.

n
zn 2 f 0; 1gL

n = 1 ; : : : ; N:

A simple linear regression with data (Z; X ):

min
f

NX

n=1

kxn � f (zn )k2 = min
A ;b

NX

n=1

kxn � A zn � bk2

The solution is (ignoring the bias for simplicity) A = XZ T (ZZ T )� 1 and
can be computed in O(NDL ).

The constant factor in the O-notation is small because Z is binary, e.g.
XZ T involves only sums, not multiplications.
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Optimization over h for �xed Z (encoder given codes)

We have to minimize the following over the linear hash function h
(where h(x) = � (W x)):

EQ(h; f ; Z; � ) =
NX

n=1

�
kxn � f (zn )k2 + � kzn � h(xn )k2

�
s.t.

n
zn 2 f 0; 1gL

n = 1 ; : : : ; N:

The hash function has the following form:

min
h

NX

n=1

kzn � h(xn)k2 = min
W

NX

n=1

kzn � � (W xn)k2

=
LX

l=1

min
w l

NX

n=1

(znl � � (wT
l xn))2

so it separates for each bit l = 1 : : : L.
The subproblem for each bit is a binary classi�cation problem with data
(X ; Z �l ) using the number of misclassi�ed patterns as loss function.
We approximately solve it with a linear SVM.
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Optimization over Z for �xed (h; f ) (adjust codes given encoder/decoder)

This is a binary optimization on NL variables, but it separates into N
independent optimizations each on only L variables:

min
z

e(z) = kx � f (z)k2 + � kz � h(x)k2 s.t. z 2 f 0; 1gL

This is a quadratic objective function on binary variables, which is
NP-complete in general, but L is small.

We can reduce the problem:

min
z

kx � Az k2 s.t. z 2 f 0; 1gL , min
z

ky � Rzk2 s.t. z 2 f 0; 1gL :

Let x 2 RD and A 2 RD � L , with QR factorisation A = QR , where Q is of D � L with Q T Q = I and R is

upper triangular of L � L , and y = Q T x 2 RL .
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Z Step for Small L : Exact Solution by Enumeration

With L . 16 we can afford an exhaustive search over the 2L codes.
Besides, we don't need to evaluate every code vector, or every bit of
every code vectors:

v Intuitively, the optimum will not be far from h(x), at least if � is large.

v We don't need to test vectors beyond a Hamming distance
kx � f (h(x))k2 =� (they cannot be optima).

v We scan the code vectors in increasing Hamming distance to h(xn)
up to that bound.

v Since ky � Rzk2 separates over dimensions 1; : : : ; L, we evaluate it
dimension by dimension and stop as soon as we exceed the
running bound.
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Z Step for Large L: Approximate Solution

For larger L, we use alternating optimization over groups of g bits.

v The optimization over a g-bit group is done by enumeration using
the accelerations described earlier.

v Consider an example where L = 8 and g = 4:

initialization 1 1 0 0 0 0 1 0

step over z1 to z4 ? ? ? ? 0 0 1 0

step over z5 to z8 1 0 1 0 ? ? ? ?

How to initialize z? We have used the following two approaches:

v Warm start: Initialize z to the code found in the previous iteration's
Z step. Convenient in later iterations, when the codes change slowly.

v Solve the relaxed problem on z 2 [0; 1]L and then truncate it. We use

an ADMM algorithm, caching one matrix factorization for all n = 1 ; : : : ; N . Convenient in early

iterations, when the codes change fast. p. 21



Solving the Relaxed Problem

In z step we have to solve a convex
binary quadratic problem:

min
z

1
2

zT Az + bT z + c s.t. z 2 f 0; 1gL

We solve the relaxed problem in-
stead:

min
z

1
2

zT Az + bT z + c s.t. z 2 [0; 1]L

The solution of the relaxed problem
gives us a good initial point for alter-
nating optimization. -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Relaxed solution

Binary feasible points

(0,0)

(0,1)

(1,0)

(1,1)
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Summary of the Binary Autoencoder MAC Algorithm

input X D � N = ( x1; : : : ; xN ), L 2 N

Initialize ZL � N = ( z1; : : : ; zN ) 2 f 0; 1gLN

for � = 0 < � 1 < � � � < � 1

for l = 1; : : : ; L h step

hl  �t SVM to (X ; Z �l )

f  least-squares �t to (Z; X ) f step

for n = 1; : : : ; N Z step

zn  arg minzn 2f 0;1gL kyn � f (zn )k2 + � kzn � h(xn)k2

if Z = h(X ) then stop

return h, Z = h(X )

Repeatedly solve: classi�cation ( h), regression (f ), binarization (Z).
p. 23



Optimization of Binary Autoencoders using MAC (cont.)

2 4 6 8 10 12

2
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number of processors
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The steps can be parallelized:

v Z step: N independent problems,
one per binary code vector zn .

v f and h steps are independent.
h step: L independent problems,
one per binary SVM.

Schedule for the penalty parameter � :

v With exact steps, the algorithm terminates at a �nite � .
This occurs when the solution of the Z step equals the output of the hash function, and gives a

practical termination criterion.

v We start with a small � and increase it slowly until termination.
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Experimental Setup: Precision and Recall

The performance of binary hash functions is usually reported using
precision and recall.

Retrieved set for a qery point can be de�ned in two ways:

v The K nearest neighbors in the Hamming space.

v The points in the Hamming radius of r .

Ground-truth for a query point contains the �rst K nearest neighbors of
the point in the original(D-dimensional) space.

precision =
jf retrieved pointsg \ f groundtruthgj

jf groundtruthgj

recall =
jf retrieved pointsg \ f groundtruthgj

jf retrieved pointsgj

p. 25



Experiment: Datasets

CIFAR-10 dataset: 60 000 32� 32
color images in 10classes; train-
ing/test 50 000/10 000, 320 GIST
features.

airplane automobile bird ship truck

NUS-WIDE dataset: 269 648
high resolution color images
in 81 concepts; training/test
161 789/107 859, 128 Wavelet
features.
SIFT-1M dataset: 1 010 000
high resolution color images;
training/test 1 000 000/10 000, 128
SIFT features.

actor bicycle eagle ship airplane
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Comparison Algorithms

Algorithm with Kernel hash functions:

v KLSH(Kulis et al. 2009): Generalizes locality-sensitive hashing to
accommodate arbitrary kernel functions.

Algorithms with embedding objective function(laplacian eigenmap):

v SH(Weiss et al. 2008): Finds the relaxed solution of laplacian
eigenmap and truncates it.

v AGH(Liu et al. 2011): Approximates eigenfunctions using K points
and �nds thresholds to make the codes binary.

Algorithms that maximize the variance:

v ITQ(Gong et al.) and tPCA: First compute PCA on the input
patterns and then truncate the continous solution.

v SPH(Heo et al. 2012): Iteratively re�nes the thresholds and pivots
to maximize the variance of binary codes.
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Experiment: Initialization of Z Step

If using alternating optimization in the Z step (in groups of g bits), we
need an initial zn . Initializing zn using the truncated relaxed solution
achieves better local optima than using warm starts.
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Experiment: Exact vs. Inexact Optimization

Inexact Z steps achieve solutions of similar quality than exact steps but
much faster. Best results occur for g � 1 in alternating optimization.
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Optimizing Binary Autoencoders Improves Precision

NUS-WIDE-LITE dataset, N = 27 807 training/ 27 808test images,
D = 128 wavelet features.

autoencoder error precision within r � 2 k = 50 nearest neighbors
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ITQ and tPCA use a �lter approach (suboptimal): They solve the
continuous problem and truncate the solution.
BA uses a wrapper approach (optimal): It optimizes the objective
function respecting the binary nature of the codes.
BA achieves lower reconstruction error and also better precision/recall.

p. 30



Experimental Results on CIFAR Dataset

Ground truth: K = 1000 nearest neighbors of each query point.

L = 16 bits L = 32 bits
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A well-optimized binary autoencoder with a linear hash function
consistently beats state-of-the-art methods.
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Experimental Results on CIFAR Dataset (cont.)

Ground truth: K = 1000 nearest neighbors of each query point:

K NN precison precision within r � 3 precision within r � 4
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Ground truth: K = 50 nearest neighbors of each query point:
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Top retrieved images from CIFAR Dataset
input
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Experimental Results on NUS-WIDE Dataset

Ground truth: K = 100 nearest neighbors of each query point:

L = 16 bits L = 32 bits
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A well-optimized binary autoencoder with a linear hash function
consistently beats state-of-the-art methods using more sophisticated
objectives and (nonlinear) hash functions. p. 34



Experimental Results on NUS-WIDE Dataset (cont.)

Ground truth: K = 500 nearest neighbors of each query point:

K NN precison precision within r � 1 precision within r � 2
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Ground truth: K = 100 nearest neighbors of each query point:

K NN precison precision within r � 1 precision within r � 2
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Experimental Results On ANNSIFT-1m

Ground truth: K = 10000nearest neighbors of each query point:

K NN precison precision within r � 2
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A well-optimized binary autoencoder with a linear hash function
consistently beats state-of-the-art methods.
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Conclusion

v A fundamental dif�culty in learning hash functions is binar y
optimization.
F Most existing methods relax the problem and �nd its continuo us

solution. Then, they threshold the result to obtain binary codes,
which is sub-optimal.

F Using the method of auxiliary coordinates, we can do the
optimization correctly and ef�ciently for binary autoenco ders.

H Encoder (hash function): train one SVM per bit.
H Decoder: solve a linear regression problem.
H Highly parallel.

v Remarkably, with proper optimization, a simple model (autoencoder
with linear encoder and decoder) beats state-of-the-art methods
using nonlinear hash functions and/or better objective functions.

Partly supported by NSF award IIS–1423515.
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