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ABSTRACT

The continued increase in memory, runtime and energy consump-
tion of deployed machine learning models on one side, and the
trend to miniaturize intelligent devices and sensors on the other
side, imply that model compression will remain a critical need for
the foreseeable future. A scalable solution to this problem must
be able to handle arbitrary choices of the reference model to be
compressed (driven by the machine learning task), of the form
of compression to use, and of the costs and constraints to obey
(driven by the target device). We describe an open-source toolkit
that is primarily designed to be flexible and extensible, but which
is also efficient in compression time and achieves state-of-the-art
accuracy-compression curves, as demonstrated empirically over a
number of deep net architectures. Mathematically, this is achieved
by formulating compression as a constrained optimization using
auxiliary variables that facilitate separability, and solving it via
a penalty method and alternating optimization, which results in
a “learning-compression” (LC) algorithm. This alternates a “learn-
ing” step over the original model, independent of the compression,
and a “compression” step over the compressed parameters, inde-
pendent of the dataset and task. Each step can typically be solved
by reusingwell-known algorithms, such as SGD or EM in the learn-
ing step, or SVD or :-means in the compression step, and this
makes the algorithm flexible and extensible. The toolkit is available
at https://github.com/UCMerced-ML/LC-model-compression.
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1 INTRODUCTION

The last few years have seen model compression, in particular neu-
ral net compression, arise as a real-world need for practical deploy-
ment of machine learning (ML) models in limited-resource devices.
On the one hand, very large and ever increasing models have been
progressively improving their accuracy in computer vision, speech
and natural language processing applications, but at the cost of
a huge number of parameters (millions or billions), and a corre-
spondingly large runtime and energy consumption during infer-
ence. On the other hand, we want intelligent devices (such as mo-
bile phones, biomedical sensors and other IoT devices) that will run
these models to become as small as possible, so they are portable,
even implanted inside the body or deployed in remote areas, and
consume as little energy as possible (so they require infrequent bat-
tery charging)—while remaining accurate and fast. And this can
be expected to be a neverending arms race, with models becoming
larger and devices smaller.

An open-source toolkit providing an effective solution to the
problem of model compression will benefit a large user popula-
tion. Any companies that deploy deep neural nets or other ML
models in limited-computation devices will want to distribute the
leanest possible model for each device. For example, web search
and social network apps in mobile phones (from companies such
as Google, Facebook, Tencent, Qualcomm, etc.); image processing
and computer vision networks in mobile robots; biomedical sen-
sors in portable devices; etc. Such a toolkit will also be useful for re-
searchers and educators in neural net compression. Finally, model
compression can be of independent interest beyond limited-com-
putation devices, because compression can act as a form of regu-
larization that improves generalization.

However, an effective model compression toolkit must address an

important issue: the large amount of existing ML models, tasks, loss

functions and corresponding training algorithms; and the many com-

pression techniques available. For example, if we want to compress
a ResNet trained with Nesterov accelerated gradient descent using
weight quantization, we may (with some effort) design a specific
algorithm to solve that. Such algorithm might involve, say, a mod-
ification of backprop to truncate the weights on the fly. But a very
different algorithm would be necessary to sparsify the covariance
matrices of a Gaussian mixture (perhaps some modification of EM
to threshold the parameters), or to use low-rank factorization in
linear regression (a problem called reduced-rank regression which
can actually be solved in closed form; 41). In turn, while the ML
model is guided by a task and loss function (say, classification via
cross-entropy), the compression should be guided by the target de-
vice (e.g. memory size and hierarchy, number of GPUs or CPUs,
etc.) and desirable costs (such as memory, runtime or energy).
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This problem is reminiscent of that of translating a program in
a high-level language (say, Quicksort in C) to a binary code in a
target system (say an Intel CPU with Linux). Designing a specific
translator from language X to system Y is possible, and potentially
result in very efficient code, but does not scale whenwe havemany
languages and systems. Instead, modern compilers such as LLVM
[31] solve this by having a front-end that translates the high-level
program to an intermediate representation and a back-end that
translates this to binary code in the target computer. While the
resulting binary code may lose some performance, this is by far
compensated by the gain in flexibility and extensibility, and in pro-
grammer productivity. It also facilitates modularity and reusabil-
ity, which lead to scalable, reliable software engineering. The anal-
ogy is not perfect because traditional compilers must ensure the
resulting binary code (the compressed model in our case) correctly
implements the high-level program (the reference, uncompressed
model), i.e., lossless compression. However, model compression al-
lows trading off some accuracy for some compression, i.e., lossy
compression. This tradeoff is controlled by a hyperparameter, as
described later.

Hence, while solving specific model compression problems will
remain an area of research interest, we advocate a generic, scalable
approach. This is necessary if we want to use a compression tech-
nique Y on a model X and there are multiple possibilities for X and
Y. Our proposed toolkit was designed with this as a primary goal.
Mathematically, this is achieved by a (quite natural) constrained
optimization formulation of the problem of model compression us-
ing auxiliary variables, which is solved using a penaltymethod and
alternating optimization (see section 3). This results in a “learning-
compression” (LC) algorithm, which iteratively alternates the solu-
tion of two well-defined problems. One step has the form of a stan-
dard ML problem using the original loss and dataset but with an
additional regularization term, which can be solved using an exist-
ing algorithm to train the original model (the learning (L) step). The
other step has the form of a standard signal processing problem
using the squared distortion, involving the model parameters but
not the loss or dataset, which can be solved using an existing algo-
rithm for the chosen formof compression (the compression (C) step).
Reusing existing algorithms means we capitalize on well-studied
problems for which often efficient implementations are available.
This saves time, makes the overall algorithm efficient, and facili-
tates debugging andmaintenance. Adding a newMLmodel (and its
corresponding training algorithm) to the toolkit makes it possible
to apply any existing compression technique to this model. Con-
versely, adding a new compression technique to the toolkit makes
it applicable to anymodel in the toolkit. The details of this aremore
clear in section 3, where we give explicitly the compression prob-
lem formulation (involving the ML task, loss function and dataset,
and the cost function and compression constraints to obey), and
the LC algorithm. Hence, our LC toolkit has the following impor-
tant advantages:
• Flexibility. A user can select an arbitrary model/task/loss (e.g.
neural nets, HMMs), cost function (e.g. inference time or energy)
and compression technique (e.g. pruning, quantization, low-rank).
They are all handled in a scalable way by the toolkit. Further, dif-
ferent compression techniques can be additively combined (such
as low-rank plus sparse).

• Extensibility. New ML models (and their corresponding train-
ing algorithms) or compression techniques (and their correspond-
ing algorithms) can be easily added.
• Reusability of algorithms and code. Algorithmic reusability
happens because the problems defined in the L and C steps may
be solved with different algorithms (each with its own pros and
cons). For example, scalar square-distortion quantization can be
solved exactly with dynamic programming and approximately
with :-means. Code reusability for a given algorithm happens
because of the availability of specialized libraries (such as BLAS
or ATLAS for linear algebra computations) or of highly opti-
mized systems-level accelerations for either specific ML models
or compression techniques.
• Modularity. Each ML model (task and loss function) is a sepa-
rate module, as is each compression type. Hence, changing the
model and/or the compression simply involves calling the cor-
responding module’s routine.
• Usability. In practice, one does not know what type of com-
pression is best for a given model. Our toolkit offers, within the
same framework of the LC algorithm, multiple models and mul-
tiple compression types (and more will be added) that a user can
try or combine with minimum engineering effort. Or, if a user
wants to try a specific choice of model and compression, all is
needed is to pick a corresponding L step and C step. It is not
necessary to create or look for a specific algorithm to handle
that choice of model and compression. Further, the toolkit can
produce a range of compressed models spanning an accuracy-
compression tradeoff curve, from which the user can choose an
optimal operating point.
• Efficiency. Empirically over many types of deep nets, we ob-
serve that compressing a model does not take much longer than
training the uncompressed model in the first place. We also plan
to offer a very fast (but less effective) compression that does not
require access to the training set [7].
• Theoretical guarantees. The LC algorithm is based on solid
optimization principles that guarantee that we find a local opti-
mum of the (usually nonconvex, often nondifferentiable) com-
pression problem. In some special cases, the LC algorithm is
equivalent to an existing algorithm, e.g. for linear regression
with ℓ1 pruning it is equivalent to a leading Lasso algorithm [16,
p. 122].
• Unique characteristics. The LC algorithm handles some un-
usual types of compressions effectively, such as automatically
learning the optimal rank of each layer in a deep net when us-
ing low-rank compression (a combinatorial problem) [19], and
additively combining or selecting different types of compression
for each layer [22], so they best cooperate to compress themodel.
This makes it possible to automate the discovery of optimal com-
pression types for, say, convolutional layers vs. fully-connected
layers.
• State-of-the-art compression performance. As noted above,
the choice of a common framework that handles all models and
compressionsmeans that wemay lose performance compared to
a custom algorithm for a specific model and compression. How-
ever, our by now extensive experiments show the LC algorithm
is in fact comparable or better than alternative compression al-
gorithms for specific cases proposed in the literature.



Besides the obvious practical applicability of our toolkit, one
important insight that it makes possible is to understand what
forms of compression are more suitable to what model, or even
to what layer of a deep net, because they can be compared in an
apples-to-apples way. For example, many deep nets have convo-
lutional layers (with few parameters but lots of FLOPs) and fully-
connected layers (with many parameters and few FLOPs). Is quan-
tization better than pruning for the convolutional layers, say? As
another example, in a hiddenMarkovmodel we have parameters of
very different type: the transition matrix (nonnegative, stochastic),
the Gaussian covariance matrix (positive definite, possibly shared
across states), etc. One expects that each of these types of param-
eters will respond better to a specific compression strategy. Learn-
ing about this is facilitated by our common algorithmic framework,
where the actual model training (in the L step) is decoupled from
the parameter compression. For example, to compare compressions
of a given neural net, we try different compressions (hence differ-
ent C steps), but all decisions about training the net (for example,
SGD hyperparameters such as learning and momentum rate and
minibatch size) are confined to the L step and kept fixed. A first
work exploring this is [21].

The LC algorithm was originally proposed in 2017 in its generic
form [4]. Since then, we have developed it for a number of compres-
sion types, including several forms of pruning (sparsity), quantiza-
tion and low-rank (or tensor) factorization, and evaluated it for sev-
eral well-known deep net architectures (ResNets, VGG, AlexNet,
LeNet, etc.), as described in a series of papers [4–7, 19–24]. Our
code for it has continuously evolved, from a first version in Theano
only for pruning [6] to our current version in Python and PyTorch,
which we have made recently available in Github as open source
under the BSD 3-clause license. The toolkit is an evolving work. In
the immediate future, we plan on incorporating fast model com-
pression based on a dataset-less approximation to the ML task [7],
and models beyond neural nets (in particular softmax classifiers,
Gaussian mixtures and HMMs) trained with algorithms such as
SGD or the EM algorithm. We also welcome contributions from
the community in the form of new neural net architectures and
ML models, and new compression techniques. The toolkit can also
be used to construct strong baselines with which to compare other
compression algorithms. We also plan to provide such baseline re-
sults for many different models in the toolkit website.

In this paper, we report on the current form of the toolkit. We
survey the LC framework (sections 3–4), discuss the software de-
sign and the functionality provided (section 5), and survey repre-
sentative experimental results (section 8) in the context of the state-
of-the-art in deep net compression.

2 RELATED WORK

The field of model compression has grown enormously in the re-
cent years resulting in plethora of algorithmic approaches, research
projects and software. At present, many ad-hoc solutions have been
proposed that typically solve only one specific type of compression:
quantization [5, 40, 59], pruning [15, 37, 46], low-rank decomposi-
tion [11, 12, 26, 34, 43, 44, 47, 52, 53, 57] or tensor factorizations
[12, 32], and others. In this section we limit our attention to the
software aspect of the neural network compression and overview

the supported compression schemes among the software, available
codes, and recently proposed compression frameworks.

Individual compressions. The majority of neural network com-
pression research is available as individual projects and recipes tai-
lored for a particular compression and model. Usually it is released
as a companion code for published research paper, e.g. see [44, 45,
52]. Some repositories combine several compression recipes in a
single place: e.g., Tensorpack1 or the fork of the Caffe library by
Wei Wen2.

Out of many individual compressions proposed in the litera-
ture, the quantization aware training of Jacob et al. [25] has gained
popularity and became a standard feature of major deep-learning
frameworks. TensorFlow, Pytorch, MxNet and others independent
projects like ADaPTION [39], Mayo [58], FINN-R[2] and Tensor-
Quant [38] natively support both training of such quantized mod-
els and allow an efficient inference afterwards.

Efficient inference frameworks. Relativelymature software is avail-
able if the goal is not to compress the model (by changing the
weights accordingly), but to run the model as efficiently as pos-
sible on a given hardware. Many frameworks target the mobile
deployment regime and allow to convert (compile) already trained
neural network to utilize the hardware-enabled fast computations:
for instance, through usage of edge TPU-s on Pixel 4 (Pixel Neu-
ral Core) or Neural Engine on iPhones. Examples of such frame-
works include TensorflowLite3, PyTorchMobile4, Apple CoreML5,
Nvidia’s TensorRT6, Qualcomm’sNeural Processing SDK7, Xlinix’s
FINN8, Facebook’s QNNPack9, and many others.

A generalization of this concept is to efficiently deploy and com-
pile the dataflow of the inference/backward pass for an arbitrary
set of hardware. Some examples include packages like Facebook’s
Glow10, Google’s XLA11, or Apache TVM12.

Compression frameworks. The diversity of compression mecha-
nisms and limited support by deep learning frameworks led to the
development of specialized software libraries such as Distiller [62],
NCCF [29], and PocketFlow [49]. These frameworks gather multi-
ple compression schemes and corresponding training algorithms
into a single framework, and make it easier to apply the compres-
sions to new models. Some of these frameworks allow to apply
multiple compression simultaneously to disjoint parts of a single
model, however most of the supported schemes can be applied
with per-model granularity only. Additionally, the underlying com-
pression algorithms do not share the same algorithmic base thus
requiring a substantial understanding of many hyper-parameters
for every compression-algorithm pair to efficiently tune the set-
tings.

1https://github.com/tensorpack/tensorpack/tree/master/examples
2https://github.com/wenwei202/caffe
3https://www.tensorflow.org/lite
4https://pytorch.org/mobile/home/
5https://developer.apple.com/documentation/coreml
6https://developer.nvidia.com/tensorrt
7https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
8https://xilinx.github.io/finn/
9https://engineering.fb.com/ml-applications/qnnpack/
10https://ai.facebook.com/tools/glow
11https://tensorflow.google.cn/xla?hl=en
12https://tvm.apache.org/
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There exists a third-party implementation (called Condensa) of
our LC algorithm done by NVIDIA’s Research Lab [27]. However,
Condensa is restricted to pruning and quantization only, without
the more advanced capabilities of our toolkit (mix-and-match com-
binations, large choice of compression techniques, extensibility).

3 MODEL COMPRESSION AS A
CONSTRAINED OPTIMIZATION

In this section, we briefly overview the Learning-Compression (LC)
framework, which is the backbone of our software. Let us begin
by assuming we have a previously trained model with weights
w, which were obtained by minimizing some loss function !(w).
This is our reference model, which represents the best loss we can
achieve without compression. Here we omitted the exact defini-
tion of the weights w, but for now, let us assume it has % param-
eters. In the learning-compression framework, the compression is
defined as finding a low-dimensional parameterization�(�) of the
weights w in terms of &-sized parameter �, with & < % .

In the framework, the compression and decompression are re-
garded as mappings, while in the signal processing literature they
are usually seen as algorithms, e.g., lossless compression algorithm
of Ziv and Lempel [61]. Formally, the decompression mapping �

maps a low-dimensional parameters� to the uncompressed model
weights w:

�: � ∈ R& → w ∈ R% ,

and the compression mapping behaves as its “inverse”:

�(w) = argmin
�

‖w − �(�)‖2 .

The goal of model compression is to find such � that its corre-
sponding decompressed model has (locally) optimal loss for a cost
of interest. Therefore the model compression as a constrained opti-

mization problem is defined as:

min
w,�

!(w) + _� (�) s.t. w = �(�) . (1)

Here, the term _� (�) with _ > 0 is intended to represent the cost
of the deployed compressed model in terms of quantities of inter-
est: energy, size, compute, etc. The problem in equation (1) is con-
strained, nonlinear, and usually non-differentiable with respect to
the compression parameters� (e.g., when compression is binariza-
tion). To efficiently solve it, the LC-algorithm is obtained by con-
verting this problem to an equivalent formulation using penalty
methods (quadratic penalty or augmented Lagrangian) and em-
ploying an alternating optimization. This results in an algorithm
that alternates two generic steps while slowly driving the penalty
parameter ` →∞:

• L (learning) step: min
w
!(w) +

`

2
‖w − �(�)‖2.

This is a regular training of the uncompressed model but
with a quadratic regularization term. The L step is indepen-

dent from the form of chosen compression.

• C (compression) step: min
�

‖w − �(�)‖2 + _� (�).

When _ = 0 the solution of the C step is� = �(w). It means
finding the best lossy compression of the current uncom-
pressed model weights w in the ℓ2 sense: the solution is

w

(reference)

w
∗ (optimal

compression)

�(�DC) (direct
compression)

w-space
(uncompressed

models)

w
∗ (`) feasible models

decompressible by �

Figure 1: The illustration of the model compression defini-

tion given by problem (1). The loss function !(w) is defined

over entire w-space, depicted with green contours, and has

a minimum at point w. The space of decompressible mod-

els (given by the form of of �) is illustrated in gray. Directly

compressing the pre-trained model by setting �
DC

= �(w)

results in sub-optimal solution. To obtain the constrained

minima of the problem (the point w
∗), the LC algorithm

alternates between L and C steps while driving parameter

` →∞, which follows the path w
∗ (`).

given by orthogonal projection on the feasible set. The C-
step solution depends on the actual form of of the compres-
sion scheme �(�) and the structure of the cost� (�), yet, it
is independent of the model loss and does not require training

dataset.

Wewill be using the quadratic penalty (QP) formulation through-
out this paper to make derivations easier. Yet, in practice, we im-
plement the augmented Lagrangian (AL) version which has an ad-
ditional vector of Lagrange multipliers # , see Figure 2. The QP ver-
sion can be obtained from the AL version by setting # = 0 and
skipping the multipliers update step. Figure 1 illustrates the idea
of model compression as constrained optimization, and depicts the
traced solution w

∗ (`) during the optimization.
Our software capitalizes on the separation of the L and C steps:

to apply a new compression mechanism under the LC formula-
tion, the software requires only a new C step corresponding to
this mechanism. Indeed, the compression parameter � enters the
L step problem as a constant regardless of the chosen compression
type. Therefore, all L steps for any combination of compressions
have the same form. Once the L step has been implemented for a
model, any possible compression (C steps) can be applied.

More importantly, this separation allows using the best tools
available for each L and C steps. For modern neural networks, the
L step optimization means performing iterations over the dataset
(for SGD) and requires hardware accelerators. The formulation of
the C step, on the other hand, is given by ℓ2 minimization, and as



input training data and model with parameters w

w← w = argmin
w
! (w) pretrained model

�← �
DC

= � (w) init compression

# ← 0

for ` = `0 < `1 < · · · < ∞

w← argmin
w
! (w) +

`

2 ‖w − �(�) −
1
` # ‖

2 L step

�← argmin
�
‖w − 1

`
# − �(�) ‖2 + _� (�) C step

# ← # − ` (w − �(�)) multipliers step

if ‖w − �(�) ‖ is small enough then exit the loop
return w, �

class LCAlgorithm():

# Housekeeping code ...

# Pretrained model is provided by user at initialization

def run(self):

self.mu = 0

self.c_step(step_number=0)

for step_n, mu in enumerate(self.mu_schedule):

self.mu = mu

self.l_step(step_n) # call user-provided L step

self.c_step(step_n) # resolve compression tasks

self.multipliers_step()

Figure 2: Le�: The pseudocode of the LC algorithm using the augmented Lagrangian formulation. Right: corresponding im-

plementation in our software (located in LCAlgorithm class); the main running method is shown.

wewill see in the next chapter, its solutions can be computed using
efficient algorithms. In fact, for certain compression choices, the C-
step problem is well studied and has a history of its usage on its
own merit in the fields of data and signal compression. From the
software engineering perspective, the separation of L and C steps
makes code robust and allows us to thoroughly test and debug each
component separately.

Our approach is based on solid optimization principles, with
guarantees of convergence under standard assumptions. It formu-
lates the problem of model compression in a way that is intuitive
and amenable to efficient optimization. The form of the actual al-
gorithm is obtained systematically by judiciously applying mathe-
matical transformations to the objective function and constraints.
For example, if one wants to optimize the cross-entropy over a cer-
tain type of neural net, and represent its weights via a quantized
codebook, then the L and C steps necessarily take a specific form.
If one wants instead to represent the weights via low-rank matri-
ces, a different C step results, and so on. The resulting algorithm is
not based on combining backpropagation training with heuristics,
such as pruning weights on the fly, whichmay result in suboptimal
results or even non-convergence. The user does not need to work
out the form of individual L or C steps (unless so desired), as the
toolkit already provides a range to choose from. For further details,
we refer the reader to our original papers [4–7, 19–24].

4 SUPPORTED COMPRESSIONS

In this section, we describe some of the compression schemes sup-
ported by our library. The complete list of supported compressions
is given in Table 1. We expect to add more compressions in the fu-
ture.

4.1 Quantization

The quantization is the process of reducing the precision of the
weights, and it is achieved by imposing a constraint on eachweight
F8 ∈ w to belong to a set of pre-defined or learned values C —
the codebook. Depending on the allowed values in the codebook,
the quantization schemes are known under different names: it is
called binarization with C = {0, 1} or {−1, 1} and ternarization
with C = {−1, 0, +1}.

Let us consider the general case when we compress the weights
of themodelwith a learned codebook of size , i.e.,C = {21, . . . , 2 }.
We will use an equivalent formulation of the quantization using

Type Forms

Quantization
Adaptive Quantization into {21, 22, . . . , 2 }
Binarization into {−1, 1} and {−2, 2}
Ternarization into {−2, 0, 2}

Pruning

ℓ0-constraint (s.t., ‖w‖0 ≤ ^)
ℓ1-constraint (s.t., ‖w‖1 ≤ ^)
ℓ0-penalty (U ‖w‖0)
ℓ1-penalty (U ‖w‖1)

Low-rank
Low-rank compression to a given rank
Low-rank with automatic rank selection for FLOPs
Low-rank with automatic rank selection for storage

Additive

Combinations

Quantization + Pruning
Quantization + Low-rank
Pruning + Low-rank
Quantization + Pruning + Low-rank

Table 1: Currently supported compression types, with their

exact forms. These compression can be defined per one or

multiple layers, and different compression can be applied

to different parts of the model.

a binary assignment variables z8 such that (
∑
: I8: = 1) for each

weightF8 . Then our compression goal can be written as:

min
w,C,z1,...z%

!(w) s.t. F8 =

 ∑

:=1

I8:2: , ∀8 = 1 . . . % .

This formulation immediately falls into the Learning-Compression
form of (1) with � = (C, z1, . . . z% ) and _ = 0. The corresponding
C-step problem of min� ‖w − �(�)‖

2 has the form of:

min
C, z1,...z%

%∑

8=1

 ∑

:=1

I8: (F8 − 2: )
2, (2)

which has been thoroughly studied in the signal compression and
unsupervised clustering literature. The solution to this problem is
known as the :-means. The general :-means problem is NP hard
[1, 10], however, this is a scalar versionwhich has an efficient, glob-
ally optimal solution using dynamic programming [3, 50, 51]. Our
software provides both :-means and dynamic programming solu-
tions for the C step of adaptive quantization problem (2). Addition-
ally, we provide solutions for fixed-codebook and scaled-codebook
variants of quantization. See full list in Table 1.



4.2 Pruning

Pruning is the process of removing some of the weights of the
model. One way of formulating this problem is by using the sparsi-
fying norms (e.g., ℓ0 or ℓ1) as penalties or constraints, limiting the
number of allowed non-zero weights. A particularly useful prun-
ing scheme is ℓ0-norm constrained pruning defined as:

min
w

!(w) s.t. ‖w‖0 ≤ ^. (3)

Since the ℓ0-norm is the count of non-zero items in the vector, the
formulation of (3) allows to precisely specify the number of re-
maining weights.

To bring it into the Learning-Compression form (1) we intro-
duce a copy parameter ) and obtain an equivalent optimization
problem of:

min
w

!(w) s.t. w = ) , ‖) ‖0 ≤ ^,

for which the C step is given by solving:

min
)
‖w − ) ‖2 s.t. ‖) ‖0 ≤ ^. (4)

The solution of (4) can be obtained by selecting all but top-^ weights
(in magnitude) of w and zeroing remaining.

Using similar steps, we can obtain the C steps for ℓ1 constrained
formulation of pruning, and extend it to penalty based forms as
minw !(w) + _‖w‖0, see [6]. In our framework we provide the im-
plementation for all combinations of ℓ0 and ℓ1-norms.

4.3 Low-rank compression

Our framework supports compressing the weight matrices of each
layer to a given (preselected) target rank. This allows parametriz-
ing the resulting compressed weight matrixW as a product of low-
rank matrices, UV) . The challenge of such a compression scheme
is a requirement to know the right choice of the ranks as it has a
direct effect the error-compression tradeoff of the resulting model.
To alleviate this issue, we include the implementation of the auto-
matic rank selection from [19], which we describe next.

Assumewe have a referencemodelwith" layers and theweights
w = {W1, . . . ,W" }, where W< is the weight matrix of layer <.
We want to optimize the following model selection problem over
possible low-rank models:

min
w

!(w) +_� (w) s.t. rank (W<) = A1 ≤ '<, ∀< = 1, . . . , "

here '< is the maximum possible rank for matrix W< . The com-
pression cost� (w) is defined in terms of the ranks of the individual
matrices:

� (w) = U1� (A1) + U2� (A2) + · · · + U"� (A" ),

and can capture both storage bits (to save space), total floating
point operations (to speed up the model), and even device-targeted
compression. To put it into the Learning-Compression form (eq. 1),
we introduce the parameter �< for each layer, with constraint
W< = �< . Then, the objective of the C step separates into "
problems over each layer’s weights:

min
�<,A<

_�< (A<) +
`

2
‖W< − �< ‖

2 s.t. rank (�<) = A< ≤ '< .

The solution of this C-step problem was given in [19]: it involves
an SVD and enumeration over the ranks for each layer’s weights.

5 DESIGN OF THE SOFTWARE

Equipped with the Learning-Compression algorithm and the re-
quired building-block compressions, we now discuss the design of
our library. Our main goal is: to have an easy to use, efficient, ro-
bust, and configurable neural network compression software. Par-
ticularly, wewould like to have the flexibility of applying any avail-
able compression (Table 1) to any parts of the neural network with
per-layer granularity. For example, consider the following com-
pression tasks:
• a single compression per layer: say, low-rank compression
for layer 1 with target rank of 5
• a single compression per multiple layers: e.g., prune 5% of
weights in layer 1 and 3, jointly
• mixingmultiple compressions: e.g., quantize layer 1 and prune
jointly layers 2 and 3
• additive compressions: be able to use additive compressions
in the same mix-and-match way

The mix-and-match on the level of a layer granularity is an im-
portant requirement as neural networks can have heterogeneous
structures: having layers with few parameters but many FLOPs
and vice-versa. As such, some layers might be better suited to the
specific form of compression than others, which has been exploited
in the literature with specific schemes targeting only, for example,
fully-connected layers [8, 43]. To implement our desiderata, we
leverage the modularity of the LC algorithm and introduce some
additional building blocks next.

L step. We hand off the model training operations, the L step, to
the user through the lambda functions. This gives a fine-grained
control to the user on the model’s actual learning: hardware uti-
lization, data source pulling, and other essential steps required for
training. Usually, the L step implementation is already available or
can be extracted from the training code used for the reference (un-
compressed) model. Below we give a typical way of implementing
the L step in PyTorch:

def my_l_step(model, lc_penalty, args**):

loss = model.loss(out_, target_) + lc_penalty()

loss.backward()

optimizer.step()

Here we skipped some code (such as the setup of the optimizer and
data source configuration) for brevity. Note that the only required
change is the addition of lc_penalty term.

C step. All provided compressions of Table 1 are implemented
as subclasses of CompressionTypeBase class, and the actual C step
is exposed through the compress method. This allows a straight-
forward extension of the library of compressions: if needed, the
user simply wraps the custom C-step solution into an object of
CompressionTypeBase class. Below we give an example implemen-
tation of the C step for binarization:

class ScaledBinaryQuantization(CompressionTypeBase):

def compress(self, data):

a = np.mean(np.abs(data))

quantized = 2 * a * (data > 0) - a

return quantized

Compression tasks. To instruct the framework on which com-
pression types should be applied to which parts of the model, the



user needs to populate a compression tasks structure. This struc-
ture is a list of simple mappings of the form: (parameters)→ (com-
pression view, compression type), which is implemented as a python
dictionary. The parameters are the subset of model weights, which
are wrapped into internal Parameter object. The compression view

is another internal structure that handles reshaping of the model
weights into a form suitable for compression, e.g., reshaping the
weight tensor of a convolutional layer into a matrix for low-rank
compression.

While our strategy of defining the compression tasksmight seem
unnecessarily complicated, it brings a considerable amount of flex-

ibility. For instance, it erases the limitations of standard compres-
sion approaches with coarse layer-based granularity: we can com-
press multiple layers with a single compression, or a single layer
with multiple compressions, while simultaneously mixing differ-
ent compressions in a single model. This abstraction disentangles
compression from the model structure and allows us to construct
complicated schemes of compressions in amix-and-matchway. For
example, consider the following compression task:

(layer 1, layer 3) → (as a vector, adaptive quantization : = 6),
(layer 2) → (as is, low-rank with A = 3)

where we want to jointly compress a three-layer neural network
so that the first and third layers are quantized with the same code-
book, and the second layer is a low-rank matrix with A = 3, and
we want these compression to be applied simultaneously. The se-
mantics of this compression is translated almost verbatim in our
framework:

from lc.torch import ParameterTorch as P, AsVector, AsIs

compression_tasks = {

P([l1.weight, l3.weight]): (AsVector, AdaptiveQuantization(k=6)),

P(l2.weight): (AsIs, LowRank(target_rank=3))

}

The fine-grained control over semantics of the compression allows
to include expert knowledge about properties of a particular model
(e.g., do not quantize the first layer) without much effort.

Running the software. To compress a model, the user needs to
construct an lc.Algorithm object and provide the following: 1) a
model to be compressed 2) associated compression tasks 3) imple-
mentation of the L step 4) a schedule of ` values, and 5) an evalu-
ation function to keep track of the error during the compression.

Here is an example of running the algorithm:

lc_alg = lc.Algorithm(

model, # a model to compress

compression_tasks, # specifications of compression

l_step_optimization, # implementation of the L step

mu_schedule, # schedule of the mu values

evaluation_func # the evaluation function

)

lc_alg.run() # an entry point to the LC algorithm

Once the run method is called, the LC algorithm will start execu-
tion, at which point the library will proceed in line-by-line cor-
respondence to the pseudocode on the left of Figure 2. Currently,
each of the compression tasks (and corresponding C step imple-
mentation) is called in order. Yet, due to the nature of the LC algo-
rithm, every compression task’s C steps can be executed in parallel,
further improving the efficiency of the algorithm.

6 A GUIDED TOUR THROUGH THE
FUNCTIONALITY OF OUR SOFTWARE

In this section, we demonstrate the flexibility of our framework
by easily exploring multiple compression schemes with minimal
effort. As an example, say we are tasked with compressing the stor-
age bits of the LeNet300 neural network trained on MNIST dataset
(10 classes, 28 × 28 gray-scale images). The LeNet300 is a three-
layer neural network with 300, 100, and 10 neurons respectively
on every layer; the reference network has an error of 1.66% on the
test set.

In order to run the LC algorithm, we need to provide an L step
implementation and compression tasks as described in sec. 5. The
implementation of corresponding L step is given below:

def my_l_step(model, lc_penalty, step):

params = [p for p in model.parameters() if p.requires_grad]

lr = lr_base*(0.98**step) # decayed learning rate

optimizer = optim.SGD(params, lr=lr, momentum=0.9, nesterov=True)

for epoch in range(epochs_per_step):

for x, target in train_loader: # loop over the dataset

optimizer.zero_grad()

loss = model.loss(model(x), target) + lc_penalty()

loss.backward()

optimizer.step()

Now, having the L step implementation, we can formulate the com-
pression tasks. Say, we would like to know what would be the test
error if the model is optimally quantized with a separate codebook
on each layer? Test error in such case is 1.97%, which is 0.31%
higher than the reference. What would be the performance of the
model if onewould quantize only the first and the third layers, leav-
ing the second layer untouched? Test error in such case is 1.96%.
What about if we prune all but 5% of the weights? Yes, our frame-
work can handle all of these combinations andmore; see Table 2 for
other examples. We can even apply different compressions to ev-
ery layer, for example, take a look at the last row of Table 2, where
we apply quantization, pruning, and low-rank compression to the
different parts of the LeNet300. Once the L step is given, trying a
new compression scheme only requires a new compression task.

7 PRACTICAL ADVICE

We implemented the LC algorithm originally in 2017, and we have
gone through multiple refinements and code reimplementations.
We have applied it to compressing a wide array of relatively large
neural nets, such as LeNet, AlexNet, VGG, ResNet, etc., which are
themselves tricky to train well in the first place. In the process, we
have gathered a considerable amount of practical knowledge on
the behavior of the LC algorithm on both small and large models
and datasets. We would like to share a list of common pitfalls so
future users of our framework would hopefully avoid them.

• Monitor the progression of the algorithm Specifically, two
important quantities to keep an eye on:
– The loss of the L step: !(w) +

`
2 ‖w − �(�)‖

2. The total loss
at the end of the L step must be smaller than the total loss
at the beginning. If some L step has not reduced the loss,
optimization parameters of the step should be tuned.

– The loss of the C step, ‖w − �(�)‖2, must have a smaller
value after each C step. This often fails when new compres-
sion is introduced into the pipeline, where compressmethod



Compression Code for compression tasks Error

no compression
Train 0.00%
Test 1.66%

quantize all layers

compression_tasks = {

Param(l1.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l2.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

Train 0.02%
Test 1.97%

quantize first and third layers

compression_tasks = {

Param(l1.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

Train 0.00%
Test 1.96%

prune all but 5%

compression_tasks = {

Param([l1.weight, l2.weight, l3.weights]):

(AsVector, ConstraintL0Pruning(kappa=13310)) # 13310 = 5%

}

Train 0.00%
Test 1.70%

single codebook quantization with
additive pruning of all but 1%

compression_tasks = { Param([l1.weight, l2.weight, l3.weights]): [

(AsVector, ConstraintL0Pruning(kappa=2662)), # 2662 = 1%

(AsVector, AdaptiveQuantization(k=2))]

}

Train 0.00%
Test 1.85%

prune first layer, low-rank to second,
quantize third

compression_tasks = {

Param(l1.weight): (AsVector, ConstraintL0Pruning(kappa=5000)),

Param(l2.weight): (AsIs, LowRank(target_rank=10))

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

Train 0.04%
Test 1.68%

Table 2: Some of the mix-and-match compressions possible in our framework and corresponding train/test errors. Here, we

use the LeNet300 neural network trained on the MNIST dataset (reference test error is 1.67%) and report final test errors after

compression. Notice that trying a new combination of compressions is as simple as writing a new compression tasks structure.

is not fully tested. For the base compressions in the frame-
work, we made sure they always optimize the C step.

• On the ` schedule Theoretically, the sequence of ` values
should start at 0 and infinitesimally grow to∞. In practice, we
use an exponentially increasing schedule `: = `0 × 0

: with
small initial `0 and appropriately chosen 0 > 1 for the :-th step
of the LC. Formost of compression schemes, we have developed
robust estimates of `0-values: for pruning see suppl.mat. of [6],
for rank-selection see suppl.mat. of [19]. For the value of 0, we
found the range of [1.1 1.4] to be a good spot.

8 EXPERIMENTS

Due to space considerations, here we report a limited set of exper-
iments; for an extensive empirical evaluation we refer to [18].

CIFAR10 experiments. Our toolkit allows an easy exploration of
tradeoff curves. For instance, on Figure 3 we explore FLOPs-error
tradeoff when compressing multiple networks on CIFAR10.

ImageNet experiments. Our library can handle the training/com-
pression of large models on bigger datasets. As a demonstration,
we train the 1140MFLOPs version of AlexNet [30] on the ImageNet-
1k task [42]: the network has 60M weights and achieves top-1/top-
5 errors of 40.43/17.55%. We then explore different compression
mechanisms and their nesting using our library by changing the

specifics of compression tasks. We run: 1) low-rank compression
with automatic rank selection targeted for FLOPs reduction, 2) ad-
ditive quantization and pruning (Q+P) schemewith varying amount
of pruning, and 3) we select some of our low-rank AlexNet mod-
els and further compress them with Q+P scheme (resulting in a
scheme of L→Q+P). We plot our results as colored tradeoff curves
on Figure 4. To give a perspective on our results, we additionally
plot individual compressions of AlexNet reported in the literature
with black markers of different shapes.

The resulting AlexNet models achieve considerable amount of
compression: we obtain a model with the compression ratio of
87.5× (2.78 MB) with no degradation in accuracy when compared
to the reference net, or a model with a compression ratio of 136×
(1.79MB)with no degradation in accuracywhen compared to Caffe
AlexNet (see Figure 4). These results outperform all AlexNet com-
pression results available in literature. Most importantly, all these
compressions can be done with minimal changes to the code base,
yet, with a possibility to target different compression goals. For ex-
ample, we can target the size or the speed of themodel, or both. For
instance, the chaining of the low-rank scheme with Q+P not only
compresses the size of themodel by 136×, but also results in a faster
inference due to lower FLOPs count (4.9×) coming from low-rank
structure of the weights. On Jetson Nano Developer board, such
FLOPs reduction translates into 3.5× faster inference speed [22].
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Figure 3: Error-compression space of test error (Y axis), in-

ference FLOPs (X axis) and number of parameters (ball size

for each net), formultiple networks trained onCIFAR10 and

compressed with low-rank and structured pruningmethods.

Results of rank selection with LC algorithm over different _

values for a given network span a curve, shown as connected

circles•—•, which starts on the lower right at the reference

R (_ = 0) and then moves left and up. Other published re-

sults using low-rank compression are shown as isolated cir-

cles labeled with a citation. Other published results involv-

ing structured filter pruning are shown as isolated squares

labeled with a citation. The area of a circle or square is pro-

portional to the number of parameters in the corresponding

compressed model. Ideal models are small balls (having few

parameters) on the left-bottom (where both error and FLOPs

are the smallest). See [19] for full details of experiments.

9 CONCLUSION

The fields of machine learning and signal compression have de-
veloped independently for a long time: machine learning solves
the problem of training a deep net to minimize a desired loss on
a dataset, while signal compression solves the problem of opti-
mally compressing a given signal. The LC algorithm allows us to
seamlessly integrate the existing algorithms to train deep nets (L
step) and algorithms to compress a signal (C step) by tapping on
the abundant literature in the machine learning and signal com-
pression fields. Based on this, we have described an open-source
toolkit for model compression. It is primarily designed for flexi-
bility and extensibility, in order to handle in a scalable way arbi-
trary choices of the model, task and loss function; other desirable
cost functions such as memory, runtime or energy; and the type
of compression to apply. The LC algorithm is based on solid opti-
mization principles that guarantee that we find a local optimum
of the (usually nonconvex, often nondifferentiable) compression
problem, and is not much slower than training an uncompressed
model. The toolkit allows reusability of code developed in machine

Compression vs. error tradeoff on AlexNet
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Figure 4: Compression schemes and their combinations

available in our library when applied to AlexNet (trained

on ImageNet-1k). We show results of: low-rank compres-

sion with rank selection, additive combination of quanti-

zation and pruning (Q+P), and nesting of low-rank scheme

with Q+P. The only change required to obtain our results is

in writing of a new compression task definition (about 10

lines of Python code). All other results available in the lit-

erature are given as black annotated markers and achieved

using highly specialized algorithms. Mark descriptions: Q—

quantization, P—pruning, L—low-rank. If compressions are

chained, we denote it with ‘→’, e.g., P→Q means network

is quantized then pruned. Results obtained using our soft-

ware are given as colored connected lines. Note: in their

work, Yang et al. [54] reported 118× and 205× compression on

AlexNet, yet, these numbers were reported without a proper

accounting for the storage of the sparse index. When the

sparse index is saved along the model, the compression ra-

tios become 52× and 79× (results labeled as P→4Q, P→5Q).

learning for trainingmodels, and in signal processing for compress-
ing data. This results in a highly usable and reliable solution to
determine how best to compress a given model. Experimentally,
in a series of papers we have observed little, if any, loss of perfor-
mance compared to customized algorithms for specific choices of
model and compression. We have developed the toolkit to include
various forms of compressions out of the box, including quantiza-
tion, pruning, and low-rank in various forms. The toolkit, avail-
able at https://github.com/UCMerced-ML/LC-model-compression
under the BSD 3-clause license, is an evolving work and we expect
future contributions from our own research group and the commu-
nity.
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