
Conclusion
The best method is ms1 spatial discreti-
sation (possibly combined with ms4 EM–
Newton), which can accelerate GMS by
one to two orders of magnitude while
achieving essentially the same segmenta-
tion. Neighbourhood methods (ms2 spatial
neighbourhood, ms3 sparse EM) are less
effective because GMS needs very large
neighbourhoods. All 4 methods are read-
ily extended to adaptive and non-isotropic
bandwidths. ms2 and ms3 are also applica-
ble to clustering non-image data.

Partially supported by NSF CAREER award
IIS–0546857.
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Experimental results
Dataset: xn = (in, jn, In) (greyscale) or xn = (in, jn, L∗n, u∗n, v∗n) (colour) where (i, j) is the pixel’s spatial position. Best segmentations appear for large
bandwidths: σ ≈ 1

5×(image side). We study all strategies with different images over a range of σ. Overall results:
•With parameters set optimally, all methods can obtain nearly the same segmentation as GMS with significant speedups; near-optimal parameter values

can easily be set in advance for ms1, ms3 and ms4, and somewhat more heuristically for ms2.
• ms1 attains the largest speedup by far: 10×–100× (average number of iterations per pixel k = 2–4 only) with segmentation error < 3%. ms4 ranks

second best (1.5×–6× speedups). The neighbourhood methods (ms2, ms3) attain more modest speedups (1×–3×); of these, ms3 attains the lowest
(near-zero) error of all strategies, while ms2 can result in unacceptably large errors for a suboptimal setting of its parameter. For the larger bandwidths, the
neighbourhood methods do not improve over GMS, since the neighbourhood size e becomes comparable to the data set size.

Other methods:
• Approximate algorithms for neighbour search (e.g. kd-trees): less effective because large neighbourhood.
•Other optimisation algorithms (e.g. quasi-Newton): need to ensure first steps are EM.
• Fast Gauss transform: can be combined with our methods.

¶
GMS: 5 modes

its = 823937

ms1: 5 modes
P = 1.62%
its = 33791

ms2: 5 modes
P = 0.02%

its = 324694

ms3: 5 modes
P = 0.00%

its = 340095

ms4: 5 modes
P = 1.98%

its = 141904
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Segmentation results for each method
under its optimal parameter value for σ =

12. For each method we give: ¶ the
number of modes, error P and number
of normalised iterations; · the colour-
coded segmentation with modes marked
∗; and the distribution of the number of
normalised iterations at each pixel, ¸
over the image and ¹ as a histogram.
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ms4: EM–Newton
Start with EM steps, which quickly increase p. Switch
to Newton steps when EM slows down (reverting to EM
if bad Newton step). Specifically, try Newton step when
‖x(τ ) − x(τ−1)‖ < θ. The Hessian of p has a simple form.
Computing the Newton step yields the EM step for free.
•Converges to a mode with quadratic rate
• Segmentation error→ 0 by decreasing θ

• Addresses B1. Parameter: θ > 0 (minimum EM step
length) relative to σ

7

ms3: sparse EM
Sparse EM (Neal & Hinton ’98): coordinate ascent on the
space of (x, p̃) where p̃ are posterior probabilities; this
maximises the free energy F (p̃,x) = log p(x)−D (p̃‖p(n|x))
and also p(x).
•Run partial E steps frequently, where we update p(n|x)

only for n ∈ S; S is the plausible set (nearest neigh-
bours), kept constant over partial E steps. FAST.
•Run full E steps infrequently, which update all p(n|x)

and also S. SLOW.
We choose S containing as many neighbours as neces-
sary to account for a total probability 1− ε ∈ (0, 1]. Thus,
the fraction of data used e varies after each full step.
•Converges to a mode no matter how S is chosen; com-

putational savings if few full steps
• Segmentation error→ 0 by decreasing ε

• Addresses B2. Parameter: ε ∈ [0, 1) (prob. not in S)

6ms2: spatial neigh.
Approximates E and M steps with a subset
of the data points (rather than all N ) con-
sisting of a neighbourhood in the spatial
domain (not the range domain). Finding
neighbours is for free (unlike finding neigh-
bours in full space).
•Does not converge to a mode
• Segmentation error→ 0 by increasing e

• Addresses B2. Parameter: e ∈ (0, 1]
(fraction of data set used as neighbours)
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ms1: spatial discretisation
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Idea: many different pixels converging to the same mode travel
almost identical paths. We discretise the spatial domain by sub-
dividing every pixel (i, j) into n × n cells; points projecting to the
same cell share the same fate. This works because paths in D
dimensions are well approximated by their 2D projection on the
spatial domain. It massively reduces the total number of iterations
because we stop iterating once we hit an already visited cell. We
start first with a set pixels uniformly distributed over the image (this
finds all modes quickly).
•Converges to a mode
• Segmentation error→ 0 by increasing n

• Addresses B1. Parameter: n = 1, 2, 3 . . . (discretisation level)
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iterations per pixel as a function of the image size N .
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Overview
GMS is slow: O(kN2D). Computational bottlenecks:
B1: large average number of iterations k ∼ 100 (linear convergence).
B2: large cost per iteration ∼ 2ND multiplications (E step: ND to obtain

p(n|x), M step: ND to obtain x(τ+1)).
Acceleration techniques must address B1 and/or B2.
Evaluation of strategies:
•Goal: to achieve the same segmentation as GMS. Visual evaluation of

segmentation not enough; we compute the segmentation error wrt GMS
segmentation (= no. pixels misclustered as a % over the whole image).
•We report running times in normalised iterations (= 1 iteration of GMS)

to ensure independence from implementation details.
•No pre- or postprocessing of clusters (e.g. removal of small clusters).

Why segmentation errors?
• The accelerated iterative scheme may not converge to a mode of p(x).
• A point xn may converge to a different mode than with exact GMS.

Strategy Cost per iteration relative to exact GMS
ms1: spatial discretisation 1
ms2: spatial neighbourhood e
ms3: sparse EM 2 if full step, e if partial step
ms4: EM–Newton 1 if EM step,

(

1 + D+1
4

)

if Newton step,
(

3
2 + D+1

4

)

if EM step after failed Newton step
e ∈ (0, 1] is the fraction of the data set used (neighbours for ms2, plausible
set for ms3).

3Gaussian mean-shift (GMS)
Given dataset X = {xn}Nn=1 ⊂ R

D, define a Gaussian kernel den-
sity estimate with bandwidth σ:

p(x) =
1

N

N
∑

n=1

K

( ∥

∥

∥

∥

x− xn

σ

∥

∥

∥

∥

2 )

K(t) = e−t/2

GMS is an iterative algorithm to find a mode of p:
• it has no step size and is an EM algorithm with global, linear

convergence (Carreira-Perpiñán & Williams 03)
• clustering: xn, xm in same cluster if they converge to same mode
• nonparametric clustering; σ determines the number of clusters
• popular in computer vision (segmentation, tracking; Comaniciu &

Meer)
• based on Fukunaga & Hostetler ’75 (also Cheng ’95, Carreira-

Perpiñán ’00, Comaniciu & Meer ’02, etc.)

for n ∈ {1, . . . , N} For each data point
x← xn Starting point
repeat Iteration loop

∀n: p(n|x)← exp
(

−1

2
‖(x−xn)/σ‖2

)

∑N
n′=1

exp
(

−1

2
‖(x−xn′)/σ‖2

) Post. prob. (E step)

x←
∑N

n=1 p(n|x)xn Update x (M step)
until x’s update < tol

zn← x Mode
end
connected-components({zn}Nn=1,min diff) Clusters

2Abstract
Gaussian mean-shift (GMS) is a clustering algorithm that has
been shown to produce good image segmentations (where each
pixel is represented as a feature vector with spatial and range
components). GMS operates by defining a Gaussian kernel den-
sity estimate for the data and clustering together points that con-
verge to the same mode under a fixed-point iterative scheme.
However, the algorithm is slow, since its complexity is O(kN 2),
where N is the number of pixels and k the average number of it-
erations per pixel. We study four acceleration strategies for GMS
based on the spatial structure of images and on the fact that
GMS is an expectation-maximisation (EM) algorithm: spatial dis-
cretisation, spatial neighbourhood, sparse EM and EM–Newton
algorithm. We show that the spatial discretisation strategy can
accelerate GMS by one to two orders of magnitude while achiev-
ing essentially the same segmentation; and that the other strate-
gies attain speedups of less than an order of magnitude.

1

ACCELERATION STRATEGIES FOR GAUSSIAN MEAN-
SHIFT IMAGE SEGMENTATION. Miguel Á. Carreira-Perpiñán.
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