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Abstract

Gaussian mean-shift (GMS) is a clustering algorithm
that has been shown to produce good image segmentations
(where each pixel is represented as a feature vector with
spatial and range components). GMS operates by defining
a Gaussian kernel density estimate for the data and clus-
tering together points that converge to the same mode un-
der a fixed-point iterative scheme. However, the algorithm
is slow, since its complexity is O(kN 2), where N is the
number of pixels and k the average number of iterations
per pixel. We study four acceleration strategies for GMS
based on the spatial structure of images and on the fact that
GMS is an expectation-maximisation (EM) algorithm: spa-
tial discretisation, spatial neighbourhood, sparse EM and
EM–Newton algorithm. We show that the spatial discreti-
sation strategy can accelerate GMS by one to two orders
of magnitude while achieving essentially the same segmen-
tation; and that the other strategies attain speedups of less
than an order of magnitude.

The mean-shift algorithm is a hill-climbing algorithm
that operates as follows. Given a data set {xn}
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where K(t) is a kernel function (e.g. K(t) = e−t/2 for
the Gaussian). Then, rearranging the stationary-point equa-
tion ∇p(x) = 0 one can easily obtain the iterative scheme
x(τ+1) = f(x(τ)) with
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(where K ′ = dK/dt), called mean-shift algorithm. The
fixed points of f are the stationary points of the density
p. The mean-shift algorithm can be shown to converge
to modes of the kernel density estimate under mild condi-
tions. The algorithm originates in [8] (though not in the

form above) and has been subsequently developed by oth-
ers [1, 4, 5].

The mean-shift algorithm can be applied to clustering
by declaring each mode of the kernel density estimate as
representative of one cluster, and assigning a data point xn

(or indeed any point x ∈ R
D) to the mode it converges to,

f∞(xn). Since the algorithm does not depend on param-
eters such as step sizes, the clustering is uniquely defined
given the kernel density estimate, i.e., given the bandwidth
σ. The algorithm has been proven particularly successful
in image segmentation [5] where each data point xn, i.e.,
each pixel, is represented by spatial and range features, e.g.
(i, j, I) or (i, j, L∗, u∗, v∗) where (i, j) is the pixel loca-
tion in the image and I and (L∗, u∗, v∗) the pixel value in a
greyscale or colour image, respectively.

Different kernels give rise to different versions of the
mean-shift algorithm. Here, we focus exclusively on
Gaussian mean-shift (GMS), where the kernel density esti-
mate is a Gaussian mixture and the algorithm can be written
in the following, elegant form [1]:
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x(τ+1) =
∑N

n=1 p(n|x(τ))xn (3b)

i.e., the new iterate x(τ+1) is the data average under the
posterior probabilities given the current iterate p(n|x(τ)).
GMS produces better segmentations than the Epanechnikov
kernel [5] but requires a large bandwidth (σ ≈ 1

5 of the
image side) and is far slower to converge. Indeed, the
Epanechnikov kernel has finite support and so convergence
occurs in a finite number of steps [5]. However, GMS is an
expectation-maximisation (EM) algorithm [3, 2] where the
E step (eq. (3a)) computes the posterior probabilities p(n|x)
and the M step (eq. (3b)) updates the iterate x. Thus, its
convergence has linear order [2, 11], requiring many itera-
tions to attain good accuracy. Besides, each iteration costs
O(N) for each data point, so that clustering the whole data
set costs O(kN2) where k is the average number of itera-
tions. This is particularly expensive for image segmentation
where the number of pixels N is large.



Our objective in this paper is to study ways of acceler-
ating GMS for image segmentation. We propose four dif-
ferent strategies which can significantly reduce the compu-
tational cost while obtaining almost the same segmentation.
They exploit the grid structure of image data and the fact
that GMS is an EM algorithm. For simplicity, we focus on
a scalar bandwidth σ, the same for all kernels.

The rest of the paper is organised as follows. We in-
troduce the acceleration strategies and their evaluation in
terms of computational cost and clustering error (section 1),
describe each strategy in detail (sections 2–5) and give ex-
perimental results with different bandwidths (section 6). Fi-
nally, we discuss the results and related work (section 7).

1. Overview of strategies and their evaluation
Let us first determine the bottlenecks of the GMS algo-

rithm. We have a data set of N points (pixels) in D di-
mensions (e.g. 3 for greyscale images, 5 for colour images,
higher if using texture or edge features). Assume that the
average number of iterations per data point (per pixel) is k,
so that the complexity of the algorithm is O(kN 2D).

Bottleneck 1 The average number of iterations k is large,
typically around 100 (depending on the convergence
tolerance and the bandwidth σ). This high number of
iterations is spent not only near the mode of conver-
gence but also in slow crawls up ridges of p(x).

Bottleneck 2 The cost per iteration is large, about 2ND
multiplications. This is required to obtain the posterior
probability p(n|x) for each data point (the E step, ND
multiplications) and to obtain the next iterate x(τ+1)

(the M step, ND multiplications).

A successful acceleration technique for GMS must address
one or both bottlenecks. We propose the following four
different strategies (we will call ms the exact GMS algo-
rithm). ms1, spatial discretisation, divides the spatial do-
main of the image into cells of subpixel size and forces all
points projecting on the same cell to converge to the same
mode; it reduces the total number of iterations. ms2, spa-
tial neighbourhood, uses a subset of points (rather than all
N ) in eq. (3), namely the nearest neighbours in the spatial
domain rather than in the full D-dimensional feature space;
it reduces the cost per iteration. ms3, sparse EM, is based
on Neal and Hinton’s idea [13] of interleaving full E steps
with partial E steps, where only a fraction (the plausible set)
of the posterior probabilities p(n|x) are updated; it reduces
the cost per iteration for most iterations. ms4, EM–Newton,
starts with EM steps and later switches to Newton’s method,
which has quadratic convergence; it reduces the total num-
ber of iterations.

Any acceleration technique for GMS should be evaluated
with respect to computational cost and segmentation error.

ms: 1 ms1: 1 ms2: e
ms3: 2 if full step, e if partial step
ms4: 1 if EM step,

(

1 + D+1
4

)

if Newton step,
(

3
2 + D+1

4

)

if EM step after failed Newton step
Table 1. Cost per iteration (in number of multiplications relative to
ms, the exact Gaussian mean-shift algorithm) for each of the ac-
celerated methods, assuming N data points in D dimensions (with
N � D). e ∈ (0, 1] is the fraction of the data set used (neigh-
bours for ms2, plausible set for ms3). For ms2 e is constant, while
for ms3 e varies across iterations. The number of exponentials for
each method generally scales in the same proportion as the number
of multiplications, so we consider only the latter in the table.

The memory cost is modest for all our strategies so we focus
on the time cost. Rather than measuring this as running
time, which depends on the actual hardware and software
(and is certainly misleading in our Matlab implementation),
we measure it in normalised iterations, where an exact GMS
iteration (i.e., 2ND multiplications) equals 1. The cost of
each strategy’s iteration is determined in the next sections
and summarised in table 1.

Our gold standard is the segmentation produced by GMS
(for a given bandwidth) without using any pre- or post-
processing (such as removing small clusters), irrespective
of the perceptual quality of the segmentation. We use a
simple percent measure of clustering error P ∈ [0, 100] ob-
tained by matching corresponding clusters between the two
segmentations, counting the number of misclustered pixels
over the whole image and dividing by N . This simple er-
ror measure works well since the strategies generally pro-
duce very similar segmentations, having the same number
of clusters and differing only in a few pixels near cluster
boundaries.

Clustering errors can arise for two reasons. First, if the
iterative scheme for the approximate method does not con-
verge to a mode of p(x), then the convergence points will
not coincide with the modes, and there may be more or
fewer convergence points than modes. This is the case for
ms1 and ms2. However, the error can be kept under con-
trol depending on the parameter of the method (at a higher
computational cost). Second, even if the accelerated iter-
ative scheme does converge to a mode of p(x), the mode
of convergence for a given starting point xn may be differ-
ent from that using exact GMS, in particular for points near
cluster boundaries. This is the case for ms3 and ms4.

2. ms1: spatial discretisation
We consider each pixel in the spatial domain as a unit

square centred at location (i, j) and subdivided into an n×n
grid of cells (fig. 1). The parameter of this method is n. The
idea is that all points x ∈ R

D (the feature space) whose
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Figure 1. Left: discretisation of the spatial domain for n = 3.
Every pixel (i, j) is subdivided into n × n cells. Every point x ∈
R

D whose spatial projection (x1, x2) falls in a given cell (such as
the one showed) has the same fate as all other points projecting
on that cell. Right: a path x

(0),x(1), · · · ∈ R
D visits cells in the

spatial domain; iterates from a later pixel stop iterating when they
reach a visited cell.

spatial projection (x1, x2) belongs to the same cell share
the same fate, i.e., converge to the same mode. Thus, if
we start GMS from a data point xn and at some iteration
x(τ) projects on a cell that we have previously visited while
iterating GMS for some other data point xm, then we stop
iterating, and mark every iterate of xn’s path as visited and
as converging to xm’s mode.

The intutition why this idea should work is the follow-
ing. Consider a greyscale image for simplicity, with fea-
tures x = (i, j, I) ∈ R

3. The image defines a 2D manifold
because the intensity I is a function of the spatial location
(i, j). Since the GMS iterates must lie in the convex hull
of the data points [1] and moreover lie in high-density areas
(since EM increases the density monotonically), the iterates
will typically lie very near the said manifold. Thus, the it-
erate paths that go through a given location (i, j) do so at
approximately the same intensity I(i, j). This means that
the paths are well approximated by their 2D projections in
the spatial domain. Naturally, this situation does not apply
with non-image data; there the discretisation should involve
all D variables (which suffers from the curse of dimension-
ality).

The number of modes found by ms1 is less than or equal
to the number of modes found by GMS. Clustering errors
occur when paths eventually converging to different modes
travel temporarily close together, thus competing for the
same cells (usually along cluster boundaries). The error can
be reduced as much as desired by using a fine enough dis-
cretisation (high enough n), since the total number of iter-
ates for all paths is finite given the convergence tolerance.

The order in which pixels are selected for GMS affects
the result, because future paths depend on which cells have
been already visited. We have found that selecting first a
collection of pixels distributed as a uniform grid over the
image and then the rest of pixels attains a lower error than
selecting pixels rowwise, with no change in computational
cost (using a random order also lowers the error but has a
larger variance).

Each iteration in ms1 is an exact GMS iteration, so the
total cost is the number of iterations performed. The sav-
ings in ms1 come from the fact that the long crawls along
density ridges and upon convergence near a mode (which
consume a large number of iterations) are done only for the
first few pixels. Essentially, once a path has been travelled
once, it is not travelled again; unlike with exact GMS, where
almost identical paths are travelled by many different pixels
converging to the same mode [2], and a given cell may be
visited many times during one path.

3. ms2: spatial neighbourhood
We approximate the E and M steps at each itera-

tion by using a subset of the data: the sums over
all n in eqs. (3a)–(3b) are replaced with sums over
n ∈ N (x(τ)). Here, N (x) = {n ∈ {1, . . . , N} :
‖(x∗

1, x
∗

2) − (xn1, xn2)‖∞ ≤ r} consists of a spatial neigh-
bourhood of x given by the data points corresponding to
pixels within distance r (using the ∞-norm) of x’s nearest
pixel location (x∗

1, x
∗

2). N (x) contains (2brc + 1)2 pixels
(where b·c is the floor function) for pixels both in the in-
terior of the image and close to the boundary (by shifting
the neighbourhood inside the image as needed). Thus, the
amount of computation is the same for any pixel: one it-
eration of ms2 costs e ∈ (0, 1] iterations of GMS, where
e = (2brc + 1)2/N is the proportion of the data set used in
the iteration. Importantly, note that the cost of finding the
nearest neighbours in the spatial domain is negligible, un-
like that of finding nearest neighbours in the whole space.
The parameter of this method is r (or equivalently e).

The computational savings of this method arise from the
reduction of the cost per iteration. The overall speedup de-
pends on the total number of iterations carried out, which
is investigated experimentally in section 6. The ms2 itera-
tion does not converge to a mode of p(x), though the error
should be small if the neighbourhood size significantly ex-
ceeds the bandwidth. The number of modes may be less
than, equal to or greater than that of GMS.

4. ms3: sparse EM
The sparse EM algorithm [13] is an accelerated EM al-

gorithm that preserves the convergence guarantee of EM.
We will describe it in the context of the GMS algorithm
for simplicity. The idea consists of recasting the EM algo-
rithm as an alternate maximisation of the free energy func-
tion F (p̃,x) defined below in an enlarged parameter space
with N + D variables (p̃,x) ∈ R

N+D, where x ∈ R
D is

the usual GMS iterate, and p̃ = (p̃1, . . . , p̃N )T represents a
distribution over {1, . . . , N} such as p(n|x); let us call px

the posterior distribution, i.e., px(n) = p(n|x). The free
energy function is defined as

F (p̃,x) = log p(x) − D(p̃‖px) (4)



where p(x) is the usual density of eq. (1) and D(·‖·) the
Kullback-Leibler divergence. The key observation [13] is
that the maxima of F correspond to maxima of p(x) and
vice versa. The EM algorithm is an alternate maximisation
of F : the E step maximises F with respect to p̃ for fixed
x (which results in p̃ = px, as is obvious from eq. (4))
and the M step maximises F with respect to x for fixed p̃

(which can be seen by taking partial derivatives of F ). A
second key observation is to realise that even though the
maximisation with respect to p̃ (the E step) has a closed
form solution, it is a computationally costly solution since
we must compute p̃n = p(n|x) ∀n ∈ {1, . . . , N}, at a
cost of O(N). In the spirit of incremental algorithms, or
inexact searches in optimisation, it may be more efficient
to maximise with respect to M < N components of p̃ in
the hope that we make significant progress towards an max-
imum at a lower computational cost. We call this a partial
E step, as opposed to a (usual) full E step where all com-
ponents of p̃ are updated. Note that no matter which com-
ponents or how many of them we update, we will increase
F (even if p(x) temporarily decreases) and—as long as all
components are updated periodically— we will eventually
converge to a maximum of F and thus a maximum of p(x).

Computational savings occur when we do many partial
steps updating the same set S ⊂ {1, . . . , N} of components
(called plausible set). The partial step updates the posterior
probabilities for n ∈ S while the full step, which is taken
at infrequent iterations, selects a new plausible set and up-
dates all components (as in a usual E step). The cost for a
partial step is then roughly 2ED multiplications where E
is the number of components in S, while the cost for a full
step is the usual 2ND multiplications plus the cost of de-
termining the plausible set S (see below). The algorithm’s
details (omitted here for lack of space) are in [13].

In summary, the sparse EM algorithm will infrequently
run a full iteration where all component probabilities are
updated (and both F and p(x) increase) at a slightly higher
cost than a usual EM iteration; and frequently a partial iter-
ation where only a portion of the components are updated
(and F increases but not necessarily p(x)) at the propor-
tional cost of the usual EM iteration. The overall cost de-
pends on the total number of iterations, but generally is
smaller than for EM.

We have now two important issues left: the choice of the
plausible set S at a full step, and the decision whether to
take a full step. The intuition behind the plausible set is, as
in ms2, that most of the probability mass (and thus most of
the effect on the iterate) is due to a relatively small num-
ber of components, those closer to the current iterate. We
choose as many components (in decreasing order of poste-
rior probability) as necessary to account for a total probabil-
ity 1 − ε with ε ∈ [0, 1), i.e.,

∑

n∈S p(n|x) ≥ 1 − ε. Thus,
the number of components (and the fraction of data used

e = E/N ) varies after each full step. We have observed
experimentally that this adapts better to the particular prob-
lem than choosing the E nearest neighbours of x for fixed
E. The parameter of this method is ε. Given the poste-
rior probabilities, the cost of computing the plausible set is
roughly the cost of sorting the posterior probabilities, which
requires O(N log N) comparisons. We take the sorting cost
to be similar to the cost of a usual E step (ND multiplica-
tions), so that the cost of the full and partial steps in units
of usual EM steps is 2 and e, respectively. The sorting cost
might be reduced by noting that the old list of components
is partially ordered at the current full E step, and using a
sorting algorithm tailored for partially sorted lists.

The decision when to take a full step, i.e., when to update
the plausible set, is as follows. We run partial steps until the
distance between consecutive iterates is less than 10−3, or
we reach 20 steps; then we take a full step. We found this
rule to work best over different ε, σ and images. Finally,
note that ms3 always starts and ends at a full E step.

5. ms4: EM–Newton
This combines GMS (an EM algorithm) with Newton’s

method. A similar idea was proposed in [1], where gradi-
ent ascent was combined with Newton’s method. Experi-
ence with the EM algorithm in general [11] and with GMS
[1] suggests that the EM algorithm is efficient at quickly
moving from the starting point to a point where p(x) is
high, but then it slows down considerably, particularly near
a mode due to its linear convergence rate. In that case,
taking instead a Newton step can make faster progress to-
wards the mode. This will be particularly noticeable near
the mode, where Newton’s method quadratic convergence
will pin down the solution to machine precision in just a
few steps. However, away from the mode the Newton step
may not improve as much as the EM step, and may even go
downhill or be undefined or too long if the Hessian is not
positive definite.

Let us derive the Newton step for the kernel density esti-
mate (1). The gradient and Hessian of the density are:

g(x) =
p(x)

σ2

N
∑

n=1

p(n|x)(xn − x) =
p(x)

σ2
(xEM − x)

H(x) =
p(x)

σ2
H(x), with

H(x) = −I +
1

σ2

N
∑

n=1

p(n|x)(xn − x)(xn − x)T

where xEM is the EM step from (3b). The Newton step is

xN = x − H−1(x)g(x) = x − H
−1

(x)(xEM − x). (5)

We see that, in computing the Newton step, we get the EM
step for free. Given the EM step, the cost of the New-



ton step is roughly the cost of computing the H matrix,
namely ND(D+1)

2 multiplications, because the cost of solv-
ing the linear system in H is O(D3) which is negligible
when N � D, the case in image segmentation and most
clustering applications.

The crucial issue in the combination EM–Newton is
when to try the Newton step. We enable Newton steps when
the current sequence of iterations slows down. Specifically,
at iteration τ +1 and subsequent iterations we try a Newton
step if

∥

∥x(τ) − x(τ−1)
∥

∥ < θ for fixed θ. If the Newton step
fails, i.e., p(x

(τ+1)
N ) < p(x(τ)) (or the Hessian is close to

singular), then we revert to the EM step and disable Newton
steps until the EM steps slow down again. Thus, the first
step (or first few steps) is always an EM step, and the fi-
nal few steps are always Newton steps, achieving quadratic
convergence. The parameter of this method is θ.

The cost of an iteration depends on its type: an EM
iteration costs 2ND multiplications; a successful Newton
iteration costs 2ND + ND(D+1)

2 multiplications; and a
failed Newton iteration reverting to the EM iteration costs
3ND+ ND(D+1)

2 multiplications (the additional cost being
due to the computation of p(x) for both xN and xEM).

6. Experimental results
We evaluate the performance of the 4 acceleration strate-

gies in terms of normalised iterations (so that iterations from
different methods can be directly compared; see table 1) and
percent clustering error P with respect to GMS. We test
each method on several greyscale and colour images. In
both cases, we prescale the greyscale or (L∗, u∗, v∗) values
so that we can use an isotropic kernel with bandwidth σ and
obtain good segmentations with GMS. Thus, each compo-
nent of the feature vector x has now pixel units, as does σ.
For each image we try several different σ (to obtain differ-
ent numbers of clusters). We run each method with the same
convergence criterion (that the change

∥

∥x(τ+1) − x(τ)
∥

∥ in
the iterate be smaller than 10−3 pixels) and the resulting
convergence points are considered to be the same mode if
they lie less than 1 pixel apart. We obtained similar results
over several greyscale and colour images, so we report nu-
merical results only for the cameraman image of fig. 2.

For ms2, the parameter r is relative to the smallest image
side, e.g. for cameraman 100 × 100 a value r = 0.31
means a neighbourhood radius of 0.31 × 100 = 31 pixels,
and a proportion of data points used e = (2brc + 1)2/N =
0.40. For ms4, θ is relative to the bandwidth σ, e.g. for
σ = 16 a value θ = 0.1 means a distance 0.1 × 16 = 1.6
pixels between consecutive iterates.

We ran every method for a range of values of its param-
eter (fig. 3). For ms3 the error is always near zero (be-
cause, unlike ms2, sparse EM converges to the true modes
no matter the value of ε) and the computational cost is low-
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Figure 2. Original image cameraman 100×100, total number of
iterations (blue) and number of clusters (red) for ms as a function
of the bandwidth σ.

est at ε ≈ 10−4; besides, the iterations ratio curve is very
flat, so using 10−3 or 10−5 makes little difference. For the
other methods, their respective parameter trades off error
vs cost. We set the optimal value for every method’s pa-
rameter as that which minimises the iterations ratio subject
to achieving an error P < 3% (or as small as possible);
see fig. 5. This ensures an almost perfect segmentation.
For ms1 this results in n ≈ 3–6 and an iterations ratio of
0.01–0.1 (10–100× speedup), depending on the image and
σ. Using larger n further reduces the error at a slightly
higher computational cost. For ms4 there is considerable
freedom to choose θ (despite the jagged curve of fig. 5),
because although the cost decreases with θ while the error
increases with θ, the change is very small; θ = 0.1 works
well and results in speedups 1.5×–6×. The error increase
with θ is expected since this means more Newton steps are
taken instead of EM steps. For ms2, the iterations ratio is
approximately equal to the fraction e = (2brc + 1)2/N
of data points used (where r is the spatial neighbourhood
side). This indicates that the average number of iterations
per pixel is about the same as for ms. The error P decreases
as e increases. Thus, by using a high enough r (or e) we
can reduce P to an acceptable level. However, it seems dif-
ficult to select an optimal r in advance given a new image
and σ value, and the error can be large if using a slightly
too small r. The reason is that ms2 does not converge to
the true modes of the density. Significant speedups (up to
5×) occur for small σ but not for large σ.

Fig. 4 shows some optimal segmentations, all being very
similar to the ms segmentation, and the modes found by all
methods being essentially the same (thus the same number
of clusters), with a few misclustered pixels only. The pic-
ture showing the number of iterations for each pixel, which
depends strongly on σ, indicates which image regions take
longest (red) or shortest (blue), and indirectly reflects the
flatness of the density p(x). Often (but not always) clusters
are identifiable in this picture for ms, as they are as peaks in
the histogram of iterations. The iterations pictures for ms2
and ms3 tend to be very similar to that of ms, and like-
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wise their histograms look like a horizontally compressed
version of that of ms. The reason is that these methods are
the most similar to ms, being based on using a data subset
but otherwise running EM-like steps. The picture for ms1
is completely different: only a handful of points run the av-
erage number of ms iterations (the pixels that were selected
first, distributed as a grid over the image, visible as light
spots); the overwhelming majority run a very small number
of iterations (less than 4), as shown in the histogram as well,
which peaks at 1.

Fig. 6 shows the error P and number of iterations for
every method under its optimal parameter value, as a func-
tion of σ. All methods can attain significant speedups with
a small error; the speedups are larger when ms takes more
iterations (for small σ). The best strategy by far is ms1,
with speedups 10×–100×, followed by ms4, with speedups
1.5×–6×. ms3 gives a modest speedup (from 3× for low σ
to no speedup for large σ), although it is the safest strategy
in terms of low P . Finally, ms2 gives similar or slightly
larger speedups than ms3 but can incur a large error.

Fig. 7 shows the following regarding ms1. (1) Of the
n2N cells available, only f(n)N (where f(n) is a sublin-
ear function of n) are used, i.e., visited by an iterate, inde-
pendently of the image and σ. (2) The average number of
iterations per pixel k (= total number of iterations /N ) ap-
proximately equals f(n), independently of the image size
N . The sublinear nature of f(n) is also apparent in fig. 3.
The sparse usage of cells results from most iterates lying
around the modes and ridges leading to modes. These are
travelled by the first few paths, sparing later paths from trav-
elling them again. The remaining areas are sparsely pop-
ulated by iterates, typically a single one per pixel. Since
the total number of iterations roughly equals the number
of visited cells (excluding the few cells which are visited
more than once, usually by the first few pixels), the average
number of iterations becames f(n). Thus, ms1’s effective
memory cost is less than nN cells (with n ≈ 3–6) and its
computational cost is O(kN 2), like that of GMS, but where
the average number of iterations per pixel is k ≈ f(n), i.e.,
2–4, instead of 30–150 as for GMS.

To study the effect of image size, we ran all experiments
with half-size images and correspondingly half-size σ. The
results were very similar to the full-size images (same opti-
mal parameters, similar curves) but the number of iterations
was about 4× smaller, indicating that the average number
of iterations per pixel is the same.

We also ran all experiments with a more accurate conver-
gence criterion, 10−6 pixels rather than 10−3. The resulting
curves were almost identical except that the number of it-
erations for ms, ms2 and ms3 roughly doubled, while for
ms1 and ms4 it remained approximately equal. The reason
is that the former methods have a linear rate of convergence
(being essentially EM steps), while ms4 has quadratic con-
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Figure 7. Left: proportion of cells (out of n2N cells) visited by
ms1, as a function of the discretisation level n, for σ = 16 (very
similar curves were obtained for other bandwidths/images). The
curve decreases faster than 1/n, so less than nN cells are visited.
Right: average number of iterations per pixel for ms1 as a function
of image size N . Each curve corresponds to a different n and is
roughly constant, with a value f(n) that grows sublinearly with n.

vergence and ms1 runs to convergence only a handful of
points. Thus, ms1 and ms4 can be ran at a higher accuracy
level for free (though for image segmentation a tolerance of
10−3 is generally good enough).

7. Discussion and related work
The acceleration strategies we have proposed can be

classified in 3 types: discretisation methods (ms1), neigh-
bourhood methods (ms2 and ms3) and hybrid EM–Newton
(ms4). Neighbourhood methods reduce the computational
cost per iteration while the other methods reduce the num-
ber of iterations. All these strategies are new except ms3,
which is the sparse EM algorithm of [13], though our adap-
tation to GMS and our rule when to take full steps is new.
Our general conclusions regarding performance are as fol-
lows. (1) With parameters set optimally, all methods can
obtain nearly the same segmentation as GMS with signifi-
cant speedups; near-optimal parameter values can easily be
set in advance for ms1, ms3 and ms4, and somewhat more
heuristically for ms2. (2) ms1 attains the largest speedup
by far (10×–100× with clustering error < 3%, depend-
ing on the image and σ). It reduces the computational cost
O(kN2) of GMS by reducing k from 30–150 (the average
number of iterations per pixel with GMS) to 2–4, yielding
speedups of one to two orders of magnitude for a typical
image. Besides, if desired the error can be further reduced
at a small additional cost. (3) ms4 ranks second best, with
1.5×–6× speedups. (4) The neighbourhood methods attain
more modest speedups (1×–3×); of these, ms3 attains the
lowest (near-zero) error of all strategies, while ms2 can re-
sult in unacceptably large errors for a suboptimal setting
of its parameter. For the larger bandwidths, the neighbour-
hood methods do not improve over GMS, since the neigh-
bourhood size becomes comparable to the data set size. (5)
Some of these methods are orthogonal to each other (e.g.
ms1 and ms4) so it is possible to use them in combination
and obtain larger speedups.



Earlier proposals of neighbourhood methods with mean-
shift [6, 9] or EM algorithms [12] have focused on fast,
approximate algorithms for range search such as kd-trees
or locality-sensitive hashing. However, range search al-
gorithms scale poorly with the dimension (though they do
work well up to, say, dimension 5) and with the number of
neighbours requested. The latter is particularly problematic
with GMS, which requires bandwidths of the order of 0.1–
0.3 the image side and thus very large neighbourhoods. In
contrast, ms2 avoids the range search cost altogether (using
instead a fixed pixel neighbourhood), while ms3 searches
for neighbours only at full EM steps, which are infrequent.

Another approach to accelerate GMS is to use a faster but
altogether different optimisation algorithm on the Gauss-
ian kernel density estimate (e.g. a quasi-Newton method
[14]). While this is a valid idea and may produce good
clusterings, it is also likely that the segmentation will dif-
fer significantly from that produced with GMS. Preserv-
ing the modes’ attraction basins was our rationale to use
a hybrid EM–Newton algorithm (ms4) that starts with EM
steps (which direct the iterate towards the right mode) and
switches to Newton steps later on, achieving quadratic con-
vergence (which provides a high accuracy at almost no ad-
ditional cost). In fact, forcing the very first step in ms4 to
be a Newton step rather than an EM step consistently in-
creases the error between 1 and 10 percentage points (the
error happening mainly at pixels near cluster boundaries).

The fast Gauss transform (FGT) [7, 10] approximately
evaluates a sum of N Gaussians such as eq. (1) at M points
in O(M + N) time rather than the naive O(MN). The
FGT could be combined with any of our techniques, since
its improvement is orthogonal to them. Unfortunately, the
constant in its computation order grows exponentially with
the dimension D (essentially, the number of monomials in a
polynomial series in D variables grows exponentially with
D for a fixed approximation error). For image data set sizes
(N . 106), the FGT is competitive with naive evaluation
for D ≤ 3 only. An improved FGT has been recently pro-
posed [15] which handles up to D = 10.

8. Conclusion
We have proposed four strategies, all very easy to imple-

ment, to accelerate Gaussian mean-shift segmentation (us-
ing spatial and range features). The best of these, based
on discretising the spatial domain, achieves 10×–100×
speedups with a very small error (controlled by the dis-
cretisation level). This will facilitate the practical applica-
tion of GMS, which attains better segmentations than finite-
support kernels but is much more computationally costly
in a naive implementation. In practice, one may often
postprocess the segmentation (e.g. to remove small clus-
ters), which may allow to run the accelerated method at a
coarser discretisation level and further reduce the compu-

tational cost. The other strategies produced much smaller
speedups: up to 6× for the EM–Newton algorithm and up to
3× for neighbourhood-based strategies (spatial neighbour-
hood, sparse EM). All the methods are readily extended to
the case where the bandwidth is adaptive (dependent on the
pixel) and non-isotropic. The sparse EM and EM–Newton
algorithms are also applicable to clustering non-image data.
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[1] M. Á. Carreira-Perpiñán. Mode-finding for mixtures of

Gaussian distributions. IEEE Trans. PAMI, 22(11):1318–
1323, Nov. 2000.
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