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1 Abstract I Projection step: optimization over X 6 Experimental results
We introduce a parametric version (pDRUR) of the recently proposed Dimensionality Reduction by The minimisation over X separates over each x,, because the form of f, F does not depend We find that pDRUR is more likely than autoencoders and other methods to converge to a good optimum from a poor initial X. We conjecture that this is due to our effective optimization strategy and to the use of an enlarged search space
Unsupervised Regression algorithm. pDRUR alternately minimizes reconstruction error by fitting on X (in nDRUR, {x,} are the centres of the basis functions of f). Consider one such over X, which perhaps may facilitate escaping from local optima. The success of the algorithm strongly argues against out-of-sample extensions of spectral methods based on the latent coordinates X directly computed by the spectral
parametric functions given latent coordinates and data, and by updating latent coordinates given problem: , , method; a few pDRUR iterations (sometimes a single one) typically provide a much better X and consequently much better mappings.
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network with at least 3 layers of hidden units) and very prone to bad local optima. ote the 1 term In the approximate Hessian, arising from the F—term in the objective = B o : L 030D71 7 5 10 20 0 100 3 50 10 50010002000 5000
function: it ensures the linear system Is never singular (so no Levenberg-Marquardt cor- o e T > ot | N x 10° D
Nonparametric dimensionality reduction by unsupervised regression (nDRU R) rections are needed). If the line search satisfies the usual conditions (e.g. Wolfe) then the 4 7 f 0 o D | | i
method has global convergence. T e m w e w w0 » 6 e % w = o : L
Unfold the autoencoder reconstruction error by introducing auxiliary variables X ( ): Training cost: O(ND(M + L?)) ( ).
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e Over X: nonlinear over N L parameters (gradient descent or conjugate gradients). Two independent minimisations (standard regressions):

e Over (f, F): global optimum given by two separate regressions (basis function expansion at {x,,} and {y,}, resp.).
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e Penalising errors in both the latent and data spaces encourages f and F to be inverses of each other on the data » Radial basis function (RBF) network with M centres: 7 -} -7 -? ? 7 -7 7 ?r Z ? ;-_-1_ 7-
manifold and far improves over having just f (which does not penalise projecting close ys to distant xs). |
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f, F are faster at testing time. == AR o
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The disadvantages: with Gauss-Newton Involving both mappings f, F' in the objective function and allowing the latent coordinates X .-? rl 7 .7 =3 _?r_ ? ) ._t 1 ;' 7 j—
e We restrict a bit the flexibility of f, F end as free parameters allows to use good initialisations and to find good optima; making the -
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regularisation parameter); but no different from model se- until convergence i yP Y PP | | oe - o Left: 220 different MNIST 28 x 28 images, each rotated at 4—degree intervals totalling N = 19800 points in D = 784 dimensions (sample sequence above). pPDRUR mapped this to 2D (f: 5 RBFs, F: 5 RBFs, A\f = Agp = 0.01, 200 iterations, X
lection in a standard regression setting. return f, F, X Initialized by PCA). Middle plots: each rotation sequence is color- and marker-coded in latent space. Right: an out-of-sample path in latent space (red) and the images that f produces (below); and a test sequence of images, Iits 2D projection
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e The adaptation Step may have local Optima_ with F (blue —I-) and its reconstruction with f o F (abOVG).



