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1 Abstract 2 Gaussian mean-shift (GMS) 3 Overview

Gaussian mean-shift (GMS) is a clustering algorithm that has  Given dataset X = {x,}¥_, c RP, define a GMS is slow: O(kN-D).

been shown to produce good image segmentations (where each with : B1: large average number of iterations & ~ 100 (linear convergence).
pixel is represented as a feature vector with spatial and range N , B2: large cost per iteration ~ 2N D multiplications (E step: N D to obtain
components). GMS operates by defining a Gaussian kernel den- p(x) = %Z K( X — Xn > K(t) = e 1/? p(n|x), M step: ND to obtain x(7*1)).

sity estimate for the data and clustering together points that con- n=1 ’ Acceleration techniques must address B1 and/or B2.

verge to the same mode under a fixed-point iterative scheme.  gMms is an . .

However, the algorithm is slow, since its complexity is O(kN?), o it has no step size and is an e Goal: to achieve the segmentation as GMS. Visual evaluation of
where N is the number of pixels and k& the average number of it- (Carreira-Perpifian & Williams 03) segmentation not enough; we compute the segmentation error wrt GMS

segmentation (= no. pixels misclustered as a % over the whole image).

e We report running times in normalised iterations (= 1 iteration of GMS)
to ensure independence from implementation details.

erations per pixel. We study four acceleration strategies for GMS e clustering: x,,, x,, in same cluster if they converge to same mode
based on the spatial structure of images and on the fact that e nonparametric clustering; o determines the number of clusters

GMS is an expectation-maximisation (EM) algorithm: spatial dis- i isi i ina: ici
L. P . . (EM) alg P * popular in computer vision (segmentation, tracking; Comaniciu & e NO pre- or postprocessing of clusters (e.g. removal of small clusters).
cretisation, spatial neighbourhood, sparse EM and EM—Newton Meer)
algorithm. We show that the spatial discretisation strategy can e based on Fukunaga & Hostetler '75 (also Cheng '95, Carreira-
accelerate GMS by one to two orders of magnitude while achiev- Perpinan '00, Comaniciu & Meer 02, etc.) e The accelerated iterative scheme may not converge to a mode of p(x).
Ing essentially the same segmentation; and that the other strate- forne {1,.... N} o el e A point x,, may converge to a different mode than with exact GMS.
gies attain speedups of less than an order of magnitude. X « Xp, Starting point - |
repeat Iteration loop Strategy ?ost per iteration relative to exact GMS
Ll (x— 2
Vn: p(n|x) < NeXp( QH(T x)/o|) . Post. prob. (E step) o
4. : : : : N e exp (=)o) 2 if full step, e if partial step
S 1 : Spatlal dlscretlsatlon X anlp(N‘X>Xn Updatex (M Step) 1 |f EM Step (1 + M) |f Newton Step
until x’s update < to1 ’ 4 ’
J Zp — X Mode (% + %) if EM step after failed Newton step
¢ end e € (0,1] is the fraction of the data set used (neighbours for ms2, plausible
7; (1, ) A connected-components({z, }*_,,nin diff) Clusters set for ms3).

8 Experimental results

Dataset: x,, = (in, jn, In) (greyscale) or x, = (in,jn, L, u;,v;) (colour) where (i, 7) is the pixel’s spatial position. Best segmentations appear for large
bandwidths: o ~ %x(image side). We study all strategies with different images over a range of ¢. Overall results:

e With parameters set optimally, all methods can obtain nearly the same segmentation as GMS with significant speedups; near-optimal parameter values
can easily be set in advance for ms1, ms3 and ms4, and somewhat more heuristically for ms2.

ldea:

. We discretise the spatial domain by sub-
dividing every pixel (¢, j) into n x n cells; points projecting to the
same cell share the same fate. This works because paths in D
dimensions are well approximated by their 2D projection on the
spatial domain. It massively reduces the total number of iterations

because . We ems1 attains the largest speedup by far: 10x—100x (average number of iterations per pixel £ = 2—4 only) with segmentation error < 3%. ms4 ranks
start first with a set pixels uniformly distributed over the image (this second best (1.5x—6x speedups). The neighbournood methods (ms2, ms3) attain more modest speedups (1x—3x); of these, ms3 attains the lowest
finds all modes quickly). (near-zero) error of all strategies, while ms2 can result in unacceptably large errors for a suboptimal setting of its parameter. For the larger bandwidths, the

neighbourhood methods do not improve over GMS, since the neighbourhood size e becomes comparable to the data set size.
Other methods:
e Approximate algorithms for neighbour search (e.g. kd-trees): less effective because large neighbourhood.
e Other optimisation algorithms (e.g. quasi-Newton): need to ensure first steps are EM.
e Fast Gauss transform: can be combined with our methods.

e Converges to a mode
e Segmentation error — 0 by increasing n
e Addresses B1. Parameter: n = 1,2,3... (discretisation level)

GMS: 5 modes ms1: 5 modes ms2: 5 modes ms3: 5 modes ms4: 5 modes cameraman 100 x 100
P =1.62% P =0.02% P = 0.00% P =1.98%
its = 823937 its = 33791 its = 324694 its = 340095 its = 141904

Plot of all the iterates for all starting pixels in (i, j,I) space (x =
modes). Most iterates concentrate on small regions, thus most
cells inms1 are empty (1 pixel = n x n cells).
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Approximates E and M steps with a subset Sparse EM (Neal & Hinton '98): - S : L_:;
of the data points (rather than all V) con- where p are posterior probabilities; this — | = §
sisting of a neighbourhood in the maximises the free energy F(p, x) = log p(x)—D (p||p(n|x)) 2 0.1} o
domain (not the range domain). and also p(x). 0.05] Total number of iterations and number of clusters
. (unlike finding neigh- e Run E steps frequently, where we update p(n|x) 0L S — & . for GMS as a function of the bandwidth o.
bours in full space). only for n € S; S is the (nearest neigh- " n
\ 0.14 0.26 0.4 0.56 0.76 0.86 0.14 0.26 0.4 0.56 0.76 0.86 ms 1 mSQ
e Does not converge to a mode bours), kept constant over partial E steps. . | ! ! - N - - > 20 o7 oss
e Segmentation error — 0 by increasing e e Run full E steps infrequently, which update all p(n|x) 1 [ | - 74038/_/_1.;566
QN 607 1 10 0.31 0.4
e Addresses B2. Parameter: ¢ < (0, 1] and also 5. 2 0l y oz
(fraction of data set used as neighbours) We choose S containing as many neighbours as neces- 2ol . T e s % e w2
sary to account for a total probability 1 — ¢ € (0, 1]. Thus, 0 | - o mS3 o mg4
the fraCtIOn O.I: data Used e VarIeS after eaCh ,I:u” Step 0.19 0.25 0.31T 0.38 0.44 0.47 0.19 0.25 0.31T 0.38 0.44 0.47 iéj. . .
9 _ e Converges to a mode no matter how S is chosen; com- " € ™ 0.
Conclusion putational savings if few full steps N N " o
The best method is ms1 spatial discreti- e Segmentation error — 0 by decreasing e (Yg) 02| 1 7 ?
sation (possibly combined with ms4 EM- e Addresses B2. Parameter: € € |0, 1) (prob. not in S) ol Optimal parameter value for each method (= that
Newton), which can accelerate GMS by 05 which minimises the iterations ratio subject to

one to two orders of magnitude while 7 107" 10° 10" 10710710107 107" 100 10° 107107107 10" achieving an error P < 3%) as a function of o.

achieving essentially the same segmenta- .
5 y : s4: EM-Newton

tion. Neighbourhood methods (ms2 spatial 0_6\\/ O | 3 R
neighbourhood, ms3 sparse EM) are less ~which quickly increase p. - : 05 e — 25 ? e
effective because GMS needs very large (reverting to EM g 0.4 B . P1§ 9" -
neighbourhoods. All 4 methods are read- if bad Newton step). Specifically, try Newton step when , 03 '1 =

ily extended to adaptive and non-isotropic |x(™) — x(7=1)|| < 4. The Hessian of p has a simple form. . 02l S~—— | 05 =

bandwidths. ms2 and ms3 are also applica- Computing the Newton step yields the EM step for free. TEREL 0 g T IR ” P % % % % % o n o
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Clustering error P (percent) and number of itera-
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11S—0546857. e Addresses B1. Parameter: 6 > 0 (minimum EM step value as a function of o.
length) relative to o

ble to clustering non-image data. « Converges to a mode with Clustering error P (percent) and computational cost for

each method as a function of its parameter.



