Binary hash functions for fast image retrieval

In K nearest neighbors problem, there are N training points in D-dimensional space (usually D > 100), x ∈ R^D, i = 1, ..., N. and the goal is finding the K nearest neighbors of a query point x ∈ R^D.

Exact search in the original space is O(N^2) in both time and space. A binary hash function h takes as input a high-dimensional vector x ∈ R^D and maps it to an L-bit vector z = h(x) ∈ {0, 1}^L. The search is done in this low-dimensional, binary space.

The main goal is preserving the neighborhood, i.e., assign (dis)similar codes to (dis)similar patterns.

Our hashing model: Binary Autoencoder

We consider binary autoencoders as our hashing model:

\[h(x) = \sigma(z) \]

where we start with a small \(\mu \) and increase it slowly. To optimize \(\mu \) we apply alternating optimization.

\[\text{BA} \rightarrow \sum_{n=1}^{N} \left(\sum_{i=1}^{D} (x_{ni} \cdot f(z_{ni}))^2 \right) \]

\[\text{BA} \rightarrow \sum_{n=1}^{K} \sum_{i=1}^{D} (x_{ni} \cdot g(z_{ni}))^2 \]

where we have \(K \) independent optimizations on \(N \) variables, but it separates into \(N \) independent optimizations each on only \(L \) variables. With \(L \leq 16 \) we can afford an exhaustive search and for larger \(L \), we use alternating optimization.

Advantages of optimizing BA using MAC: It respects the binary constraints and introduces significant parallelism in optimization. Furthermore, the intermediate steps in alternating optimization are (reasonably) easy to solve.

Experiments

Two approaches to initialize \(z_n \) in the Z step:

- Warm start: Initialize \(z_n \) to the code found in the previous iteration \(\mathcal{Z}_{n} \).
- Solve the relaxed problem on \(z_n \) ∈ {0, 1}^L and then truncate it.

The latter achieves better local optima than using warm starts.

We compare our BA that uses a linear hash function and simply minimize the reconstruction error \(E_Z(\mathbf{f}, \mathbf{h}) \) with other methods. To report precision/recall using MAC than using a suboptimal optimization as in ITQ (truncates codes at zero), PCA (finds the best rotation matrix), and sigmoid (relaxes the step function to a sigmoid in training by backpropagation).

The algorithm is highly parallel:

- For fixed \(Z \) we have \(L \) independent problems for each of the \(Z \) single-bit hash functions, and for \(L \).
- For fixed \(Z \) and \(h \) we have \(N \)-independent optimization problems each over \(L \) variables.

Acknowledgements

Work supported by NSF award IIS1423515 and UC Merced’s School of Engineering.