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Abstract

We introduce a novel probabilistic approach for non-
parametric nonrigid image registration using generalized
elastic nets, a model previously used for topographic maps.
The idea of the algorithm is to adapt an elastic net (a con-
strained Gaussian mixture) in the spatial-intensity space of
one image to fit the second image. The resulting net di-
rectly represents the correspondence between image pixels
in a probabilistic way and recovers the underlying image
deformation. We regularize the net with a differential prior
and develop an efficient optimization algorithm using lin-
ear conjugate gradients. The nonparametric formulation
allows for complex transformations having local deforma-
tion. The method is generally applicable to registering point
sets of arbitrary features. The accuracy and effectiveness
of the method are demonstrated on different medical image
and point set registration examples with locally nonlinear
underlying deformations.

1. Introduction
Image registration is an important problem in image

analysis. It is a process of determining a geometric trans-
formation that relates the contents of two images (the ref-
erence image and the source image) in a meaningful way
and establishes the correspondence between them. Appli-
cations of image registration include combining images of
the same subject from different modalities, aligning tem-
poral sequences of images to compensate for motion of the
subject between scans, image guidance during interventions
and aligning images from multiple subjects in cohort stud-
ies [10, 13]. Nonrigid image registration is the most in-
teresting and challenging work in registration today. Many
nonrigid registration techniques have been proposed in the
last 20 years [6, 13, 14]. Nearly all techniques are based on
minimizing an objective function containing two terms: the
first term measures the distance between the reference im-
age and the registered (i.e., transformed) source image for
a given transformation, and the second is a regularization
term that encourages certain types of transformations (e.g.

physically realizable ones). The registration is obtained by
minimizing this objective over a suitable space of transfor-
mations.

Parametric methods describe the space of transforma-
tions in terms of a finite number of parameters. The most
important parametric transformations use basis functions, in
particular splines. Spline-based registration algorithms use
control points in the source and target image and a spline
function to define correspondences away from these points.
In the popular thin-plate spline (TPS) [2], each control point
influences the transformation globally, and fitting the TPS
costs O(N3) where N is the number of pixels. This limits
the ability to model complex and localized deformations,
unless many parameters are used at a high computational
cost [6]. B-splines are only defined in the vicinity of each
control point, so perturbing the position of one control point
only affects the transformation near that point. However, B-
splines sometimes require special care to prevent folding of
the transformation [6, 16, 17]. Distances commonly used
with parametric methods are the L2 distance, the correla-
tion and the mutual information. Parametric methods in-
clude landmark-based methods, where corresponding land-
marks are determined in both images and then the transfor-
mation is fitted to interpolate the landmarks. While suitable
for some applications, finding good landmarks is a crucial
task that is often done manually by an expert.

Nonparametric methods do not assume a parametric
form for the transformation. Nonparametric registration has
mainly focused on variational approaches based on min-
imizing the L2 distance. Here, one applies calculus of
variations to the objective functional to derive the Euler-
Lagrange equation (a system of PDEs for the transforma-
tion), which is solved numerically by discretizing the spa-
tial domain and iteratively solving systems of equations.
Depending on the regularization used, one obtains elastic,
fluid, diffusion and curvature schemes [14]. Unlike for
parametric methods, for variational methods the transfor-
mation is known only at the grid points and must be interpo-
lated at other points. The spatial structure in the linear sys-
tems resulting from the discretization of the Euler-Lagrange
equation allows the use of fast numerical schemes. The
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Figure 1. Illustration of the alignment method (for 1D images, for simplicity). I1 represents a 1D intensity image in spatial (x-axis) and
intensity (y-axis) space (each pixel is marked as a small �). I2 represents the same image with local, nonlinear spatial distortion and
intensity noise. EN1 is an elastic net fitted to I1 (in spatial-intensity space, with centroids marked •) and EN2 is adapted from EN1 to fit
I2. Since the centroids in EN1 and EN2 correspond one-to-one (1 ↔ 1, etc.), and the elastic net allows to define mappings between image
points and centroids (see section 2), we can map any spatial location xs in I1 to a spatial location x

′

s in I2 through the elastic nets, thus
aligning I1 to I2.

methods run in O(N log N) (elastic, fluid and curvature)
and O(N) (diffusion) per iteration, where N is the number
of pixels.

Finally, a third class of methods, often called point-set
registration methods, consider the registration of two sets
of feature points (see e.g. [1, 5, 11, 18, 19]). These feature
vectors may be the pixel feature vectors (consisting of the
pixel spatial location and their intensity, color, etc.), or they
may be a smaller set of other features extracted (manually
or automatically) from the image, such as edges or land-
marks. These methods bring into play not only the transfor-
mation (which is typically assumed parametric) but also the
correspondences between pixels (or points) in both images.
Our method is most closely related to point-set registration
methods. We defer a detailed comparison with them to sec-
tion 4.

In this paper we introduce a probabilistic, nonparametric
registration method that can deal with nonrigid deforma-
tion of arbitrary complexity. The approach is nonparamet-
ric in that we do not assume any parametric transformation.
It is based on the elastic net (EN), which is a net of con-
nected points which jointly and smoothly move in a high-
dimensional space to model a data set. An energy function
can be defined to trade off accuracy of the net fitting the
data (fitness term) vs net continuity (tension term). The
elastic net was originally introduced as a continuous opti-
mization method for the traveling salesman problem [7, 8]
and has also been successfully applied to modeling maps of
primary visual cortex. However it has had a limited use in
computer vision. A generalization of elastic nets to arbi-
trary quadratic tension terms was investigated in [3]. Here
we adapt the generalized elastic net to represent image de-
formations. The intuition is to position a net according to
the first image and then deform it to align with the second

image. The deformation produced by the elastic net directly
represents the transformation between the images. This is
illustrated more specifically in Fig. 1. We consider an im-
age as a noisy 2D manifold in the spatial-intensity space,
i.e., each pixel is represented by a point x = (xs,xi) ∈ R

3

of spatial location xs ∈ R
2 and intensity xi ∈ R. We model

this manifold in a probabilistic way with an elastic net EN1,
which allows to map any image point onto the net, and vice
versa. We then adapt EN1 for a given image I1 to a new
image I2 in the spatial-intensity space; again this allows to
map a net point onto image space and vice versa. The align-
ment mapping which maps a spatial location in I1 to another
spatial location in I2 is obtained through the deformed elas-
tic net. Thus, the idea is to characterize the image manifold
and deform it (adapt it) to the reference image manifold, ex-
tracting in the process the transformation. We describe the
generalized elastic net and its adaptation to image registra-
tion in section 2, give experimental results in section 3 and
discuss them in sections 4–5.

2. Image registration with generalized elastic
nets

Generalized elastic nets (GEN) The elastic net is a
Gaussian mixture with a quadratic prior on its centroids
[3, 7, 8]. The centroids implicitly represent a nonlinear,
low-dimensional manifold that probabilistically models a
high-dimensional data set X = (x1, . . . ,xN ) (expressed
as a D × N matrix). Specifically, given a collection of
M D-dimensional centroids Y = (y1, . . . ,yM ) (expressed
as a D × M matrix) and a scale parameter σ ∈ R

+, con-
sider a Gaussian-mixture density p(x) =

∑M

m=1
1
M

p(x|m)
with x|m ∼ N (ym, σ2ID). A smoothing or neighborhood-
preserving prior on the centroids is defined as p(Y; β) ∝
exp (−β

2

∑

m ‖ym+1 − ym‖2
) where β is a regularization



hyperparameter. Without the prior, the centroids could be
permuted at will with no change in the model, since the
variable m is just an index. The elastic net minimizes the
energy function

E(Y, σ) = −
∑N

n=1
log

∑M

m=1
e−

1

2‖
xn−ym

σ ‖2

+
β

2

∑

m
‖ym+1 − ym‖2 (1)

which is derived from the log posterior log p(Y|X, σ) of
the full model (i.e., maximum-a-posteriori estimation). We
call the first term the fitness term, arising from the Gaussian
mixture p(X|Y, σ), and the second term the tension term,
arising from the prior p(Y). The elastic net was general-
ized in [3, 4] to accommodate general quadratic priors. The
prior can be used to convey the topological (dimension and
boundary conditions) and geometric (e.g. curvature) struc-
ture of a manifold implicitly defined by the centroids. The
generalized elastic net (GEN) minimizes the energy func-
tion

E(Y, σ) = −
∑N

n=1
log

∑M

m=1
e−

1

2‖
xn−ym

σ ‖2

+
β

2
tr

(

YT YS
)

. (2)

Quadratic priors are considered of the form S = DT D,
so that tr

(

YT YS
)

=
∥

∥DYT
∥

∥

2 in terms of the Frobenius
norm. The matrix D represents a discretized differential op-
erator. For example (for a 1D net for simplicity, and using
forward differences [3]), a first-order derivative results in a
sum of squared lengths

∥

∥DYT
∥

∥

2 =
∑

m ‖ym+1 − ym‖2

and approximates a penalty
∫

‖∇y‖2 over a continuous
net y (with an infinite number of centroids). This cor-
responds to a matrix D where each row is a shifted ver-
sion of (−1 1 0 0 . . . 0), and it was the tension term
used in the original elastic net (eq.(1)), penalizing stretch-
ing of the net. A second-order derivative results in
∑

m ‖ym+2 − 2ym+1 + ym‖2, etc. By choosing S as an
appropriate combination of differential operators we can
impose a desired type of smoothness on the GEN (see [4]
for a discussion of the effect of different derivatives on
the maps of primary visual cortex). The resulting S has
a sparse, banded structure. We consider open boundary
conditions at the image boundaries. Fig. 1 schematically
shows a 1D elastic net. For 2D nets, appropriate 2D finite
differences are used (e.g. having 4 neighbors for first-order
derivatives) and S has a block-banded structure.

Adaptation of the GEN It is possible to derive an EM
algorithm to estimate Y and σ jointly, but the GEN is usu-
ally trained with a deterministic annealing algorithm, which
serves as a coarse to fine scale strategy. This minimizes E

over Y for fixed σ, starting with a large σ and tracking the

minimum to a small value of σ. For constant σ, [3] used a
fixed-point iteration to find stationary points of E:

∂E

∂Y
= −

1

σ2
(XW −YG) + βYS = 0

=⇒ YA = XW (3)

with weight matrix W = (wnm) and invertible diagonal
matrix G = diag (gm)

wnm =
e−

1

2‖
xn−ym

σ ‖2

∑M

m′=1 e
−

1

2

‚

‚

‚

xn−y
m′

σ

‚

‚

‚

2
gm =

N
∑

n=1

wnm

A = G + σ2βS. (4)

The weight wnm is the responsibility p(m|xn) of cen-
troid ym for generating point xn, gm is the total responsi-
bility of centroid ym, and the matrix XW is a list of aver-
age centroids. We solve for Y in the system of eq. (3) and
iterate, since W and G depend on Y. In [3], the system (3)
was solved using Cholesky factorisation. While this is ro-
bust and efficient (since it takes advantage of the sparsity
structure of S), here we use a faster method based on linear
conjugate gradients (CG) [15]. Linear CG solves an M×M

positive definite linear system in at most M steps, each cost-
ing O(M2) for full A and O(k1M) for sparse A (with k1

nonzeros per row), and has two important advantages: (1)
we can initialize the linear CG from the previous Y value
(which will be close to the solution) rather than solving each
system anew, as Cholesky does; (2) we can run only a few
linear CG steps and obtain an approximate but good enough
solution rather than an exact, costly one. This considerably
accelerates the overall annealed algorithm without sacrific-
ing accuracy. We obtain further acceleration by truncating
the Gaussian kernel so wmn are nonzero only for the nearest
neighbors (obtained for free from the pixel grid). For low-
dimensional problems (D ≤ 3) we could also use the fast
Gauss transform [9] to compute XW in O(D(N + M)).

The computational cost of our method is then as fol-
lows. Building the XW matrix takes O(DNM) if W is
full and O(Dk2M) if the weights are nonzero only for the
k2 nearest neighbors (on average). Each step of CG costs
O(Dk1M) if A has k1 nonzeros per row. Thus the total
cost is O(DM(k1+k2)k3) if we run k3 CG steps altogether
(along the annealing schedule).

3. Experimental results
Registration We now show how the elastic net frame-
work can be adapted to image registration. First, we rep-
resent two images I1 and I2 in the spatial-intensity space
(thus, the feature vectors have D = 3 dimensions). Then
we construct an elastic net with as many centroids as pix-
els in image I1. This net Y is initialized with each cen-
troid representing the spatial-intensity value of one pixel in
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Figure 2. GEN registration with known deformation. (a) Original MR slice; (b) original image deformed using TPS; (c) transformation
represented by TPS control points; (d) absolute value of intensity difference between original and deformed images; (e) registration result
of the algorithm (original image is registered onto the deformed one); (f) transformation found by the algorithm (almost equal to the true
one); (g) absolute value of intensity difference between registered and original deformed images (almost zero).

I1 (i.e., Y = X1). The net is adapted by adjusting the
centroids to fit data X2, representing image I2 in spatial-
intensity space, by minimizing the energy (3). The reason
for using the same number of centroids as there are pixels
in I1 is that the final centroid locations, when E is mini-
mized, directly show the displacement of each pixel in I1
when it is deformed into I2. As a result, no interpolation is
needed—unlike e.g. most variational methods, which need
to interpolate the registered image after each iteration in or-
der to compare it with the reference image. In general, we
can choose to have more or fewer centroids than pixels. In
this case the displacement of a pixel x in I1 can be found
by interpolation using the probabilities p(m|x) and p(x|m)
provided by the GEN.

We assume that the deformation between two images is
only spatial, not in intensity. This translates to constraining
the intensity components in the centroid vectors to be con-
stant. In other words, the free parameters for centroid ym =
(yms,ymi) are yms only, and the optimization updates only
apply to yms. Doing so is important to produce only spatial
deformation for I1 when fitting it to I2. In general, intensity
variations across images can be accommodated by updat-
ing the complete ym = (yms,ymi). We use the following

penalty matrix: S = β1D
T
1 D1 + β2D

T
2 D2, where D1 and

D2 are first- and second-order derivatives, and their rela-
tive strengths are controlled by problem-dependent hyper-
parameters β1 and β2. We need the first and second deriva-
tives to prevent tearing and folding, which are not physi-
cally reasonable in the registration of medical images [6].

In all experiments, the image intensities are first rescaled
(to the range [0, 15]) to allow the use of a single σ for all di-
mensions, and the images are coarsely aligned using cross-
correlation to eliminate translation (normalizing for rotation
or affine transformation was not required for our examples).
The resulting data sets X1,X2 ⊂ R

3 were used to adapt the
elastic net. The aligned dataset X′

1 (obtained from the spa-
tial deformation given by the GEN and the original inten-
sity values) was postprocessed with bicubic interpolation to
produce the aligned image. The hyperparameters β1 and β2

were set manually for each type of image (e.g. brain MRI
images); once this is done, the same values can be used
without further tuning for images of the same type. We ran
10 annealing iterations from σ = 3 to σ = 0.5 pixels, and
about 60 CG steps in each iteration (resulting in a resid-
ual error ‖YA −XW‖ for CG of around 10−1 pixels; this
gave results as good as a residual of 10−5). We truncated
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Figure 3. Registration with unknown deformation. (a) First person (reference image); (b) second person (template image); (c) composite of
reference and template images; (d) registration of the template image onto the reference using GEN; (e) composite view after registration
using GEN; (f) composite of the reference image and the registration result from [12]; (g) composite of the reference image and the
registration result obtained with the Image Registration Toolkit [16] (please view this figure in color).

the Gaussian kernel to a width of 5σ (i.e., from 15 to 2.5
pixels).

We show results on artificial data with known nonlin-
ear deformations and on two real-life examples. The al-
gorithm was implemented in Matlab with subroutines in
C, and tested on Pentium4 CPU 3.5GHz with 4GB RAM.
The test images are 250 × 250 grayscale, and the registra-
tion takes about 20 minutes for each image pair. Validation
of registration results on real-world images (for which no
ground truth is available) is difficult, with most papers re-
sorting to visual inspection [6, p. S145].

Table 1. Experimental results for different deformation levels.

Deform.
STD

GEN: Transform
RMSE (pixels)

GEN: Intensity
RMSE

ITK: Intensity
RMSE

1.0 0.3135 0.0044 0.0094
1.5 0.5124 0.0047 0.0104
2.0 0.9753 0.0053 0.0117
2.5 1.1152 0.0060 0.0129
3.0 1.0962 0.0059 0.0143

Brain MRI 2D images with and without known defor-
mation A slice of MRI brain image was artificially de-
formed using a known transformation (Fig. 2). We define
a uniform grid of control points in the original image, ran-
domly move them and use thin-plate splines to create a lo-
cally nonlinear deformed image. Our algorithm is applied
to align original image (a) onto deformed one (b). The final
absolute image difference (g) is so small it is hardly visi-
ble, demonstrating the high accuracy of the method. Table
1 shows the value of root mean square error (RMSE) be-
tween true and estimated deformation as well as the inten-
sity RMSE between original and registered images (image
intensity were normalized to [0, 1] interval), as a function of
spatial distortion level controlled by the standard deviation
(STD) of control points perturbation measured in pixels.
The transformation error is at most of the order of one pixel.
For comparison, we also show the intensity RMSE achieved
with Image Registration Toolkit (ITK) [16]. Although ITK
required heavy manual tuning, its intensity RMSE is twice
more than our GEN intensity RMSE.

Figure 3 shows the images (a) and (b) from two patients,
and its misalignment (c). To compare two images, we use
a color composite view of the two histogram-equalized im-
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Figure 4. Microscopic video of iris: (a) frame 1; (b) frame 37; (c) absolute intensity difference between the two frames before registration;
(d) registration result using GEN: image (b) is aligned with image (a); (e) absolute intensity difference between the two frames after GEN
registration; (f, g) registration result using the Image Registration Toolkit [16] and its absolute intensity difference with (a).

ages with one image coded in green and the other in red,
so that yellow indicates good alignment and red or green
indicate misalignment. Figure 3 (d) shows the registration
result of our method based on GEN ((b) is registered onto
(a)), and (e) is the composite view of (d) and (a). Careful
visual inspection reveals that our method (e) improves con-
siderably over no registration (c), even though the original
images have significantly different intensity ranges; note the
edges of the cortex and the inner structures. We compare
our method to the results from [12] (f). Overall our result
is better, e.g. note the left and upper part of the cortex. We
also compare our method to the registration result obtained
with the state-of-the-art Image Registration Toolkit [16] (g),
which achieves free form deformations using B-splines and
normalized mutual information as a similarity measure. Our
results are comparable in quality.

Microscopic iris images. We stabilize a video sequence
of microscopic iris images through frame-by-frame regis-
tration. This is necessary to remove the severe jitter and
deformation across frames in order to be able to track leuko-

cyte motion. The deformation between frames is highly
nonlinear. Our algorithm proves accurate and effective for
these images (Fig. 4). Ideal registration should lead to an
absolute difference image with near-zero background inten-
sity and bright blobs corresponding to the moving leuko-
cytes, which is exactly the case in Fig.4(e). ITK failed to
work on iris images without preprocessing, even though dif-
ferent combinations of parameters and similarity measures
were tried. We were able to get it to work only after using
edge-preserving Wiener filtering to partially eliminate the
distraction from cells. The deformation field obtained after
the registration on filtered images were then applied to the
original. The results of ITK with normalized mutual infor-
mation for similarity measure are shown in Fig.4(f, g). Note
that some vessel contours are still misaligned, unlike for the
GEN, which also did not use any preprocessing.

Point set registration. The GEN can also be applied to
point set registration, as demonstrated with the following
example of corpus callosum shape registration, represented
as a set of 2D points (Fig.5). Panel (a) shows the first person
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Figure 5. Corpus callosum shape registration example. (a) First
point set; (b) second point set, which serves for the elastic net
initialization; (c) final adapted position of the elastic net with the
points in (a); (d) composite view of (a,b,c) and the displacement
of elastic net from its initial position; (e,f) registration result and
composite view of RPM [5], similar to those of the GEN.

point set. Panel (b) show the second person point set, which
serves as initial position for the elastic net with connectiv-
ity between the adjacent points. The final adapted position
of the net and its displacement from the initial position is
shown in panels (c, d). For comparison we also show the
result obtained using the RPM algorithm [5] (e, f), based on
thin plate spline parametrization. Note that while RPM reg-
isters by estimating the transformation (by TPS), the GEN
estimates directly the shape of the net, assuming the connec-
tivity pattern is the same in both point sets (a closed contour
in the Fig. 5).

4. Related work
Our motivation was to use a highly successful model

of topographic maps, the generalized elastic net, to model
probabilistically the image manifold and its deformation to
fit a reference image. Our approach is most closely re-
lated to point-set registration methods. Chui and Rangara-
jan [5] use a parametric transformation φ given by a thin-
plate spline (TPS) and consider variables wnm ∈ [0, 1] to
model explicitly the correspondence between points xn and
ym in the reference and source image, respectively. They

minimize the objective function

E(φ,W) =

N,M
∑

n,m=1

wnm ‖xn − φ(ym)‖2 + TR(φ)

+ T

N,M
∑

n,m=1

wnm log wnm − ζ

N,M
∑

n,m=1

wnm (5)

where T is a temperature parameter, R(φ) is a regulariza-
tion term (second derivative of the TPS), the entropy term
encourages binary correspondences, and the last term is
necessary to deal with outliers (to which the first term, be-
ing a sum of squares, is very sensitive). The minimization is
done by coordinate descent (alternating between minimiz-
ing over φ for fixed W, and vice versa) and annealed over
T to avoid bad minima. The method can be seen as a gener-
alization of the well-known iterated closest point algorithm
[1, 19] by allowing soft correspondences. Using a TPS re-
quires some heuristics in the minimization, and results in a
complexity per step of O(N 3). The GEN differs from this
in several respects. First, the GEN uses a nonparametric
transformation (given by the centroids). This has several ad-
vantages: we are able to represent complex transformations
and the influence of each point in the image is confined to its
neighborhood, thus allowing for local deformations (which
are harder to model with a global transformation such as the
TPS). We can also use any regularizer we wish (e.g. higher-
order derivatives or linear combinations of derivatives) by
simply using the appropriate finite-difference in the matrix
S. And the computational cost of each step in the GEN
is lower because of the sparse structure of S. Second, our
objective function is derived from a probabilistic model (a
constrained Gaussian mixture) and thus defines a density for
the point set; this introduces robustness to noise and outliers
[18] without the need for an ad-hoc term in the objective
function. The correspondence variables wnm are implicitly
obtained as posterior probabilities p(ym|xn) and we need
not model them nor minimize over them explicitly. (Note
that, while [5] is initially formulated in terms of a Gaussian
mixture, in practice eq. (5) is used.)

Our approach is also closely related to recent work
[11, 18] based on modeling the point sets as density func-
tions (kernel density estimates) and then minimizing a dis-
tance between densities over a parametric transformation:
correlation in [18], L2 distance (using a TPS as transfor-
mation) in [11]. With those distances, the resulting objec-
tive function can be obtained in closed form and optimized
with respect to the transformation parameters (while the
Kullback-Leibler distance does not lead to a closed form).
Our work can be seen in this framework since the GEN de-
fines a density model (Gaussian mixture), and MAP estima-
tion is equivalent to minimizing the Kullback-Leibler dis-
tance from the reference density (kept fixed, and left as a



sum of delta functions at the points rather than as a kernel
density estimate) to the source density (the GEN). However,
for densities the Kullback-Leibler distance is more appro-
priate than the L2 or correlation distances because the lat-
ter weigh the errors equally no matter where they happen
in the density domain, while the Kullback-Leibler distance
weighs them according to the reference density.

Finally, note that all these methods [5, 11, 18] were ap-
plied to point sets consisting of a small number (a few hun-
dred) of feature vectors previously extracted from the im-
age, while we deal with a much larger number of points
(≈ 105) since we consider directly one feature vector per
pixel. Naturally, our method can also be used with the
smaller point sets (as in Fig. 5).

5. Discussion and conclusion
We have developed a probabilistic approach for nonpara-

metric nonrigid image registration based on the generalized
elastic net (using first- and second-order differential priors).
The resulting formulation is simple and elegant, being es-
sentially a penalized maximum likelihood problem. It pro-
duces soft correspondences naturally as posterior probabil-
ities, without having to introduce them in an ad-hoc way,
and its probabilistic basis affords some robustness to out-
liers and noise. The nonparametric transformation allows
to model complex and localized deformations flexibly with-
out prior knowledge about the type of transformation re-
quired, and to use sophisticated regularizers (e.g. high-order
derivatives and linear combinations of them). The struc-
tured, sparse nature of the regularizer matrix allows an ef-
ficient optimization with linear conjugate gradients, faster
than thin-plate splines. The method accurately registers im-
ages with nonlinear local deformations, and has robustness
to image intensity distortion. When the elastic net is ini-
tialized with one centroid for each pixel in image I1, the
resulting deformed net will provide directly the displace-
ment for each pixel without the need of image interpolation
at each iteration, unlike many other registration methods.
In general, the transformation can be controlled by using
an arbitrary number of centroids; in this case, interpolation
is necessary and is naturally given by averaging with re-
spect to the posterior probabilities. While we have focused
on intensity features, the method accommodates arbitrary
features (e.g. gradient information and color components),
spatial dimensions (e.g. 3D, 4D), and images of different
spatial resolutions. The method is also well suited for regis-
tering consecutive frames in an image sequence, by succes-
sively adapting the net from one image to the next.
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Á. Carreira-Perpiñán).
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