
Experimental results
We find that pDRUR is more likely than autoencoders and other methods to converge to a good optimum from a poor initial X. We conjecture that this is due to our effective optimization strategy and to the use of an enlarged search space
over X, which perhaps may facilitate escaping from local optima. The success of the algorithm strongly argues against out-of-sample extensions of spectral methods based on the latent coordinates X directly computed by the spectral
method; a few pDRUR iterations (sometimes a single one) typically provide a much better X and consequently much better mappings.

Swiss roll

Initial X = true X + Gaussian noise with stdev 10; 30 RBFs, λf = λF = 10−5; 100 iterations.

x x − F(y) y − f(x) f(x)

In
iti

al

−20 0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

80

−20 0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

80

−20

−10

0

10

20

−20

−10

0

10

20
0

5

10

15

20

25

30

35

40

45

50

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

0

50

F
in

al

−20 0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

80

−20 0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

80

−20

−10

0

10

20

−20

−10

0

10

20
0

5

10

15

20

25

30

35

40

45

50

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

−100

−50

0

50

100

Comparison with other methods

Swissroll Swissroll w/hole
−20

−15
−10 −5 0 5 10 15 20

−20

−10

0

10

20

0
10

20
30

40
50

Noise stdev 10 LE Isomap

In
iti

al

−20 0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

80

−
10

0
−

80
−

60
−

40
−

20
0

20
40

60
80

−
80

−
60

−
40

−
200204060 −60 −40 −20 0 20 40 60

−40

−30

−20

−10

0

10

20

30

40

pD
R

U
R

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

−
80

−
60

−
40

−
20

0
20

40
60

80
−

80

−
60

−
40

−
20020406080 −60 −40 −20 0 20 40 60

−50

−40

−30

−20

−10

0

10

20

30

40

50

F
in

al
G

P
LV

M

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−
3

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

−
2

−
1.

5

−
1

−
0.

50

0.
51

1.
5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

U
K

R

−6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

−
30

−
20

−
10

0
10

20
−

30

−
20

−
100102030

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

Run time

Log-log plot of the run time for different methods on a Swiss
roll dataset with N ≤ 105 points in D = 3 dimensions (left)
and with N = 500 points in D ≤ 5 000 dimensions (right).

0.3 0.50.7 1 2 5 10 20 50 100

10
1

10
2

10
3

 

 

R
un

tim
e

in
se

co
nd

s

N × 103

pDRUR

nDRUR

UKR
GPLVM

3 50 100 500 10002000 5000

10
1

10
2

10
3

D

Rotated MNIST digit ‘7’

220 MNIST ‘7’ images Initial X (PCA) Final X from pDRUR Reconstructed image sequences

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Left : 220 different MNIST 28 × 28 images, each rotated at 4–degree intervals totalling N = 19 800 points in D = 784 dimensions (sample sequence above). pDRUR mapped this to 2D (f : 5 RBFs, F: 5 RBFs, λf = λF = 0.01, 200 iterations, X

initialized by PCA). Middle plots: each rotation sequence is color- and marker-coded in latent space. Right : an out-of-sample path in latent space (red) and the images that f produces (below); and a test sequence of images, its 2D projection
with F (blue +) and its reconstruction with f ◦ F (above).

6

Conclusion
Involving both mappings f , F in the objective function and allowing the latent coordinates X

as free parameters allows to use good initialisations and to find good optima; making the
mappings parametric allows to optimise very efficiently and scale up to large datasets. We
encourage you to try pDRUR in your applications. Matlab code: https://eecs.ucmerced.edu.

Work supported by NSF CAREER award IIS–0754089.

7

Adaptation step: optimization over f , F

Two independent minimisations (standard regressions):

min
f

N
∑

n=1

‖yn − f(xn)‖2 + λfRf(f) min
F

N
∑

n=1

‖xn − F(yn)‖2 + λFRF(F)

Consider the regression over f . We have used two models (details in paper):

• Radial basis function (RBF) network with M centres:

f(x) =

M
∑

m=1

wmφm(x) + w φm(x) = exp
(

− 1
2 ‖(x − µm)/σ‖2 )

• Neural network (MLP) with a single hidden layer with M units:

f(x) = W2σ(W1x + b1) + b2 σ(x) = 1/(1 + exp (x))

This is a much easier problem than training an autoencoder:

• pDRUR: 2 separate minimisations each over a network with 1 hidden layer

• autoencoder: 1 minimisation over a network with 3 hidden layers.

Cost: O(NM(D + L)) training (linear in N ), O(M(D + L)) testing. Note M ≪ N .

5

Projection step: optimization over X

The minimisation over X separates over each xn because the form of f , F does not depend
on X (in nDRUR, {xn} are the centres of the basis functions of f ). Consider one such
problem:

min
x∈RL

En(x) = ‖yn − f(x)‖2 + ‖x − F(yn)‖2 (1)

with gradient and Hessian (where J is the Jacobian of f )

∇En(x) = 2
(

− J(x)T (yn − f(x)) + x − F(yn)
)

∇2En(x) = 2
(

I + J(x)TJ(x) −
D

∑

d=1

(ydn − fd(x))∇2fd(x)
)

.

Gauss-Newton idea: approximate the Hessian with a positive definite matrix and apply
Newton’s method:

∇2En(x) ≈ 2
(

I + J(x)TJ(x)
)

⇒ p =
(

I + J(x)TJ(x)
)−1(

J(x)T (yn − f(x)) − x + F(yn)
)

.

Now, use the search direction p in a backtracking line search with initial step size α0 = 1
(in our experiments, this step is accepted > 99% of the times, so the line search is rarely
needed).
Note the I term in the approximate Hessian, arising from the F–term in the DRUR objective
function: it ensures the linear system is never singular (so no Levenberg-Marquardt cor-
rections are needed). If the line search satisfies the usual conditions (e.g. Wolfe) then the
method has global convergence.
Training cost: O(ND(M + L2)) (linear in N ).

4

Parametric DRUR (pDRUR)
By forcing f , F to be in a parametric family:

• The optimisation over X decouples into N separate low-
dim. optimisations each over L parameters, and affords a
particularly robust version of the Gauss-Newton method.

• The optimisation over f , F is faster.

• f , F are faster at testing time.

The disadvantages:

• We restrict a bit the flexibility of f , F.

• Model selection needed (number of RBFs or hidden units,
regularisation parameter); but no different from model se-
lection in a standard regression setting.

• The adaptation step may have local optima.

input YD×N = (y1, . . . ,yN )

Obtain XL×N = (x1, . . . ,xN ) from a spectral method
Fit parametric mappings f to (X,Y) and F to (Y,X)
repeat

Project: for n = 1, . . . , N
xn = approximate minimizer of (1)

with Gauss-Newton
end

Adapt: approximately fit parametric mappings f , F

until convergence
return f , F, X

3

Dimensionality reduction by unsupervised regression,
nonparametric version (nDRUR) (Carreira-Perpi ñán & Lu, CVPR 2008)

Given a dataset YD×N = (y1, . . . ,yN ), we want to learn mappings F: y → x (dimensionality reduction) and f : x → y

(reconstruction) between data points y ∈ R
D and latent points x ∈ R

L with L < D. Some methods learn the latent
projections XL×N = (x1, . . . ,xN ) but not the mappings (e.g. spectral methods). Autoencoders learn both mappings to
minimise the reconstruction error E(f ,F) =

∑N
n=1 ‖yn − f(F(yn))‖2, but they are exceedingly slow to train (f ◦F is a deep

network with at least 3 layers of hidden units) and very prone to bad local optima.

Nonparametric dimensionality reduction by unsupervised regression (nDRUR)

Unfold the autoencoder reconstruction error by introducing auxiliary variables X (unsupervised regression):

min
X,f ,F

E(X, f ,F) = Ef(X, f) + EF(X,F)

{

Ef(X, f) =
∑N

n=1 ‖yn − f(xn)‖2 + λfRf(f)

EF(X,F) =
∑N

n=1 ‖xn − F(yn)‖2 + λFRF(F)

and minimise variationally over (X, f ,F) by alternating optimisation:

• Over X: nonlinear over NL parameters (gradient descent or conjugate gradients).

• Over (f ,F): global optimum given by two separate regressions (basis function expansion at {xn} and {yn}, resp.).

This has several advantages:

• It capitalises on the ability of spectral methods to provide a good initial X.

• Optimising over (X, f ,F) jointly far improves the initial X, eliminating folds, local clustering, boundary effects, etc.

• Penalising errors in both the latent and data spaces encourages f and F to be inverses of each other on the data
manifold and far improves over having just f (which does not penalise projecting close ys to distant xs).

However, the nonparametric mappings, while appropriate with sparse data, do not scale:

• Training is O(N3): (Gram) linear systems of N × N for (f ,F), nonlinear optimisation over NL parameters for X.

• Testing is O(N): (f ,F) are basis function expansions over {xn} and {yn}, respectively.

Many computer vision applications (articulated pose tracking, image retrieval, etc.) need faster mappings trained on large
datasets.

2

Abstract
We introduce a parametric version (pDRUR) of the recently proposed Dimensionality Reduction by
Unsupervised Regression algorithm. pDRUR alternately minimizes reconstruction error by fitting
parametric functions given latent coordinates and data, and by updating latent coordinates given
functions (with a Gauss-Newton method decoupled over coordinates). Both the fit and the update
become much faster while attaining results of similar quality, and afford dealing with far larger datasets
(105 points). We show in a number of benchmarks how the algorithm efficiently learns good latent
coordinates and bidirectional mappings between the data and latent space, even with very noisy or
low-quality initializations, often drastically improving the result of spectral and other methods.

1

PARAMETRIC DIMENSIONALITY REDUCTION BY UNSUPERVISED REGRESSION
Miguel Á. Carreira-Perpi ñán1 and Zhengdong Lu 2

1EECS, University of California, Merced 2ICES, University of Texas, Austin


