
Manifold Blurring Mean Shift Algorithms for Manifold Denoising

Weiran Wang Miguel Á. Carreira-Perpiñán
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Abstract

We propose a new family of algorithms for denoising

data assumed to lie on a low-dimensional manifold. The

algorithms are based on the blurring mean-shift update,

which moves each data point towards its neighbors, but con-

strain the motion to be orthogonal to the manifold. The

resulting algorithms are nonparametric, simple to imple-

ment and very effective at removing noise while preserving

the curvature of the manifold and limiting shrinkage. They

deal well with extreme outliers and with variations of den-

sity along the manifold. We apply them as preprocessing for

dimensionality reduction; and for nearest-neighbor classi-

fication of MNIST digits, with consistent improvements up

to 36% over the original data.

1. Introduction

Machine learning algorithms often take as starting

point a high-dimensional dataset of N points X =
(x1, . . . ,xN ) ⊂ R

N×D, and then learn a model that is

useful to infer information from this data, or from unseen

data. Most algorithms, however, are more or less sensi-

tive to the amount of noise and outliers in the data. For

example, spectral dimensionality reduction methods such

as Isomap [20] first estimate a neighborhood graph on the

dataset X and then set up an eigenvalue problem to deter-

mine low-dimensional coordinates for each data point. Both

steps are sensitive to noise and outliers, in particular build-

ing the neighborhood graph: it may be hard to find a good

value (if it exists at all) for the number of neighbors k or
the ball radius ǫ that will avoid disconnections or shortcuts.
Other dimensionality reduction algorithms, such as latent

variable models (e.g. mixtures of probabilistic PCAs [21]),

try to learn a parametric model of the manifold and noise

by maximum likelihood. However, these models are prone

to bad local optima partly caused by noise and outliers. Al-

though there are different ways of reducing the effects of

noise and outliers (such as learning a graph in a more ro-

bust way [3] or using robust error functions), in this paper

we concern ourselves with a different approach: to denoise

the datasetX as a preprocessing step.

Data preprocessing is commonplace in machine learn-

ing. Consider, for example, the many simple but useful op-

erations of subtracting the mean (possibly as a running av-

erage), low-pass filtering, standardizing the covariance, or

removing outliers by trimming. Other operations are spe-

cific to certain types of data: deskewing or blurring for im-

ages, energy removal or cepstral normalization for speech.

These operations help to achieve some invariance to un-

wanted transformations or to reduce noise and improve ro-

bustness. Here, we are interested in more sophisticated de-

noising techniques that adapt to the local manifold structure

of high-dimensional data. We will assume that the dataset

X comes from a manifold of dimension L < D to which
noise has been added. We will not make any assumptions

about the nature of this noise—the form of its distribution

(e.g. whether long-tailed), or whether it varies along the

manifold. Denoising a manifold is also useful by itself, for

example 3D mesh smoothing in computer graphics [19] or

skeletonization of shapes such as digits. However, we will

focus on denoising as a preprocessing step for supervised or

unsupervised learning.

A good denoising algorithm should make as few assump-

tions about the data as possible, so nonparametric meth-

ods are preferable; and produce the same result for a given

dataset, i.e., be deterministic. At the same time, it should

have a small number of user parameters to control the al-

gorithm’s behavior (e.g. the amount of denoising). We pro-

pose an algorithm that fulfills these desiderata. It is based

on two powerful ideas: the noise removal ability of locally

averaging with a kernel of scale σ (implemented with the
mean-shift algorithm); and the linear approximation of lo-

cal manifold structure of dimension L (implemented with
local PCA on the k nearest neighbors). We describe our al-
gorithm in section 2, demonstrate it with unsupervised and

supervised learning (dimensionality reduction and classifi-

cation, resp.) in section 3, and discuss it in the context of

related work in section 4.
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2. The Manifold Blurring Mean Shift (MBMS)

Algorithm

Our algorithm is based on the following ideas:

• Local clustering with Gaussian blurring mean shift
(GBMS) (fig. 1): the blurring mean-shift update [10]

with unit step size moves datapoints to the kernel aver-

age of their neighbors:

xn ←
∑

m∈Nn

Gσ(xn,xm)
∑

m′∈Nn
Gσ(xn,xm′)

xm. (1)

The average is over Nn = {1, . . . , N} (full graph)
or the k nearest neighbors of xn (k-nn graph), and
Gσ(xn,xm) ∝ exp

(

− 1
2 (‖xn − xm‖ /σ)2

)

. A sin-

gle mean-shift step locally climbs up the kernel density

estimate defined by the data points, and after one step

all points are updated so the dataset shrinks over it-

erations. The process eventually converges to a state

where all points coincide [4] but it can be reliably

stopped to produce good clusterings that depend on σ
[1, 2]. Its convergence is very fast, cubic with Gauss-

ian clusters [1, 2].

• Local tangent space estimation with PCA: local PCA
gives the best linear L-dimensional manifold in terms
of reconstruction error (i.e., orthogonal projection on

the manifold):

min
µ,U

∑

m∈N ′
n

∥

∥xm − (UU
T (xm − µ) + µ)

∥

∥

2
(2)

s.t. UT
U = I with UD×L, µD×1, whose solution is

µ = EN ′
n
{x} and U = the leading L eigenvectors of

covNn
{x}. In general, Nn need not equal N

′
n.

Although GBMS by itself has strong denoising power (con-

trolled by σ and the number of iterations), this denoising
is directed not only orthogonally to the manifold but also

tangentially. This causes motion along the manifold, which

changes important properties of the data that are not noise

(for example, for a handwritten digit, it may change its

style). It also causes strong shrinkage, first at the manifold

boundaries but also within the manifold (see the example of

fig. 2). Thus, while very useful for clustering, its applica-

bility to manifold denoising is limited.

Our Manifold Blurring Mean Shift (MBMS) algo-

rithm combines these two steps. At each iteration and for

every data point xn, a predictor averaging step is computed

using one step of GBMS with width σ. We can use the
full graph (Nn = {1, . . . , N}) or the k-nn graph (Nn = k
nearest neighbors of xn). This is responsible for local de-

noising. Then, a corrector projective step is computed using

the local PCA of dimensionality L on the k nearest neigh-
bors of xn. This is responsible for local manifold structure,

MBMS (L, k, σ) with full or k-nn graph: givenXD×N

repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors of xn (k-nn graph)

∂xn ← −xn +
∑

m∈Nn

Gσ(xn,xm)
P

m′∈Nn
Gσ(xn,x

m′ )
xm

mean-shift

step

Xn ← k nearest neighbors of xn

(µn,Un)← PCAL(Xn) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )∂xn subtract parallel motion

end

X← X + ∂X move points

until stop

returnX

LTP (L, k) with k-nn graph: givenXD×N

repeat

for n = 1, . . . , N
Xn ← k nearest neighbors of xn

(µn,Un)← PCAL(Xn) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )(µn − xn) project point onto tangent space

end

X← X + ∂X move points

until stop

returnX

GBMS (k, σ) with full or k-nn graph: givenXD×N

repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors of xn (k-nn graph)

∂xn ← −xn +
∑

m∈Nn

Gσ(xn,xm)
P

m′∈Nn
Gσ(xn,x

m′ )
xm

mean-shift

step

end

X← X + ∂X move points

until stop

returnX

Figure 1. Manifold blurring mean shift algorithm (MBMS) and

its particular cases Local Tangent Projection (LTP, k-nn graph,
σ = ∞) and Gaussian Blurring Mean Shift (GBMS, L = 0). Nn

contains all N points (full graph, MBMSf) or only xn’s nearest

neighbors (k-nn graph, MBMSk).

and removes the tangential component of the motion. The

two steps are iterated until sufficient denoising is achieved

while avoiding shrinkage and distortions of the manifold

(see later). The complete algorithm is in fig. 1. We will

refer to the algorithm as MBMSf if using the full graph for

the GBMS step, MBMSk if using the k-nn graph (same k
for the GBMS and PCA steps), or simply as MBMS when

the difference is not relevant.

Besides GBMS (MBMS for L = 0), another partic-
ular case of MBMS is of special interest, which we call



Local Tangent Projection (LTP) algorithm (fig. 1): it is

MBMSk with σ =∞, or equivalently it replaces the GBMS
step with the mean of the k nearest neighbors. Thus, each
point projects onto its local tangent space, and the process

is iterated. It is simpler (one parameter less) and almost as

effective as MBMS. Finally, two other particular cases are

PCA, for σ =∞ and k = N , and no denoising (the dataset
will not change), for L = D or σ = 0.
Note the following remarks. (1) For given L, all versions

of MBMS move points along the same direction (orthog-

onally) and only differ in the length of the motion. This

length decreases monotonically with L because it is an or-
thogonal projection of the full-length motion (GBMS). The

length increases with σ initially (more denoising) but may
decrease for larger σ (as farther neighbors weigh in). (2)
The GBMS coefficients in eq. 1 are updated at each iter-

ation; not doing so is faster, but gives worse results. (3)

All the algorithms admit online versions by moving points

asynchronously, i.e., by placing the step “xn ← xn + ∂xn”

inside the for loop.

How to set the parameters? If MBMS is embedded into

another algorithm (e.g. classification), the most effective

way to set the parameters is to cross-validate them with a

test set, although this does add significant computation if

other classifier parameters need to be cross-validated too;

we do this in our MNIST experiments. Otherwise, the pa-

rameters have an intuitive meaning, and based on our expe-

rience it seems easy to find good regions for them:

• σ is related to the level of local noise outside the mani-
fold. The larger σ is, the stronger the denoising effect;
but too large σ can distort the manifold shape over it-
erations because of the effect of curvature and of dif-

ferent branches of the manifold. Using a smaller σ is
safer but will need more iterations. Using a k-nn graph
is even safer, as the motion is limited to near the k near-
est neighbors and allows larger σ, in fact σ =∞ yields
the LTP method.

• k is the number of nearest neighbors that estimates the
local tangent space; this is the easiest to set and we find

MBMS quite robust to it. It typically grows sublinearly

with N .

• L is the local intrinsic dimension; it could be estimated
(e.g. using the correlation dimension) but here we fix

it. If L is too small, it produces more local clustering
and can distort the manifold; still, it can achieve pretty

good results for good σ (L = 0 is GBMS, which can
achieve some reasonable denoising, after all). If L is
too large, points will move little (L = D: no motion).

• Number of iterations: in our experience, a few (1–3)
iterations (with suitable σ) achieve most of the denois-

ing; more iterations can refine this and achieve a better

result, but eventually shrinkage arises.

We find MBMSf and MBMSk/LTP with a few iterations

give the best results in low and high dimensions, resp., but

using a k-nn graph (in partic. LTP) is generally a safer and
faster option that achieves very similar results to MBMSf.

Convergence results We do not have a proof that MBMS

converges for L ≥ 1, but this is practically irrelevant since
one would not run it for long anyway; best results (maximal

denoising and minimal shrinkage) are usually obtained in

1–5 iterations. We do know the following (we omit detailed
proofs for lack of space). (1) Any dataset that is contained in

an L-dimensional linear manifold is a fixed point of MBMS
(since the tangent space coincides with this manifold and

tangential motion is removed). This holds no matter the

geometry of the dataset (holes, etc.). Running MBMS for

long does seem to converge to this. (2) A Gaussian distribu-

tion converges cubically to the linear manifold defined by its

mean and L leading eigenvectors (from the proof technique
of [1, 2], denoising proceeds independently along each prin-

cipal axis but motion along the L leading eigenvectors is
removed). Essentially, MBMS performs GBMS clustering

orthogonal to the principal manifold.

Stopping criterion Because the denoising effect is

strong, a practical indicator of whether we have achieved

significant denoising while preventing shrinkage is the his-

togram over all data points of the orthogonal variance λ⊥

(the sum of the trailing k − L eigenvalues of xn’s local co-

variance). Its mean decreases drastically in the first few iter-

ations (and would converge cubically to zero in the Gauss-

ian case), while the mean of the histogram of the tangential

variance λ‖ decreases only slightly and stabilizes; see fig. 4.

For curved manifolds, λ⊥ tends to a positive value depen-

dent on the local curvature.

Computational complexity Per iteration, this is

O(N2D + N(D + k)min(D, k)2), where the first term
is for finding nearest neighbors and for the mean-shift

step, and the second for the local PCAs. If one uses the

k-nn graph and does not update the neighbors at each
iteration (which affects the result little) then the first term

is negligible and the cost per iteration is linear on N ;
the one-off cost of computing the nearest neighbors is

amortized if MBMS is followed by a spectral method for

dimensionality reduction. Denoising a test point, as in our

MNIST experiments, is O(ND).

3. Experiments

Noisy spiral with outliers Fig. 2 shows four versions of

MBMS with a noisy spiral dataset (N = 1000 points with
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Figure 2. Denoising a spiral with outliers over iterations (τ = 0 is the original dataset). Each box is the square [−30, 30]2, where
100 outliers were uniformly added to an existing 1 000-point noisy spiral. Algorithms (L, k, σ): (1, 10, 1.5) and full graph (MBMSf),
(1, 10, 1.5) and k-nn graph (MBMSk), (1, 10,∞) and k-nn graph (LTP), and (0, ·, 1.5) and full graph (GBMS).

Gaussian noise) with 10% outliers added uniformly. GBMS
(L = 0) clusters points locally and, while it denoises the
manifold, it also visibly shrinks it tangentially, so already

from the first iterations the boundaries shrink and points

form multiple clusters along the manifold. When using

L = 1 in MBMS to account for a curve, in-manifold move-
ment is prevented and so these undesirable effects are re-

duced. The three versions with L = 1 behave very sim-
ilarly for the first 5–10 iterations, achieving excellent de-

noising while being remarkably unaffected by outliers. Vi-

sually, the full graph (MBMSf) looks best, although it be-

gins to be affected by shrinking much earlier than the k-nn
graph versions (MBMSk and LTP); the inside of the spiral

slowly winds in, and also the whole spiral shrinks radially.

MBMSk and LTP preserve the spiral shape and size for far

longer: after 200 iterations only a small radial shrinkage oc-

curs. The reason is that the k-nn graph limits the influence
on the mean-shift step of farther points (in regions with dif-

ferent curvature or even different branches); strong denois-

ing (large σ) still occurs but is locally restricted. We have
observed a similar behavior with other datasets.

After denoising for a few steps, outliers can be eas-

ily detected—the distance to their nearest neighbors is far

larger than for non-outliers—and either removed, or pro-

jected on the tangent space of the k nearest neighbors on

the manifold. The reason why they remain almost station-

ary and do not affect denoising of the mainstream points

is simple. Points near the manifold (non-outliers) have no

outliers as neighbors because the continuity of the manifold

means all their neighbors will be near the manifold; neither

the mean-shift step nor the tangent space estimation are af-

fected, and these points move as if there were no outliers.

Outliers have most neighbors somewhere near the manifold,

and their tangent space is estimated as nearly orthogonal to

the manifold at that point; they barely move, and remain

isolated for many iterations (eventually they are denoised

too, depending on how far they are from the manifold wrt

k and σ). By this same reasoning, if MBMS is applied to
disconnected manifolds, each will be denoised in isolation.

More complex shapes Fig. 3 shows a 1D manifold (two

tangent ellipses) with a self-intersection, a gap, noise that

varies depending on the manifold location, and a sharp

density discontinuity. In spite of these varying condi-

tions, MBMSf achieves very good denoising with a single

(L, k, σ) value. Using the diffusion-map affinity normaliza-
tion D

−α
WD

−α of [6] with α = 1 slightly improves the
result, but with constant noise it has only negligible differ-

ences with our usual case (α = 0).
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Figure 3. Denoising a complex shape with nonuniform density and noise with MBMSf (1, 35, 0.2) using the usual affinity (α = 0, left
subplots) and the diffusion-map affinity normalization (α = 1, right subplots). The upper partial ellipse has Gaussian noise of stdev 0.15
and the lower ellipse of stdev varying between 0 and to 0.2, with a sharp density discontinuity (top left).
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Figure 4. Dimensionality reduction with Isomap and LTSA for different iterations of MBMSk denoising (10–nearest-neighbor graph,

L = 2, k = 30, σ = 5). τ = 0 is the original Swiss roll dataset (N = 4 000 points) lifted to 100 dimensions with additive Gaussian
noise of stdev 0.6 in each dimension. Isomap/LTSA used a 10-nn graph. Isomap’s residual variances [20] (τ = 0, 1, 2, 3, 5): 0.3128,
0.0030, 0.0002, 0.0002, 0.0003. View 0 shows dimensions 1–3; view 1 shows dimensions 1, 2 (left subplot) and 2, 4 (right subplot). Right
column: histograms over all data points of the normal, tangential, and normal/tangential ratio of the variances; the curves correspond to the

iterations τ = 0, 1, 3, 5, 7, 9, and the insets for λ⊥ and λ⊥/λ‖ blow up the bins near zero (which contain all points for τ ≥ 2).

Dimensionality reduction Fig. 4 shows the k-nn-graph
version (MBMSk) with a noisy Swiss roll in 100 dimen-

sions (97 of which are noise). Isomap [20] and particularly

LTSA [23] are sensitive to noise and to shortcuts in the

neighborhood graph, but these are eliminated by MBMS.

Excellent embeddings result for a wide range of iterations,

and one can trade off a little more denoising with a little

more shrinkage. In general, and depending on the level

of noise, 2–3 iterations are often enough. The histograms

show that the tangent space eigenvalues λ‖ change little

over iterations, i.e., there is little in-manifold motion. How-

ever, the normal space eigenvalues λ⊥ drop drastically in

the first 3 iterations (the histogram is a spike at almost zero)

and then stay roughly constant (they do not become ex-

actly zero because of the manifold curvature), indicating

strong denoising orthogonal to the manifold, and signal-
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Figure 5. Left 3 plots: 5–fold cross-validation error (%) curves with a nearest-neighbor classifier on the entire MNIST training dataset (60k
points, thus each fold trains on 48k and tests on 12k) using MBMSk; we selected L = 9, k = 140, σ = 695 as final values. Right plot:
denoising and classification of the MNIST test set (10k points), by training on the entire training set (rightmost value) and also on smaller
subsets of it (errorbars over 10 random subsets). Algorithms (L, k, σ), all using a k-nn graph: MBMSk (9, 140, 695), LTP (9, 140,∞),
GBMS (0, 140, 600), and PCA (L = 41).

ing a good stopping point. We repeated the experiment by

adding 10% outliers within a box bounding the Swiss roll

with essentially identical results (points near the manifold

are denoised, outliers remain stationary), demonstrating the

robustness of MBMS.

Classification of MNIST [13] digits It is reasonable to

assume that much of the essential character (style, thick-

ness, etc.) of a handwritten digit can be explained by a

small number of degrees of freedom, so that MBMS denois-

ing might preserve such a manifold while removing other

types of noise; and that this may improve classification ac-

curacy. Our setup is as follows. We use a nearest-neighbor

classifier (like MBMS, a nonparametric method), which al-

lows us to focus on the performance of MBMS without

classifier-specific effects due to local optima, model selec-

tion, etc. As denoising methods we use PCA (i.e., project-

ing the data onto theL principal components’ manifold) and
3 versions of MBMS using the k-nn graph and a single it-
eration: MBMSk, LTP and GBMS. We estimate (approx-

imately) optimal parameters by 5–fold cross-validation by

searching over a grid, denoising separately each class of the

training fold (N = 48 000 grayscale images of dimension
D = 784, or 28 × 28 pixels) and measuring the classifica-
tion error on the test fold (12 000 digits). For classification,
the test points are fed directly (without denoising) to the

nearest-neighbor classifier. Fig. 5 (left 3 plots) shows the

MBMSk error curves over L, k and σ; notice how MBMSk
improves the baseline error (no denoising, also achieved by

L = D = 784 or σ = 0) of 3.06% over a very wide range of
(L, k, σ). We chose (9, 140, 695) and trained the models on
the entire training set (60k points); fig. 5 (right plot) shows
the test set classification error. MBMSk achieves 1.97%
(a 36% relative decrease over the baseline of 3.09%); LTP
(9, 140,∞) achieves a slightly larger error of 2.15% (30%
relative decrease). GBMS and PCA also improve over the

baseline but far less (2.59%, 14% decrease). These results
are consistently confirmed over smaller training sets, even

up toN = 4000 (right panel); we used the same parameters
as for the entire set. The methods combining both cluster-

ing and manifold structure at the local level (MBMSk and

LTP) are the clear winners. Judging from the trend of the

curves, the relative error decrease would still grow with the

training set size.

Other options also reduced the error, but less so (how-

ever, in all these cases we used the same parameters as

above (9, 140, 695), which are not optimal anymore). De-
noising each test point (with one MBMSk iteration using

the entire denoised training set): 2.23%. Denoising each
test point but with the original training set: 2.42%. Denois-
ing the entire training set without class information: 2.89%.
The beneficial effect of MBMSk denoising in one way or

another is clear.

Fig. 6 shows training images before and after denoising.

The most obvious change is that the digits look smoother (as

if they had been anti-aliased to reduce pixelation) and easier

to read; comparing the original vs

the denoised , one sees this would

help classification. While this smoothing homogeneizes

the digits somewhat, it preserves distinctive style aspects

of each; excessive smoothing would turn each class into

a single prototype image, and result in a Euclidean dis-

tance classifier (the method of [11] shows oversmoothing).

MBMSk performs a sophisticated denoising (very different

from simple averaging or filtering) by intelligently closing

loops, removing or shortening spurious strokes, enlarging

holes, removing speckle noise and, in general, subtly re-

shaping the digits while respecting their orientation, slant

and thickness. We emphasize that we did not do any pre-

processing of the data, and in particular no image-based

preprocessing such as tangent distance, deskewing, or cen-

tering the images by bounding box (known to improve the

nearest-neighbor classifier [13]). MBMS does not know

that the data are images, and would give the same result

if the pixels were reshuffled. Fig. 7 shows misclassified im-

ages.



Figure 6. Sample pairs of (original,denoised) images from the training set. A few (2.62%) grayscale values outside the [0, 255] training
range have been clipped for visualization.

0 0 6 2 0 2 4 4 9 6 5 6 8 3 8

3 3 8 2 1 2 4 9 4 6 0 6 8 5 8

1 5 1 3 5 3 5 5 6 7 1 7 9 4 9

7 7 1 3 1 3 5 3 5 9 9 7 9 5 9

Figure 7. Some misclassified images. Each triplet is (test,original-nearest-neighbor,denoised-nearest-neighbor) and the corresponding label

is above each image, with errors underlined. After denoising there are fewer errors, some of which are arguably wrong ground-truth labels.

4. Related work

MBMS can be seen as a hybrid between local clustering

(blurring mean-shift) and local linear dimensionality reduc-

tion (PCA); in fact, it contains as particular cases GBMS

(when manifold structure is lost: L = 0) and PCA (when
locality is lost: σ = ∞ and K = N ). In contrast, some
previous denoising algorithms are really local clustering al-

gorithms without a manifold constraint. The algorithm of

[11] (see also [8]) is an implicit version of GBMS (it ob-

tains X from an N × N linear system rather than a single
matrix product, and is thus much slower) and suffers from

significant shrinking within the manifold, as does GBMS. In

[5], GBMS was used with a step size as preprocessing for

density estimation. The method of [15] combines a local

weighted PCA with several heuristics to deal with outliers,

but has no local clustering component.

The computer graphics literature has considered a related

denoising problem, that of 3D mesh smoothing (surface

fairing), and several variations of GBMS have been used

[19, 8, 12]. These methods, as well as computational ge-

ometry methods for curve and surface reconstruction [9],

often rely on assumptions that may hold in 2D or 3D but

not in the higher-dimensional problems typical of machine

learning (e.g. availability of a polygonal mesh, or a Delau-

nay triangulation, with knowledge of normals, boundaries,

junctions, etc.; dense sampling and very low noise).

Methods based on local regression first fit a (local) func-

tion to the data and then project each point onto the func-



tion [14, 16, 9, 22]. These methods are based on implicit

functions and thus limited to manifolds of codimension 1

(the method of [22] uses explicit functions, but its computa-

tional cost grows quickly with the dimension). Also, these

methods are not iterated, unlike MBMS. Essentially, these

methods do local dimensionality reduction and then project

the data (see below).

Tangent distance methods [17] perturb a data point ac-

cording to known transformations to construct a linear ap-

proximation to the local space of ignorable distortions (for

handwritten digits: translations, scaling, skewing, squeez-

ing, rotation, line thickness variations). Jittering kernels

are a similar idea for SVMs [7]. Mean-shift clustering has

also been constrained to respect a known manifold struc-

ture, such as the matrix rotations group [18]. MBMS shares

this spirit of eliminating undesirable degrees of freedom,

but the transformations (off-manifold noise) are not known

and are instead inferred locally. After denoising, the point

distances better reflect their similarity wrt the manifold.

Any dimensionality reduction method that provides

mappings from data to latent space and vice versa (such as

PCA or an autoencoder) can be used for denoising. One first

learns the parameters from the training set, and then maps

each point to latent space, and then back to data space, thus

projecting them on the model manifold. However, the point

is that these methods (often sensitive to noise and/or local

optima) may learn a better manifold if the training set is

preprocessed to remove noise and outliers, and this is best

done with a nonparametric method (such as MBMS) that

imposes minimal model assumptions.

5. Conclusion

With adequate parameter values, the proposed MBMS

algorithm is very effective at denoising in a handful of iter-

ations a dataset with low-dimensional structure, even with

extreme outliers, and causing very small shrinkage or man-

ifold distortion. It is nonparametric and deterministic (no

local optima); its only user parameters (L, k, σ) are intu-
itive and good regions for them seem easy to find. We

also proposed LTP (local tangent projection), a particular,

simple case of MBMS that has quasi-optimal performance

and only needs L and k. We showed how preprocessing
with MBMS improves the quality of algorithms for mani-

fold learning and classification that are sensitive to noise or

outliers, and expect this would apply to other settings with

noisy data of intrinsic low dimensionality, such as density

estimation, regression or semi-supervised learning.
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