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EECS, University of California, Merced

http://eecs.ucmerced.edu

Zhengdong Lu

CS, University of Texas, Austin

luz@cs.utexas.edu

Abstract

We introduce a parametric version (pDRUR) of the re-

cently proposed Dimensionality Reduction by Unsupervised

Regression algorithm. pDRUR alternately minimizes recon-

struction error by fitting parametric functions given latent

coordinates and data, and by updating latent coordinates

given functions (with a Gauss-Newton method decoupled

over coordinates). Both the fit and the update become much

faster while attaining results of similar quality, and afford

dealing with far larger datasets (105 points). We show

in a number of benchmarks how the algorithm efficiently

learns good latent coordinates and bidirectional mappings

between the data and latent space, even with very noisy or

low-quality initializations, often drastically improving the

result of spectral and other methods.

We consider the problem of dimensionality reduction,

where given a high-dimensional dataset of N points in D
dimensions YD×N = (y1, . . . ,yN ), we want to estimate
mappings F : y → x (dimensionality reduction) and

f : x → y (reconstruction) between data points y ∈ R
D

and latent points x ∈ R
L with L < D. One reason why

this is a hard problem is that the latent points XL×N =
(x1, . . . ,xN ) are unknown; the problem is unsupervised. If
theX were known, estimating the mappings would be a far

easier (parametric or nonparametric) regression problem: fit

F to (Y,X) and f to (X,Y). There is a class of dimension-
ality reduction methods, spectral methods such as Isomap

[17] or Laplacian eigenmaps (LE; [1]) that, precisely, es-

timate these latent coordinates X from the data. In recent

years, spectral methods have been very popular due to their

simplicity, lack of local optima, efficient computation using

standard eigensolvers, and more importantly their success

with some complex datasets. However, spectral methods

do require a careful search over their parameters (number

of nearest neighbors k, local scale, etc.), and even the best
parameters may not produce satisfactory results. The liter-

ature contains many such examples: the latent coordinates

often show defects (not corresponding to true structure in

the data) where distant points in the manifold are mapped

to tight clusters in latent space while other points are left

outlying; low-density regions or holes in the manifold are

amplified; streaks protrude far outside the boundary of the

data; entire branches of the manifold may project on top

of each other; and others. Reasons for this include a poor

neighborhood graph, as well as the particular nature of each

method. And if the latent pointsX fail to be an orderly pro-

jection of the data Y, the mappings fitted to them (e.g. an

out-of-sample extension; [2]) will be a poor representation

of the data manifold and generalize badly to unseen data.

In this paper we focus on unsupervised regression meth-

ods for dimensionality reduction (reviewed in section 4).

Here, one solves a regression problem where the outputs

Y are given but not the inputs X (or vice versa), by min-

imizing an error function over both the mapping parame-

ters and the unknown inputs, considered not as variables

but as parameters as well. The minimization can be nat-

urally done alternatingly, by fitting the mapping given the

inputs are fixed (the usual, supervised regression) and by

updating the inputs given the mapping is fixed. Specifically,

we focus on a recent method, (nonparametric) Dimension-

ality Reduction by Unsupervised Regression (nDRUR; [3]),

which when initialized from the coordinates produced by a

spectral method has been shown to produce far improved la-

tent representations and mappings. Unfortunately, as stated

in [3], the high computational cost of this method (training

is cubic on the number of points N , while testing is linear
in N ) currently limits its use to datasets of a few thousand
points—a common characteristic of nonparametric meth-

ods. In this paper, we propose a parametric version of this

method, so that the infinite-dimensional minimization be-

comes finite-dimensional. As we will show, this has far-

reaching consequences. Not only does the step of fitting the

mappings become much faster because it involves a smaller

number of parameters; but, crucially, the complex, high-

dimensional minimization over the latent coordinates sim-

plifies enormously into decoupled, low-dimensional mini-

mizations that are performed efficiently and robustly with a

Gauss-Newton method. We find that we can achieve results

of as good a quality as those of nDRUR but at a fraction of

the time and space cost: a 100D dataset with N = 20 000
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takes a few minutes in a modern workstation.

After briefly describing the nonparametric DRUR

method in section 1, we present our new method and its

optimization in section 2, report extensive experimental re-

sults in section 3 and review related work in section 4.

1. Nonparametric DRUR

The method of nonparametric Dimensionality Reduc-

tion by Unsupervised Regression (nDRUR; [3]) variation-

ally minimizes the following objective function over map-

pings f , F and latent coordinatesXL×N :

min
X,f ,F

E(X, f ,F) = Ef (X, f) + EF(X,F) (1)

Ef (X, f) =
∑N

n=1
‖yn − f(xn)‖

2
+ λfRf (f) (2)

EF(X,F) =
∑N

n=1
‖xn − F(yn)‖

2
+ λFRF(F) (3)

with appropriate quadratic regularizers Rf (f) and RF(F).
The variational minimization over (f ,F) for fixedX yields

a unique solution consisting of a radial basis function ex-

pansion centred at each of the data points (x1, . . . ,xN or

y1, . . . ,yN ). Computationally, it involves solving two reg-

ularized linear systems ofN×N and is thusO(N3) in time
and O(N2) in memory. Both mappings are nonparametric,
and mapping a test point isO(NL) for f andO(ND) forF,
besides theO(N(D+L))memory cost of storingX andY.
The minimization over X is substantially more complex: it

is highly nonlinear and takes place in a large space of NL
parameters, since each xn appears within f as a centre and

so all N terms in Ef are coupled. This same problem af-

fects other nonparametric unsupervised regression methods

such as GPLVM.

2. Parametric DRUR

Although it may be possible to derive a faster but ap-

proximate nDRURmethod by using active-set techniques of

the type used in spectral methods and Gaussian processes,

here we propose the more direct approach of redefining the

problem parametrically. We define parametric Dimension-

ality Reduction by Unsupervised Regression (pDRUR) by

the same objective function (1) over (X, f ,F) but now f and

F take a particular parametric form; for simplicity of nota-

tion, we will still write “minf ” to mean a minimization over

the parameters of f rather than a variational minimization.

The regularizers Rf (f) and RF(F) become now penalties
on the parameters (e.g. weight decay in neural nets). Possi-

ble choices for f , F include multilayer perceptrons (MLPs)

and radial basis function networks (RBFs). Given enough

hidden units or basis functions, respectively, both have the

universal mapping approximation property. We give details

in the adaptation step. We use alternating minimization over

X (projection step) and (f ,F) (adaptation step), and initial-

inputYD×N = (y1, . . . ,yN )
ObtainXL×N = (x1, . . . ,xN ) from a spectral method
Fit parametric mappings f to (X,Y) and F to (Y,X)
repeat

Project: for n = 1, . . . , N
xn = approximate minimizer of (7)

with Gauss-Newton

end

Adapt: approximately fit parametric mappings f , F

until convergence

return f , F,X

Figure 1. Parametric DRUR algorithm.

ize X to the output of a spectral method; see figure 1. Im-

portantly, the overall training cost is linear in N .
The parametric choice has the disadvantages over the

nonparametric RBFs that the adaptation step over (f ,F)
may now have local optima (depending on the para-

metric model), and that model selection must be solved

(number of hidden units or basis functions, regularization

parameters)—though this is no different from model selec-

tion in a standard regression setting. But it has two impor-

tant advantages: a dramatically simpler optimization over

X, and faster f , F both in training and testing.

2.1. Projection step: optimization over X

For fixed, parametric f and F, we have the following

minimization overX:

min
X∈RN×L

∑N
n=1

‖yn − f(xn)‖
2

+ λfRf (f) (4)

+
∑N

n=1
‖xn − F(yn)‖

2
+ λFRF(F) (5)

=
∑N

n=1
En(xn) + λfRf (f) + λFRF(F) (6)

which separates over each xn ∈ R
L because f and F do

not depend onX (unlike in nDRUR, whereX are the basis

function centres in f ). Thus, instead of one large nonlinear

minimization overNL parameters, we haveN independent
nonlinear minimizations each on L parameters (the regu-
larization terms do not depend on X). Consider then the

following problem (where we omit the subindex n overall
in this section):

min
x∈RL

E(x) = ‖y − f(x)‖
2

+ ‖x − F(y)‖
2
. (7)

Here, x ∈ R
L is the only free variable, and y ∈ R

D and

the functions f and F are fixed. We will assume that f is

differentiable wrt x, with a D × L Jacobian matrix and a
D × L × L third-order Hessian tensor:

J(x) =
(

∂fd

∂xl

)

dl
, d = 1, . . . ,D, l = 1, . . . , L

H(x) =
(

∂2fd

∂xl∂xm

)

dlm
, d = 1, . . . ,D, l,m = 1, . . . , L.



In the following, we will omit the dependence of J and H

on x for clarity. Expressions for J for specific models ap-

pear in section 2.2. We now compute the gradient and Hes-

sian of the objective E wrt x:

∇E(x) = 2(−JT (y − f(x)) + x − F(y)) (8)

∇2E(x) = 2(I + JT J − HT (y − f(x))) (9)

where the notation for the product withHT means summing

across index d:

HT (y − f(x)) =
∑D

d=1
(yd − fd(x))∇2fd(x). (10)

The form of the gradient and Hessian suggests using a

Gauss-Newton method to minimize over x. We can get a

positive-definite approximation to the Hessian ofE (eq. (9))
by discarding the second-order term onH:

∇2E(x) ≈ 2(I + JT J) (11)

so the new iterate along the Gauss-Newton search direction

is x̃ = x + αp with

p = (I + JT J)−1(JT (y − f(x)) − x + F(y)) (12)

and the step length α may simply be obtained by a back-
tracking search starting with α0 = 1 (corresponding to the
full Gauss-Newton step, which will always be taken near

convergence). The computational cost per iteration of this

method for a single xn isO(L2D) times the cost of comput-
ing one entry of the Jacobian (the cost term L3 from solving

the linear system can be ignored because L < D). This is
just L times the cost of computing the gradient. If the L×L
linear system was large, it would be possible to solve it ap-

proximately with linear conjugate gradients, but that rarely

would be the case: L is the dimension of the latent space.
We can use a Gauss-Newton method because our objec-

tive function E(x) is the sum of two least-squares prob-
lems of dimensionsD and L, respectively. The formulation
of the pDRUR objective function has here a strong benefit.

In a typical Gauss-Newton method, the approximation to

the Hessian has the form JT J and thus can be singular (or

ill-conditioned) whenever J is singular (or ill-conditioned),

requiring careful addition of a term λI with λ > 0 to it
(the Levenberg-Marquardt method). However, in our case

we get for free a strictly positive-definite Hessian approxi-

mation because of the term ‖x − F(y)‖
2
in the objective.

This has a regularizing effect, adding I to the Hessian, and

being well-conditioned anywhere. Thanks to this fact, using

theorem 10.1 in [11] we can prove global convergence if the

line search satisfies certain conditions (e.g. theWolfe condi-

tions); that is, the method will converge to a local minimizer

no matter the initial point. The convergence rate is in gen-

eral linear, but faster than that of gradient descent because

of the additional Hessian information. The approximation

to the Hessian will be good if, near the minimizer, the or-

thogonal projection on f of the y–error (y− f(x)) is small,
or if f has small curvature at x.

Experimentally within pDRUR we found that nearly all

points xn converged to a relative error of 10−4 in 4 or fewer

iterations and most in 1–2. The full step α = 1 is accepted
in the line search almost always: 99% of the times far from
the minimizer (in the first pDRUR iteration) and 99.9% as
iterations progress, where nearly all xn converge in a single

full step.

We also experimented with two other minimization

methods. Gradient descent (x̃ = x − η∇E(x) with a step
η > 0) required far more (tens) iterations and was overall
slower by an order of magnitude. The fixed-point iteration

x̃ = g(x) with g(x) = F(y) +J(x)T (y− f(x)) (obtained
by equating the gradient to zero) is intuitively appealing, as

it shifts x from F(y) by a vector equal to the data space
error y − f(x) projected on the tangent space of f at the
current x. However, it did not converge in general. Since

g(x) = x − 1

2
∇E(x), this iteration is actually gradient de-

scent with a constant step η = 1

2
.

2.2.Adaptation step: parametric choices for f and F

The adaptation step involves two independent minimiza-

tions of (2) and (3), i.e., two standard regressions. If f and

F are linear, pDRUR results in PCA (like nDRUR; [3]). We

consider two parametric models and give the fit equations as

well as the Jacobian wrt x (assume inputsX, outputsY).

Radial basis function network (RBF) We consider M
Gaussian basis functions of width σ (just as in nDRUR but
withM < N ) and a bias term:

f(x) = WΦ(x) + w =
∑M

m=1
wmφm(x) + w (13)

where φm(x) = exp (− 1

2
‖(x − µm)/σ‖

2
). For simplicity

and as is common with RBFs, we obtain the basis function

centres by k–means clustering on the input data, and σ by
a grid search (training the RBF on a subset of the data and

testing it on the rest, and picking the best σ). This sub-
optimal strategy does not guarantee a monotonic error de-

crease but having an occasional oscillation in the error is a

small price to pay in exchange for the simplicity and speed

of the fit. The adaptation step equations for the weights are

analogous to those of nDRUR, and unlike for the MLP, the

solution is unique, given by:

min
W

∥

∥Y − WGxy − w1T
∥

∥

2

F
+ λ tr

(

WGxxW
T
)

⇒

W(GxyG
T
xy + λGxx) = (Y − w1T )GT

xy (14)

w = 1

N
(Y − WGxy)1 (15)

where we use a regularization term (onW only, notw) with

user parameter λ ≥ 0, 1 is a column vector of N ones, and



with the matrices Gxy of M × N with elements φm(xn);
Gxx of M × M with elements φm(µm); Y of D × N
(data points) and X of L × N (projections);W of D × M
(weights) and w of D × 1 (biases). The equation for w
shows it captures the average error not accounted for byW.

Substituting it in the equation forW, the explicit solution

forW is given by theM×M positive definite linear system
(positive semidefinite in non-generic cases):

W
(

GxyG
T
xy + λGxx − 1

N
(Gxy1)(Gxy1)T

)

= Y
(

I − 1

N
11T

)

GT
xy. (16)

For F we can compute the centres and widths once and for

all sinceY is constant. For f ,X is not constant and besides

will typically change a lot from its initial value (as seen

in the experiments), so we need to update the centres and

widths. The centres are recomputed with k–means at every
iteration (or every few iterations), initialized at the previous

iteration’s value; for the very first iteration, we take the best

k–means result from 20 random initial point assignments.
We cross-validate the widths at each iteration for f and at

the first iteration for F by training on a portion of the train-

ing data, testing on the rest, and picking the best width.

The computational cost is O(NM(M + D)) in training
time and O(MD) in memory, mainly driven by setting up
the linear system forW (solving it is a negligible O(M3)
sinceM ≪ N in practice).
The gradient of f wrt x (Jacobian J) is:

J(x) = 1

σ2 W diag (Φ′) (M − x1T
M )T (17)

where Φ′ applies ϕ′ to each− 1

2
‖(x − µm)/σ‖

2
, andM =

(µ
1
. . . µM ). For Gaussian basis functions, ϕm(t) = et.

Multilayer perceptron (MLP) We consider a MLP with

a single layer of M hidden units with sigmoidal activation

function and biases, trained with backpropagation:

f(x) = W2σ(W1x + b1) + b2 (18)

where σ(x) = 1/(1 + exp (x)) applies elementwise. The
gradient wrt the weights of the squared reconstruction error

E =
∑N

n=1
‖yn − f(xn)‖

2
is:

∇W2
E = −2

∑N
n=1

(yn − f(xn))σT
n

∇b2
E = −2

∑N
n=1

(yn − f(xn))

∇W1
E = −2

∑N
n=1

diag (σ′

n)WT
2
(yn − f(xn))xT

n

∇b1
E = −2

∑N
n=1

diag (σ′

n)WT
2
(yn − f(xn))

where σn and σ
′

n apply σ and σ′ elementwise toW1xn +
b1, respectively. Momentum, weight decay and other tech-

niques can be applied. Unlike with nDRUR, the adaptation

step now has local optima. However, the minimization is
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Figure 2. Noisy spiral withN = 500 points in 2D. Row 1: pDRUR

with 10 RBFs and λ = 0.1, 10 iterations. Row 2: pDRUR with

MLPs with a layer of 10 sigmoidal hidden units, 10 iterations.

Row 3: autoencoder with 10–1–10 hidden layers. In all cases, the

initialXwere the trueXwith Gaussian noise of stdev 1 (= 1

10
the

range ofX). Note: most of our figures should be viewed in color.

far simpler than that of an autoencoder, which directly min-

imizes the reconstruction error

E(f ,F) =
∑N

n=1
‖yn − f(F(yn))‖

2
(19)

over a network with 3 hidden layers. Instead, pDRUR

solves two minimizations over two networks with a single

hidden layer.

The gradient of f wrt x (Jacobian J) is:

J(x) = W2 diag (σ′(W1x + b1))W1. (20)

3. Experiments

We have carried out a number of experiments with var-

ious initializations for X and compared with closely re-

lated methods: (1) autoencoders with 3 layers of H–L–H
hidden units trained for up to 1 000 epochs (using Mat-
lab’s Neural Network Toolbox), by initializing its map-

pings f and F to fit (X,Y) and (Y,X), respectively,
just as DRUR does; and (2) two unsupervised regression

methods that fit f and X but not F: unsupervised kernel

regression (UKR; [9]; software at http://www.techfak.

uni-bielefeld.de/˜sklanke), and Gaussian process la-

tent variable model (GPLVM; [6]; software at http://www.

cs.man.ac.uk/˜neill/gplvm).
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Figure 3. Noisy, disconnected 1D manifolds withN = 700 points

in 2D. Row 1: pDRUR (f : 15 RBFs; F: 20 RBFs; λ = 0.1 for

both), 20 iterations. Row 2: pDRUR with MLPs with a layer of

20 sigmoidal hidden units, 10 iterations. In all cases, the initialX

were given by the first principal component ofY.

Compared with nDRUR, we generally find that pDRUR

can achieve a comparable quality (in reconstruction error

and visually) with a much more parsimonious model and far

faster. For example, in the spiral, clusters and small Swiss

roll datasets we need only 10, 15 and 30 basis functions,
while nDRUR would require 500, 700 and 1 000, respec-
tively. For the larger datasets (e.g. the 100D Swiss roll with

N = 20 000 points), neither of nDRUR, UKR and GPLVM
run in our workstation.

Noisy spiral (fig. 2) This dataset is very hard to solve us-

ing random or PCA initializations for X, but easy if ini-

tializing from Isomap or LE. To find an intermediate level

of difficulty, we use the true underlying X but perturbed

with Gaussian noise, which creates controlled local disor-

der. Note how, because of the noise in X the initial f and

F can be rather far from the manifold structure. Still, we

found over multiple random replications that pDRUR (with

either MLPs or RBFs) and the autoencoder reliably recover

the manifold.

Noisy disconnected curves (fig. 3) This examines

pDRUR’s ability to work with clustered data where each

cluster has manifold structure. The PCA initialization

causes parts of the manifolds to fold over each other in X,

but pDRUR recovers a reasonable solution that preserves

each manifold’s structure. Note how the errors y−f(x) over
the points x ∈ X are approximately orthogonal to the map-

ping f . From eq. (8), equating the gradient to zero we obtain

−JT (y−f(x))+x−F(y) = 0. If we learn a good mapping

F then we will have x ≈ F(y) and so JT (y − f(x)) = 0

indeed. Also note how the contours of F (the loci of points

y that map to the same x) tend to meet f roughly orthogo-

nally.

Effect of regularization for RBFs (fig. 4) For a 3D Swiss

roll dataset with N = 1000 points, we varied systemati-
cally the regularization coefficients λf and λF (10−5, 10−3,

10−1); the number of basis functions (30, 60, 90); and
the noise level on X (Gaussian with stdev 5 or 10). We
found little difference over the number of basis functions

and the noise level (although, naturally, this depends on

each dataset). Large λ leads to smoother mappings and dis-
torts the X, as seen in the figure. In general, we find that

using the smallest λ that prevents ill-conditioning of the lin-
ear system for the weights works well. Note that UKR and

GPLVM both failed with this noisy initialX.

Swiss roll (fig. 5, 6, 8) Fig. 5 shows the result of UKR,

GPLVM and pDRUR when initialized from a typical LE

result for the Swiss roll; notice that, though global ordering

exists, the initialX show strong local clustering and “holes”

devoid of points, neither of which represent true structure in

the manifold. UKR and GPLVM barely improve upon the

initialX, unlike pDRUR, which practically uniformizes the

X. UKR can also be trained with a homotopy algorithm but

this failed to recover the Swiss roll.

Fig. 6 illustrates pDRUR’s robustness to noise in the ini-

tial X. Over multiple random replicates we have observed

that pDRUR perfectly recovers the Swiss roll with stdev

20; as the noise increases, pDRUR’s X increasingly show

defects, but amazingly pDRUR is still able to recover the

global ordering up to stdev 60. An autoencoder also works

well with stdev 20, but starts losing global ordering at stdev

40 and (as shown) completely loses it at stdev 60. Finally,

the figure shows a large-scale experiment where we lifted

a Swiss roll with N = 20 000 points into D = 100 di-
mensions by adding 97 noise dimensions. Almost perfect
recovery is attained in the very first iteration.

Fig. 8 shows the Swiss roll with a hole. Isomap blows up

holes (or low-density regions) because, as is well known,

it is unable to preserve geodesic distances across holes.

pDRUR goes a long way to recovering the true X, while

UKR and GPLVM barely improve it, or even worsen it (note

several outlying x in GPLVM). One reason why pDRUR is

able to improve the initial X is the existence of both map-

pings f and F, which the objective function encourages to

be the inverse of each other on the manifold. This prevents

distant points x from being mapped to close y’s, and dis-

tant points y from being mapped to close x’s; having only

f does not enforce the latter.

Rotated MNIST digits (fig. 9) We selected 220 digits ‘7’
at random from the MNIST database (28×28 greyscale im-
ages) and rotated each by 4–degree increments, to create a

large dataset of N = 19 800 images in D = 784 dimen-
sions. Each of the 220 rotation sequences (see sample at
top of figure) traces a closed loop in 784D space, but there
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Figure 4. Swiss roll with N = 1000 points in 3D and Gaussian

noise on X of stdev 10. Row 1: initial X and result by UKR and

GPLVM. Row 2: result for pDRUR (30 RBFs, 100 iterations) and

effect of regularization λ (same for both f and F).
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Figure 5. Swiss roll (N = 1 000 points in 3D). Latent coordinates

X found by different methods (pDRUR, GPLVM, UKR) from a

Laplacian eigenmaps (LE) initialization.

is also large variation in the handwriting style of the dig-

its. We show pDRUR’s result when initialized from PCA.

The initialX collapse the loops, but pDRUR is able to open

them up and thus recover the rotation angle, as can be in-

ferred from the color of each sequence in 2D, and from the

projection with F of the test sequence in the right plot. The

reconstruction with f clearly captures the rotation too (and

using > 2 dimensions would recover less blurred images).
Runtime comparison Fig. 10 shows comparative run times

(in seconds in a 2.66 GHz PC with 2 GB RAM) for an N -
point D-dim Swiss roll (where D − 3 dimensions consist
of zero-mean Gaussian noise) with noisy initialization as in

fig. 4, for pDRUR (70 RBFs, 10 iterations), GPLVM (70

active points, 10 iterations), UKR (homotopy), nDRUR (10

iterations). Missing times in the graph correspond to run-
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Figure 6. Swiss roll, initial and final results with pDRUR and au-

toencoders. Row 1: N = 1 000 points in 3D, pDRUR (30 RBFs,

λ = 10
−5, 100 iterations) initialized from true X with Gaussian

noise with stdev 10 (= 1

5
of the shorter side of the roll). Row 2: as

row 1 but now X has stdev 60 and pDRUR has 70 RBFs. Row 3:

as row 2 with a 70–2–70 autoencoder. Row 4: N = 20 000 points

in 100D (with 97 dimensions of Gaussian noise of stdev 0.5), ini-

tialX are trueX plus Gaussian noise with stdev 10. In each row,

the axes have the same scale.

ning out of memory or taking too long. We use the authors’

published Matlab code, and although Matlab runtime com-

parisons are unreliable, pDRUR’s order-of-magnitudes’ ad-

vantage is clear (for N > 7 000 points, all other methods
run out of memory, while pDRUR takes just 74 min. with

N = 100 000). Besides, pDRUR also gets an almost per-
fect reconstruction of the Swiss roll in all cases, while UKR

and GPLVM do not (see fig. 4); and pDRUR’s result barely

changes after the first 2 iterations, while the other methods

require many more to stabilize. The (asymptotic) slope of

the runtime curves in the log-log plots shows that pDRUR

is linear on N and D while the other methods are quadratic
or superlinear on N .
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Figure 7. Initial and final pDRUR mappings for row 1 in fig. 6.

Swiss roll with hole InitialX from Isomap FinalX: GPLVM FinalX: UKR FinalX: pDRUR
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Figure 8. Swiss roll with a hole (N = 791 points in 3D): finalX for methods initialized with Isomap’sX (pDRUR: 30 RBFs).

220MNIST ‘7’ images InitialX (PCA) FinalX from pDRUR Reconstructed image sequences
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Figure 9. Left: 220 different MNIST 28×28 images, each rotated at 4–degree intervals totalingN = 19 800 points inD = 784 dimensions

(sample sequence above). pDRUR mapped this to 2D (f : 5 RBFs, F: 5 RBFs, λf = λF = 0.01, 200 iterations, X initialized by PCA).

Middle plots: each rotation sequence is color- and marker-coded in latent space. Right: an out-of-sample path in latent space (red) and the

images that f produces (below); and a test sequence of images, its 2D projection with F (blue+) and its reconstruction with f ◦F (above).

4. Related work

Most work on unsupervised regression fits a function f

and latent coordinatesX to observed data. Its roots go back

to factor analysis methods that estimate both the scores (X)

and the factor loadings (f ) by minimizing an error function

alternatingly [19, 18], resulting in PCA; nonlinear factor

analysis has also been applied in this way [8] (note the prob-

abilistic model on x is thus lost). One of the definitions of

principal curves [4] alternates between fitting a spline and

minimizing the reconstruction error wrtX. Other work has

used different forms of f : MARS [7], neural nets [16], and

more recently in the machine learning literature RBFs [15],

kernel regression [9] and Gaussian processes [6]. To project

test points y, either one fitsF a posteriori to (Y,X), or min-
imizes the reconstruction error over x (which is expensive

and prone to local optima). One problem with nonparamet-

ric forms for f is that the error can be driven to zero by

separating infinitely apart theX, and so these methods need

to constrain the latter. The mappingF in nDRUR eliminates

this problem.

Far less work exists on unsupervised regression to fit a

function F and X. This includes [12], which considers re-

ducing the dimensionality of time series with applications

to tracking; and [10], which defines F as kernel regression.

Finally, the joint estimation of f , F andX seems to have
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(left) and with N = 500 points inD ≤ 5 000 dimensions (right).

been proposed only recently. Besides the nonparametric

DRUR formulation [3], Ranzato et al [14, 13] have pro-

posed an objective function similar to (1), but designed to

learn overcomplete (L > D), sparse codes rather than di-
mensionality reduction. They use penalty terms to encour-

age learning sparse codes, where only a few dimensions

of x are non-zero for a given data vector y; this is useful

for learning parts-based representations (e.g. a handwritten

digit as a combination of strokes). Their mapping f is lin-

ear and F is slightly nonlinear, and their parameters and the

codes are optimized alternately using gradient descent.

Autoencoders can be derived from the pDRUR objec-

tive function by eliminating x = F(y) and optimizing only
over f and F. Training autoencoders from random initial-

izations is exceedingly slow (because the network is deep)

and typically yields bad local minima. Recent work [5] has

suggested that these problems decrease with a better initial-

ization. In our experiments, we have found that pretraining

f and F separately given a reasonably good X (e.g. from a

spectral method) indeed works very well, although pDRUR

seems significantly more robust to noise inX.

5. Conclusion

We have proposed a parametric formulation of the

DRUR method that results in a very efficient optimization,

affording to apply the method to far larger datasets. Our

parametric DRUR method appears to achieve solutions of

a quality as high as those of nonparametric DRUR, sig-

nificantly improving noisy or defective initializations (e.g.

from a spectral method), sometimes dramatically so. Re-

lated methods we compared with do not show this degree

of robustness. We conjecture that this is due to our effective

optimization strategy and to the use of an enlarged search

space over X, which perhaps may facilitate escaping from

local optima. The success of the algorithm strongly argues

against out-of-sample extensions of spectral methods based

on the latent coordinates X directly computed by the spec-

tral method; a few pDRUR iterations (sometimes a single

one) typically provide a much better X and consequently

much better mappings. In summary, we believe that its scal-

ability to larger datasets, its robustness, and its ability to

provide both parametric projection and reconstruction map-

pings, make pDRUR an eminently applicable method for

dimensionality reduction.
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