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Dimensionality reduction

Given a dataset Y = {y1,...,y~} C R, find (for L <« D):
] dimensionality reduction mapping x = F(y), y € R?

] reconstruction mapping y = f(x), x € R”

Manifold

Latent Observed
low-dimensional space RZ high-dimensional space R
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Dimensionality reduction methods

I Autoencoders: fit parametric mappings f, F' (neural nets) so
N
E(f,F)=> llyn — f(Fy.)"
n=1

Other methods provide only one mapping, either f or F (RPM,
GPLVM, etc.).
But: local optima, no density p(x,y).

I Latent variable models (GTM, LELVM): generative, estimate
mappings and density p(x,y) by maximum likelihood on
p(y) = [ p(y|x)p(x) dx (requires marginalisation).

But: local optima, scale badly with dimension L (except LELVM).

| Spectral methods (Isomap, LLE, LE): based on neighbourhood
graph, global optimum given by eigenvalue problem, often can
unfold convoluted manifolds.
But: no mappings, only latent coordinates X for training points
Y (out-of-sample problem).
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Dimensionality Reduction by Unsupervised Regression

DRUR formulation: given a dataset Y = {y;,...,ynx} C R”:
1 Introduce latent coord. X = {x;,...,xy} C RY as free params.

I Variational problem on f, F, X:

min E(X, f,F) = E¢(X,f) + Ex(X,F)

X f,F

B (X, £) =30 Iy — £(xa) I + e || Def ||
Ep(X,F) =Y %, — Fy)|I° + A\r || DeF|*

F¢(X, f) and Er(X, F) are regression problems coupled by a
common, unobserved X.

| Alternating minimisation over (X) and (f, F):
| Adaptation: min. E over (f, F) for fixed X (two regressions)
| Projection: min. £ over (X) for fixed f, F

_I Initialise X to a spectral embedding.
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DRUR training: adaptation step

I Adaptation step: decouples into two separate regressions:

r?iFn EX,f, F) = mfin Ee(X, f) + mFi‘n Fr(X,F)

Unique solution: RBF mappings centred at the points X, Y:
N N
f(X) — Z ang(X — Xn) F(Y) — Z bnG(y — yn)
n=1 n=1

with Gram matrices Gt = (g(x, — X)), » Gr = (G(yn — Ym)),,. Of
N x N and coefficients {a,,,b,,} given by linear systems:

min Y - AGt|* + A tr (AG¢AT) =
min || X — BGg|’ + \p tr (BGgB') =

g(x = x,) = exp (= [|x — x,|” /207)

We use Gaussian RBFs:
{G(y —ya) =exp(— |y —yal®/202).



DRUR training: projection step

I Projection step: for fixed f, F, a nonlinear minimisation over X:

N N
m)ylz Iy — £)1I7 + ) Il — Flyn)|l* =
n=1 n=1
min [Y — A I* + IX — BGg||*

This tries to make on the data manifold, so y,, = f(x,)
and x,, = F(y,).
I Computational cost:

] linear on the dimensions D and L

I cubic on the number of training points N
O(N3) setup cost, O(N?) per iteration

| Dimensionality reduction and reconstruction on unseen data at
runtime are fast: f, F are RBF mappings
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DRUR and PCA

DRUR becomes PCA if constraining the mappings to be linear:

min E(X,A,B) = Y — AX|? + |[X — BY|’
X,A,B

st. ATA=1 BB! =1

] Adaptation: A = YX', B=XYT, reorthogonalise A, B
[ Projection: X = (AT + B)Y
which converges to PCA:
1 A =B’ = U, (leading L eigenvectors of cov {Y})
1 X=U%TY
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DRUR algorithm

, YDXN — (Y17 0T0C 7YN)1 )\fa)\Fao-Xao-y > 0
: Xy = (X1,...,xy) from spectral method

Gt = (9(Xn — Xm; 0x)), Gr = (G(Yn — Ym; 0y))
A=Y (Gs+ M) B=X(Gp+ M)

Project: X = approximate minimiser of £(X,f, F)

Adapt: G¢ = (g(x, — Xm; 0x))
A=Y(Gs+ M), B=X(Gp + \pl)!

convergence
A, B, X

User parameters:
"I Regularisation of RBF mappings: ), (smoothness)
I Width of RBF mappings: 7., (scale in inputs)
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Experiments

We compare DRUR with:

[] Regularised Principal Manifolds (RPM) (smola et al 2001):
estimates X and f (RBF mapping) but not F

] Gaussian Process Latent Variable Model (GPLVM) (Lawrence 2005):
estimates X and f (GP mapping) but not F

1 Laplacian Eigenmaps Latent Variable Model (LELVM)
(Carreira-Perpifian & Lu 2007).
estimates f and F (Nadaraya-Watson mappings) and density
p(x,y) but not X

We Initialise all methods from the Laplacian eigenmaps (LE)
embedding.
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——init. X
——final X

100 150 200 250 300 350
7

The LE embedding has folds and boundary effects; DRUR
training eliminates both, thus improving the initial embedding

The final X are more uniformly distributed
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folds

——init. X
——final X

100 150 200 250 300 350
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The latent space splits into chunks & folds, actually worsening
the LE embedding, because the lack of F means x,, and x,,
can separate even if f(x,,) and f(x,,) are close




800
O o0,
Q

LELVM does not modify the LE embedding

LELVM can remove folds, but the boundary effects remain (f, F
are convex-sum mappings)
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Experiments: mocap data

Y 150x148 = two cycles of running motion from the CMU mocap db:
I DRUR: smooth reconstruction (animation) of unseen poses
I RPM, GPLVM: no mapping F = disconnected latent space




Experiments: face images

Y = 698 face images of 64 x 64 pixels with varying viewpoint: DRUR significantly
Improves the poor original LE embedding. Similar results with digit images.

Initial X (from LE)




Conclusions

I Clean, symmetric formulation of dimensionality reduction in
terms of the joint estimation of mappings f, F and auxiliary
variables X to minimise a regularised reconstruction error.

I Can avoid bad local optima and scales well with the dimension.

I Estimates mappings f, F both ways, which are approximate
Inverses of each other; no pre-image problem at runtime.

I Somewhat expensive training, but fast at runtime (RBF
mappings).

"I Improves the spectral embedding: don't just fit f and F' to
(X,Y), the joint optimisation over (f, F, X) is really worth.

Matlab code available online soon
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