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Abstract

We consider the problem of dimensionality reduction,

where given high-dimensional data we want to estimate

two mappings: from high to low dimension (dimensional-

ity reduction) and from low to high dimension (reconstruc-

tion). We adopt an unsupervised regression point of view

by introducing the unknown low-dimensional coordinates

of the data as parameters, and formulate a regularised ob-

jective functional of the mappings and low-dimensional co-

ordinates. Alternating minimisation of this functional is

straightforward: for fixed low-dimensional coordinates, the

mappings have a unique solution; and for fixed mappings,

the coordinates can be obtained by finite-dimensional non-

linear minimisation. Besides, the coordinates can be ini-

tialised to the output of a spectral method such as Lapla-

cian eigenmaps. The model generalises PCA and several

recent methods that learn one of the two mappings but not

both; and, unlike spectral methods, our model provides out-

of-sample mappings by construction. Experiments with toy

and real-world problems show that the model is able to

learn mappings for convoluted manifolds, avoiding bad lo-

cal optima that plague other methods.

We can classify most nonlinear dimensionality reduc-

tion methods into three categories: latent variable mod-

els, mapping-based methods and spectral methods. La-

tent variable models (LVMs), such as the generative topo-

graphic mapping (GTM) [2], are the most ambitious: they

aim at estimating the joint density p(x,y) of the observed
(y) and latent (x) variables (i.e., they are generative mod-

els), and from this they can define mappings for dimen-

sionality reduction F(y) = E {x|y} and reconstruction
f(x) = E {y|x} (i.e., the mean of p(x|y) and p(y|x),
respectively), and deal with missing data. Unfortunately,

both parameter estimation (by maximum likelihood) and di-

mensionality reduction require the marginal observed-data

distribution p(y) =
∫

p(y|x)p(x) dx, which for nonlinear
methods is intractable unless the latent space is discretised.

This means the methods are limited to low latent dimen-

sionalities (since the grid size grows exponentially with it).

They are also prone to getting stuck in bad local optima,

because the likelihood is very wiggly, particularly when the

data manifold is highly nonlinear and convoluted, e.g. as in

a spiral or Swiss roll (an exception, LELVM, is discussed

in sec. 4). While the likelihood function does contain lo-

cal optima that are good approximations to the manifold, it

contains far more that are not, and one nearly always ends

up in one of those if initialising the parameters with random

values or with the principal components of the data.

The prototype mapping-based method is the autoen-

coder, perhaps the most direct approach to nonlinear di-

mensionality reduction (and one of the earliest). Autoen-

coders do not estimate the density (i.e., they are not genera-

tive models), but estimate parametric mappings for dimen-

sionality reductionF and reconstruction f that minimise the

reconstruction error of the data {yn}
N
n=1
:

E(f ,F) =
∑N

n=1
‖yn − f(F(yn))‖

2
. (1)

The mappings are typically neural networks with many pa-

rameters, trained with backpropagation. Autoencoders have

the same local optima problem as LVMs, since the recon-

struction error is very nonconvex. Besides, training deep

nets (which theoretically can model complex relationships)

has been difficult (though a recent approach [5] has been

proposed to improve this). However, autoencoders have

no problem using latent spaces of any dimensionality, since

they do not model its density. Other mapping-based meth-

ods [13, 6, 8, 10, 7, 11] are reviewed in section 4.

A more recent class of methods are spectral manifold

learning methods such as Laplacian eigenmaps (LE) [1],

LLE [12] or Isomap [14]. These give up entirely with es-

timating either mappings or densities and instead directly

estimate the coordinates X of the latent points. Typically,

they set up a quadratic objective derived from a neighbour-

hood graph and solve for its leading eigenvectors, project-

ing on which yields X. They have important advantages

over LVMs and autoencoders: they have no local optima,

yet they often succeed in recovering good embeddings for

difficult problems such as the spiral or Swiss roll (thanks to

the neighbourhood graph). And they can use any dimension

L for the latent space by simply computing L eigenvectors.
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Our approach is closest to autoencoders. We formulate

a conceptually straightforward objective function that deals

symmetrically with both dimensionality reduction and re-

construction mappings, but explicitly introduces as auxil-

iary parameters the latent coordinates (unsupervised regres-

sion). The latter allow the use of a good initialisation pro-

vided by the embedding of a spectral method. The train-

ing algorithm alternates between solving a variational prob-

lem for the mappings—which yields a radial basis function

(RBF) expansion at the data and latent points—and a finite-

dimensional problem for the latent points. Our method

avoids several of the problems that plague other methods:

it can work with any dimension (observed or latent), it pro-

vides mappings both ways (but no densities), and it is less

prone to bad local optima. We describe the method for-

mulation and algorithm in section 1, discuss computational

issues in section 2, demonstrate the method in a difficult toy

problem and real-world problems in section 3, and discuss

related work in section 4.

1. Dimensionality Reduction by Unsupervised

Regression (DRUR)

Consider a dataset {yn}
N
n=1

⊂ R
D of N points in D di-

mensions, represented as aD×N matrixY = (y1, . . . ,yN ),
and assume they live in a manifold of dimension L < D.
We want to estimate mappings F : R

D → R
L for dimen-

sionality reduction and f : R
L → R

D for reconstruction.

Call R
D and R

L (or appropriate subsets thereof) the ob-

served (or data) space and the latent space, respectively. Let

us introduce as auxiliary parameters the low-dimensional

coordinates in latent space of points {xn}
N
n=1

⊂ R
L, rep-

resented as an L × N matrix X = (x1, . . . ,xN ), and re-
spectively associated with the observed points. We define a

method of Dimensionality Reduction by Unsupervised Re-

gression (DRUR) to estimate the mappings as minima of the

following variational problem:

min
X,f ,F

E(X, f ,F) = Ef (X, f) + EF(X,F) (2)

Ef (X, f) =
∑N

n=1
‖yn − f(xn)‖

2
+ λf ‖Df f‖

2
(3)

EF(X,F) =
∑N

n=1
‖xn − F(yn)‖

2
+ λF ‖DFF‖

2
(4)

whereX ∈ R
D×N (finite-dimensional) and f and F belong

to appropriate function spaces (infinite-dimensional). The

norms ‖·‖ are, respectively, the 2–norm for vectors and a
functional norm for f and F. That is, each of Ef and EF is

formulated as a regularised least-squares regression prob-

lem: Ef for fitting (X,Y) assuming X as inputs and Y as

outputs, and EF for fitting (Y,X). If X were known then
these would be supervised regression problems, but X is

unknown, thus the name for our method. We use quadratic

regularisers based on differential operators Df and DF with

regularisation parameters λf , λF ≥ 0. Non-quadratic regu-
larisers or loss functions other than the quadratic error may

be used as well. We could also add a regularisation term

EX(X) if desired, e.g. to impose temporal or spatial struc-
ture (known from prior knowledge) in the latent space.

We can see intuitively that the two regression terms Ef

and EF compete with each other: Ef likes to separate

points in X from each other so f can more easily interpo-

late (X,Y) and reduce the error ‖Y − f(X)‖ (σx is fixed

so Gf → I; see later and the continuity argument below).

However, EF likes to drive all X to 0 since then F can

smoothly interpolate (Y,X) (by makingF ≡ 0). As shown

in the experiments, while dropping either Ef or EF often

does not result in good mappings, the full DRUR objective

function converges to an intermediate solution for X that

often does result in good mappings and improves the spec-

tral initialisation. However, apart from these two extremes

(separated/clustered X), E does have many other local op-
tima, which the spectral initialisation ofX helps to avoid.

Another good argument for the joint use of both map-

pings is distance preservation. Loosely speaking, a con-

tinuous function f (where continuity here is controlled by

the regularisation parameter λf ) has the property that if two

inputs x, x′ are close then their outputs f(x), f(x′) will
be close, or equivalently, if two outputs f(x), f(x′) are far
then their inputs x, x′ will be far. If E only depended on
f and X but not on F (as is essentially the case in RPM

[13] and GPLVM [6, 7]), then nothing prevents having close

outputs f(x), f(x′) whose inputs x, x′ should be close

but are placed far apart during training, and this indeed oc-

curs (section 3). In DRUR, both f and F are continuous

(particularly for strong regularisation). If f and F were in-

verses of each other, we would have that “x, x′ close ⇔
f(x), f(x′) close”, or equivalently “x, x′ far⇔ f(x), f(x′)
far”. If they are approximate inverses (and the DRUR ob-

jective functional encourages this indirectly) then we should

still get a good preservation of distances, and indeed we see

that in our experiments.

The fact that E is partially separable suggests min-
imising E by coordinate descent on (f ,F) and (X):
minf ,F E(X, f ,F) (adaptation step) and minX E(X, f ,F)
(projection step). We deal with them separately.

Adaptation step For fixed X, the solution of the varia-

tional problem

min
f ,F

E(X, f ,F) = min
f

Ef (X, f) + min
F

EF(X,F) (5)

exists and is unique under certain conditions on the function

space and the regularisers (see appendix A). Both mappings

f , F have the form of a radial basis function expansion cen-

tred at each of the data points (x1, . . . ,xN or y1, . . . ,yN ):

f(x) =
∑N

n=1
ang(x − xn), F(y) =

∑N

n=1
bnG(y − yn)

where g(x,x′) andG(y,y′) are the Green’s functions of the
self-adjoint operators D∗

f Df and D
∗

FDF, respectively. The



vector coefficients {an,bn}
N
n=1
, written as matrices A =

(a1, . . . ,aN ) of D × N and B = (b1, . . . ,bN ) of L × N ,
are the unique minimisers of the quadratic problems

min
A

‖Y − AGf‖
2

+ λf tr
(

AGfA
T
)

(6)

min
B

‖X − BGF‖
2

+ λF tr
(

BGFBT
)

(7)

where ‖A‖
2

= tr
(

AAT
)

is the Frobenius norm, and

‖Df f‖
2

=
∑N

n,m=1
(aT

man)g(xm − xn) = tr
(

AGfA
T
)

‖DFF‖
2

=
∑N

n,m=1
(bT

mbn)G(ym − yn) = tr
(

BGFBT
)

and the N × N symmetric Gram matrices are

Gf = (g(xn − xm))nm , GF = (G(yn − ym))nm . (8)

Hence, A and B are the solutions of the linear sys-

tems A(Gf + λf I) = Y and B(GF + λFI) = X, and

the variational problem for fixed X becomes a finite-

dimensional quadratic minimisation problem with a unique

solution. For illustration purposes we choose for both

f anf F the motion coherence theory operator [15],

whose Green’s function is a Gaussian with scale parameter

σ > 0. Thus g(x − xn) = exp (−‖x − xn‖
2
/2σ2

x) and
G(y − yn) = exp (−‖y − yn‖

2
/2σ2

y). This yields posi-
tive definite Gram matricesGf ,GF. The role of σx and σy

is to control sensitivity to noise in the X and Y spaces, re-

spectively, by setting the scale at which interactions betwen

points are deemed significant.

Projection step For fixed f and F, we have the following

minimisation overX:

min
X

∑N

n=1
‖yn − f(xn)‖

2
+

∑N

n=1
‖xn − F(yn)‖

2
=

min
X

‖Y − AGf‖
2

+ ‖X − BGF‖
2

(9)

where Gf depends nonlinearly on X. This is intuitively

equivalent to inverting f (i.e., xn = f−1(yn)) while try-
ing to respect xn = F(yn), and does lead in practice to
f−1 ≈ F on the data manifold. The solution cannot be ob-

tained in closed form because of the term ‖yn − f(xn)‖
2

(in fact the objective function has local minima) and re-

quires nonlinear minimisation. While this step can be prone

to local minima, we can use two things in our favour: (1)

We can use a good initialisationX from the embedding pro-

duced by a spectral manifold learning algorithm such as LE,

LLE or Isomap. Naturally, the success of these depends

on obtaining a good neighbourhood graph, which may re-

quire carefully setting its parameters (e.g. k for a k-nearest-
neighbour graph). (2) In projection steps after the initial

one, the term ‖xn − F(yn)‖ (whose influence is compa-
rable to that of the term ‖yn − f(xn)‖) provides a strong
constraint, since the optimal xn must be close to F(yn).

Simply fitting f to (X,Y) and F to (Y,X) (thus avoid-
ing the projection-adaptation iteration) has been proposed

(e.g. [12]) as a way to define out-of-sample mappings for

spectral methods. However, our experiments show that full

joint optimisation of E(X, f ,F) overX, f and F consider-

ably improves the spectral embedding, eliminating folds in

the mappings and local clustering in X—to which spectral

methods are prone because of the boundary effects induced

by the neighbourhood graph, and because of local variations

in the density of pointsY.

Summary Putting all together, our now finite-dimensio-

nal objective function is, in matrix form:

E(X,A,B;λf , λF, σx, σy) =

‖Y − AGf‖
2

+ λf tr
(

AGfA
T
)

+

‖X − BGF‖
2

+ λF tr
(

BGFBT
)

(10)

with matricesYD×N ,XL×N ,AD×N ,BL×N , and N ×N
Gram matrices Gf (dependent on X) and GF (constant)

given in eq. (8). The user parameters (λf , λF, σx, σy) have
a natural, intuitive role, controlling (1) the level of smooth-

ness of the mappings (λf , λF) and (2) the sensitivity to noise

(σx, σy), much as the bandwidth of a kernel density estima-

tor (a roughly good σ value is the average interpoint dis-
tance). Fig. 1 gives the DRUR algorithm.

Note that we do not need an additional parameter µ > 0
to weigh the F–error wrt the f–error, because this intro-

duces a redundant symmetry in E:

E(X,A,B;µ, λf , λF, σx, σy) =

‖Y − AGf‖
2

+ λf tr
(

AGfA
T
)

+

µ ‖X − BGF‖
2

+ λF tr
(

BGFBT
)

=

E(µ−
1

2 X,A, µ−
1

2 B; 1, λf , µλF, µ−
1

2 σx, σy). (11)

DRUR becomes PCA if we restrict the mappings to be lin-

ear, and then the algorithm yields an iterative algorithm to

compute PCA (by orthogonal projection); see appendix B.

input: YD×N = (y1, . . . ,yN ); λf , λF, σx, σy > 0
ObtainXL×N = (x1, . . . ,xN ) from spectral method
Gf = (g(xn − xm;σx)),GF = (G(yn − ym;σy))
A = Y(Gf + λf I)

−1, B = X(GF + λFI)−1

repeat

Project: X = approximate minimiser of (9)
Adapt: Gf = (g(xn − xm;σx))

A = Y(Gf + λf I)
−1, B = X(GF + λFI)−1

until convergence

returnA, B,X

Figure 1. Dimensionality Reduction by Unsupervised Regression

(DRUR) algorithm.



2. Optimisation and computational cost

The overall training cost is O(N3): a O(N3) setup cost
and a O(N2) cost per step (adaptation and projection).
Adaptation step forA,B This requires solving two non-

sparse linear systems of N × N , at a worst-case cost of
O(N3). The system forB,B(GF + λFI) = X, has a con-

stant coefficient matrix because GF = (G(yn − ym))nm

depends only on Y and σy. Thus, since GF + λFI is pos-

itive definite, we can precompute its Cholesky factorisation

LLT (where L is lower triangular) at a cost of 1

6
N3 mul-

tiplications [4, p. 144], and then update B at each step by

solving two triangular systems ZLT = X and BL = Z at

a comparatively negligible cost O(N2). This does not cost
extra memory either as we can replaceGf with L.

The system for A, A(Gf + λf I) = Y, does have to

be solved anew at each step since the coefficient matrix

Gf + λf I does change. This means a worst-case cost of

O(N3) per step. However, since Gf + λf I is positive def-

inite and the solution A changes slowly from step to step,

we can obtain an approximate solution by running several

iterations of linear conjugate gradients (CG) [9]. Inexact

steps make sense when the exact step (which does not yield

the final optimum) are costly, so we can make slightly less

progress towards the optimum at a far lower computational

cost. Besides, linear CG can be initialised to the solution

A of the previous time step (which, say, Gauss elimination

does not benefit from). Linear CG is based on matrix-vector

products so its cost is N2D times the number of CG iter-
ations (far smaller than N ), thus the overall cost again is
negligible wrt the O(N3) cost of solving the initial linear
system (which must be solved exactly to ensure we do not

deviate from the good initialisation provided by the spectral

method). Thus, the approximate step costs O(N2).
Projection step for X This requires nonlinear optimi-

sation. In principle, since the objective function has the

form of a least-squares problem, the practically best meth-

ods would be Gauss-Newton or Levenberg-Marquardt [9],

which converge linearly but with a small rate (i.e., fast), yet

use only the gradient and not the Hessian ofE. These meth-
ods require solving a linear system ofNL×NL whereNL
is the number of parameters of X, and again would ben-

efit from an inexact solution via linear CG. In our current

implementation we use nonlinear CG [9], which is slower

than Gauss-Newton but faster than gradient descent; and we

initialise it from the previous step’s X, although in the fu-

ture we plan to study better initialisations using also the X

predicted by F, namely X = F(Y) = BGF, which min-

imises the quadratic right-hand term of (9). Crucially, how-

ever, note that (attractive as this might seem because of its

ease) we cannot approximate the minimisation over X as

X ≈ F(Y), because this decouples the updates for (X,F)
and (f) and the pointsX shrink to 0. The cost of computing
the gradient wrtX (and so the nonlinear CG) is O(N2).

3. Experiments

We provide results in several datasets: a hard toy prob-

lem (spiral, fig. 2), which allows visualisation of the map-

ping f , and real-world high-dimensional problems (motion-

capture, fig. 3; face images, fig. 4). For computational

efficiency, we preprocess the dataset with PCA, retaining

> 99.99% of the variance (mocap: top 20 PCs; face: top
50). We compare DRURwith 4 other related dimensionality

reduction methods: LELVM [3], GTM [2], GPLVM [6] and

RPM [13], reviewed in section 4. We implement RPM by

making λF = 0 in DRUR to remove F. Fig. 2A–D shows

how DRUR fails to recover the spiral if initialised randomly

or from the principal component of the data; other methods

(e.g. GTM, not shown) also failed. It is very hard to warp a

random or linear function into a spiral, which folds around

itself; but its shape may be captured by a spectral method

using a neighbourhood graph, such as Laplacian eigen-

maps (LE), which we use throughout (using a k-nearest-
neighbour graph and Gaussian-affinity edges). Fig. 2E,F,H

shows how DRUR then recovers the spiral with as few as

50 samples; this means DRUR may be used in applications

(such as motion-capture) where training data is sparse, yet

the manifold is very nonlinear. Most progress during train-

ing occurs in the first 10–30 iterations. We also explored

systematically (for the same, fixed spiral dataset and LE

initialisation; results not shown) the range of parameters

(λf , σx) and (λF, σy) for which DRUR yields good respec-
tive mappings f ,F. DRUR recovers the spiral unless, as one

would expect with any RBF mapping, σx is very small wrt

the nearest-neighbour spacing of the initial {xn} (when f

can abandon the LE initialisation and reach a bad local min-

imum), or when λf is very large (when f becomes linear);

small λf yield wigglier mappings. Removing f altogether

causes X to shrink to 0; note the method of [10, 11] has F

but no f , however a prior onX prevents this shrinkage.

Fig. 2F1 shows how DRUR improves over the LE initial-

isation (see also fig. 3A,B): the distribution of X given by

LE (blue) is quite nonuniform, with local bunching caused

by sampling artifacts (which often cause local folds in f ,

these may be seen by zooming in fig. 2E) and by boundary

effects in the neighbourhood graph (apparent at the spiral

ends: note the sigmoid shape of xn vs n in fig. 2F1). The
final X from DRUR are much more uniformly distributed

(note how xn vs n is linear; see also fig. 3B), which yields a
smoother f . Fig. 2G,G1 shows RPM (DRUR without F) on

the same problem; note how the latent space representation

breaks into separate chunks (jumps in xn vs n) which are
associated with large-scale folds in f (fig. 2G). This is more

noticeable in the mocap data (fig. 3D), where points xn, xm

corresponding to the same (approximate) pose yn ≈ ym

end up separated from each other, yielding a latent space

representation where consecutive cycles of running are off-

set from each other, and with discontinuous jumps (recall
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Figure 2. Noisy spiral dataset (N = 400 samples) and f(x) for x ∈ range of X. B,D,F: DRUR results for 3 initialisations: random
(A), PCA (C) and LE (E) (λf = 0.1, λF = 0.1, σx = 0.08, σy = 0.02). H: DRUR results for LE initialisation for a small sample
size of N = 50 (λf = 0.05, λF = 0.05, σx = 0.05, σy = 0.1). F1 (for DRUR in panel F): upper plot, f(xn) = (y1,y2); lower
plot, initial (LE, blue) vs final (red) X = (x1, . . . ,xN ). G,G1: like F,F1 but for RPM (same parameters as DRUR but λF = 0,
initialised from LE). Note the folds in f and chunks in X. I: LELVM result for σx = 0.32, reconstruction error = 0.336. J: DRUR with
σx = 0.32, σy = 0.08, λf = 0.1, λF = 0.1, reconstruction error = 0.010. K: LELVM with σx = 0.08, reconstruction error = 0.039.
L: DRUR with σx = 0.08, σy = 0.02, λf = 1, λF = 0.1, reconstruction error = 0.007. Note how DRUR not only provides a mapping
that recovers the spiral, but also improves over the initial LE embedding (removing folds and stretching the spiral ends).

the continuity argument from section 1). In contrast, the

DRUR latent space (fig. 3B) does collect the loops together

in a smooth way, with no jumps. Fig. 3B shows the reason:

F(yn) (red circles) ≈ xn (blue), i.e., we achieve f ≈ F−1

over the manifold. The sequence of stickmen shows how

the learned f can be used to synthesise realistic, smooth

motion. In sum, minimising the reconstruction error jointly

over (X, f ,F) improves the initialX from LE and ensures a
consistent, smooth representation in latent space. GPLVM

[6] obtained similar results to RPM in this and other se-

quences (consistent with the fact that both estimate f andX,

but not F), see fig. 3C and fig. 2 in [7]: the latent space con-

tains offset loops, nonuniformities and discontinuous jumps

that worsen the spectral embeddingX.

Fig. 4 shows DRUR on a high-dimensional face im-

age dataset, using a 2D latent space. As is sometimes the

case with spectral methods, the LE embedding (fig. 4A)

is poor, possibly because of an imperfect neighbourhood

graph. It contains degenerate 1D tendrils, folds, and an un-

even distribution with large gaps and strong compression

at the boundaries. The X after DRUR training (fig. 4B)

are tremendously improved, practically filling in the cleft

between the tendrils and eliminating the boundary effects.

We obtained a very similar improvement with the digit–2
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Figure 3. CMU motion capture running sequence 09 01 (we obtained similar results with other sequences): 148 samples (containing
almost 2 running cycles), with data from the first 50 sensors, so the pose y is 150–dimensional. All methods were tested using a 2D
latent space. A: embedding X from LE. B: X (red circles) and F(Y) (cyan) obtained by DRUR from the LE initialisation (λf = 0.8,
λF = 0.5, σx = 0.8, σy = 0.8, trained for 100 iterations). Note wrt A the more uniform distribution ofX. E: 3 colour-coded trajectories
in latent space for DRUR and corresponding stickmen recovered with f(x) (cyan: subset of the pose training data, for reference); none
of the stickmen were in the training set. C: X from GPLVM (run for 1 000 iterations). D: X from RPM (same parameters as DRUR but
λF = 0). Both GPLVM and RPM dislocate the latent representation provided by the spectral (LE) initialisation.

dataset [14] (not shown). The latent space (fig. 4C) roughly

represents left-right pose as Y axis and lighting direction

as X axis. DRUR smoothly reconstructs a continuous out-

of-sample path in latent space, yielding an animated movie

(e.g. varying the left-right pose). The reconstructed faces

look slightly blurred, but it seems very hard to capture such

detailed structure with only 2 degrees of freedom and a

small training set.

Finally, we compare DRUR with latent variable models

(i.e., defining a density p(x,y) in both latent and observed
space). GTM (not shown) failed with the mocap data, while

LELVM succeeded with it and the spiral. The reason is that,

essentially, LELVM defines a kernel density estimate with

centres (xn,yn) with X given by LE, rather than gridding

the latent space, and the mappings f , F are the correspond-

ing Nadaraya-Watson estimators. However, DRUR does

have 2 advantages over LELVM: the improvement over the

initial X provided by LE, and the fact that LELVM’s map-

pings are convex sums (see section 4). The latter can be seen

at the ends of the spiral in fig. 2I,K, which LELVM cannot

reach, unlike DRUR (fig. 2J,L), so DRUR achieves a lower

reconstruction error when using the same σx as LELVM.

4. Related work

DRUR is most closely related to mapping-based methods

for dimensionality reduction, in particular autoencoders.

These methods use different combinations of two elements

of the triplet (X, f ,F) (latent points, reconstruction map-
ping, dimensionality reduction mapping), but only DRUR

uses all three (eq. (2)). Comparing eqs. (1) and (2), we see

that autoencoders eliminate xn = F(yn) and use a para-
metric function (typically a neural net) instead of a RBF ex-

pansion. Eliminating X reduces the number of parameters,

but makes the estimation prone to bad local optima. Essen-

tially, the problem with autoencoders is not of representa-

tion ability (parameter values exist for f ,F that approximate

well the manifold), but of search (in an objective function

plagued with bad local minima, it is very hard to reach the

good ones from most initial points). Instead, DRUR solves

an easier search (because of the ability to use a good ini-

tialisation forX) in an augmented space (X, f ,F). DRUR
generalises several recent methods that use explicit coordi-

nates for the latent pointsX (possibly initialised by a spec-

tral method), but estimate only one of the two mappings.

The distance-preservation argument of section 1 suggests

that jointly estimating both mappings is really necessary

and this is confirmed by our experiments. Regularised prin-

cipal manifolds (RPM) [13] estimates only X and f , which

has the form of a parametric RBF whose centres are fixed by

the user (not specified in [13]). This has the problem that,

as X change, the fixed RBF centres may not track well the

distribution of X and thus result in a bad mapping; in this

paper, we have chosen to useX as RBF centres. Like RPM,

the Gaussian Process Latent Variable Model (GPLVM) [6]
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Figure 4. Faces database from [14]: 698 images of 64×64 = 4096
pixels. DRUR results using a 2D latent space, LE initialisation

(λf = 0.2, λF = 0.2, σx = 0.3, σy = 0.3, trained for 200 iter-
ations). A: embedding X from LE (red circles) and F(Y) (cyan)
obtained by DRUR at initialisation. B: X, F(Y) after DRUR
training. C: subset of data images plotted on the latent space, 2

colour-coded trajectories and corresponding reconstruction with

f(x) (2 rows of images, none of which were in the training set).

also estimates onlyX and f , which has the form of a Gauss-

ian process function, and use a quadratic regulariser on X

as well. Training is costly (each gradient step is O(N3)),
although approximate techniques for fast Gaussian process

regression may be used. Neither RPM nor GPLVM learn

F, so if this is needed (e.g. for dimensionality reduction, to

get the x that a new y maps to) the user has to solve a dif-

ficult problem to invert y = f(x). With DRUR, we simply
use x = F(y). Lacking F can cause RPM and GPLVM to

worsen the embedding X provided by the spectral method

(fig. 3) while DRUR actually improves it. In [7], it was

noted that GPLVM fails to preserve distances in X; they

proposed to eliminateX, replacing it with a back-constraint

function of Y (e.g. a neural net). However, this effectively

turns GPLVM into an autoencoder. Meinicke et al. [8] esti-

mate only X and f , which has the form of a nonparametric

kernel regression mapping, and also need constraints onX.

Motivated by a tracking application, Rahimi et al. [10, 11]

estimate onlyX andF (a RBF expansion), but keepX from

shrinking to 0 by adding a prior on X (which encourages

temporal structure) as well as fixing by hand the latent co-

ordinates for a few points. As we can see, the lack of either

f or Fmeans some of these methods need a (quadratic) reg-

ulariser onX to prevent degenerateX; this is not necessary

in DRUR, although it could be incorporated easily (without

complicating the projection step), e.g. to encourage tempo-

ral or spatial structure in the latent space.

Finally, we consider nonlinear latent variable models,

defining a density p(x,y) in both latent and observed space,
and mappings F(y) = E {x|y} and f(x) = E {y|x}
(note GPLVM is not in this class, as it is not a genera-

tive model; it defines neither a density in latent space nor

p(x|y) norF(y)). DRUR is related to the recently proposed
Laplacian Eigenmaps Latent Variable Model (LELVM)

[3]. This is perhaps the only nonlinear LVM to over-

come the problems mentioned in the introduction of inte-

grating p(x,y) over a latent space of arbitrary dimension,
and of local optima. LELVM is a nonparametric out-of-

sample extension of Laplacian eigenmaps based on a semi-

supervised learning argument. Essentially, it obtains X

from LE and then builds p(x,y) as a kernel density esti-
mate with centres {(xn,yn)}, from which both mappings
F(y) = E {x|y} and f(x) = E {y|x} (which are non-
parametric kernel regression mappings) are derived; e.g.

f(x) =
∑N

n=1
p(n|x)yn with p(n|x) ∝ G((x − xn)/σx).

These mappings are convex sums (
∑N

n=1
p(n|x) = 1), so

they can only map x to the convex hull of {yn}, and y to

the convex hull of {xn}, causing distortions on the dataset
boundaries. Compared to DRUR, LELVM is fast to train,

as it fixes X to the Laplacian eigenmaps embedding (i.e.,

it does not optimise over X), and it provides also a den-

sity. But as shown in our experiments, DRUR improves the

X distribution (by optimising overX), and its mappings are

not convex sums, avoiding boundary distortions and achiev-

ing a lower reconstruction error.

5. Conclusion

We have given a clean, symmetric formulation of the

joint estimation of dimensionality reduction and reconstruc-

tion mappings to minimise a regularised reconstruction er-

ror through the use of auxiliary variables—the latent co-

ordinates. The latter allow the use of a good initialisa-

tion (provided by a spectral manifold learning method) that

prevents falling into one of the many bad local optima of

the objective—as happens with autoencoders. Further, the

experiments show the final solution not only gives out-of-



sample mappings for the spectral embedding, but also no-

ticeably improves typical defects of the latter (folds and dis-

tortions around the data boundaries). DRUR recovers map-

pings for convoluted manifolds and can work with spaces

(observed and latent) of any dimension. Learning both map-

pings is useful for several applications, such as dimension-

ality reduction, synthesis and tracking. The training cost

is linear in the dimension and cubic in the number of data

points, since the form of the mappings is a RBF expansion

centred at the data points. However, once trained, DRUR is

fast to use on new points (by simply applying a RBF). Re-

ducing the training cost, perhaps using techniques for fast

Gaussian process regression, is a topic of future research.
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A. Solution of the adaptation step

Functional (5) separates. Consider the variational problem

min
f

Ef (X, f) =
PN

n=1
‖yn − f(xn)‖2 + λf ‖Df f‖

2
(12)

with f : R
L → R

D . The Euler-Lagrange equation for f is

PN

n=1
δ(x − xn)(f(x) − yn) + λfD

∗

f Df f(x) = 0 (13)

whose solution has the form f(x) =
PN

n=1
ang(x − xn), where

g(x,x′) is the Green’s function of the self-adjoint operatorD∗

f Df .

The optimal vector coefficients {an}
N
n=1 must satisfy a self-con-

sistent equation (by substituting f(x) back into (13)) which im-
plies in matrix form that they are the solutions of the linear system

A(Gf + λf I) = Y with Gram matrixGf = (g(xn − xm))
nm
.

For the motion coherence theory operator [15] (Dm: scalar oper-

ator D2mf = ∇2mf for even indices, vector operator D2m+1f =
∇(∇2mf) for odd indices,∇: gradient,∇2: Laplacian):

‖Df f‖
2 =

R

RL

P

∞

m=0

σ2m

m!2m ‖Dmf(x)‖2
dx (14)

the Green’s function is Gaussian g(x,x′) = exp (− 1

2
‖x−x′

σ
‖2).

The derivation for EF is analogous.

B. Linear mappings: PCA

DRUR becomes PCA if we restrict the mappings f , F to be

linear. Let f(X) = AX and F(Y) = BY with matricesXL×N ,

YD×N and full-rank matrices AD×L and BL×D (rank (A) =
rank (B) = L). We can impose orthogonality constraints w.l.o.g.

and formulate the following constrained minimisation problem:

min
X,A,B

E(X,A,B) = ‖Y − AX‖2 + ‖X − BY‖2

s.t. A
T
A = I, BB

T = I. (15)

Note that this objective function is not quadratic in X, A and B

jointly, since the terms AX and BY are not linear. However, if

doing coordinate minimisation in (X) and (A,B), those terms

are linear and the objective is quadratic (thus having a unique so-

lution). The gradient of E is:

∂E
∂X

= 2
`

(I + A
T
A)X − (AT + B)Y

´

(16)

∂E
∂A

= 2(AXX
T − YX

T ) ∂E
∂B

= 2(BYYT − XYT ). (17)

Equating it to 0 we obtain a fixed-point iteration:

Adaptation A = YX+, B = XY+ followed by reorthogonal-

isation ofA andB

Projection X = 1

2
(AT + B)Y

with pseudoinversesX+ = XT (XXT )−1,Y+ = YT (YYT )−1.

The algorithm converges to the global minimumA = BT = UL

and X = UT
LY where the D × L matrix UL contains the L

principal components (i.e., Y = USVT is the SVD of Y). In

non-generic cases the algorithm may get stuck in the saddle points

of E, corresponding to UL being made up of other combinations

of eigenvectors, but will leave them under a random perturbation.

The solution is unique up to multiple singular values ofY.
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