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Abstract
Understanding building energy consumption has become

important due to stricter energy regulations, increasing en-
ergy costs and also as buildings have long term impact on
energy consumption. In order to recommend retrofits, it
is important to have accurate estimates for building energy
consumption which is affected significantly by occupancy
patterns. This paper explores the development of static oc-
cupancy models using a model adaptation technique that is
able to capture accurately features of occupancy distribu-
tions typically found using a large amount of training data
(days, weeks, months). Using only one day of training data
that can be easily recorded without any infrastructure but
battery-operated sensors with on-board memory, we show
that our adapted occupancy model can estimate energy sav-
ings of 10.9%; and the room temperatures for the adapted
model schedules were 0.5oF and 1.4oF off from the target
temperatures for summer and winter months, respectively.
This performance was on par with models trained with four
times as much data. Our proposed technique can be used
by energy auditors to estimate energy savings for existing
buildings and by building energy managers to optimize static
schedules which assume maximum occupancy.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development

General Terms
Algorithms, Machine Learning, Measurement

Keywords
Model Adaptation, Occupancy, HVAC, Energy Saving

1 Introduction
In 2010, residential and commercial buildings accounted

for 40.4% of the total U.S. primary energy consumption [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
BuildSys’11, November 1, 2011, Seattle, WA, USA.
Copyright 2011 ACM 978-1-4503-0749-9 ...$10.00

Also, the heating, cooling and ventilation systems were re-
sponsible for approximately 50% of the total building energy
usage [1]. In addition, a vast majority of existing buildings
are older than 20 years and do not meet current energy effi-
ciency construction standards [12]. So, not only do buildings
account for a significant portion of energy consumption, but
also they impact the long-term energy consumption. There-
fore, a significant reduction in building energy consumption
will directly impact the overall energy usage numbers.

A common way to estimate energy savings is through
building energy auditing. A detailed energy audit [12] is
comprehensive, time-consuming and involves inspection and
analysis of the energy consumption from utility bills. In ad-
dition, sensors are deployed on-site to measure and verify the
energy use (lighting, office equipment, fans, chillers, etc.).
Typically, for small buildings on-site work takes one day,
while bigger buildings might require two days. This data is
used by computer simulation programs such as DOE-2, En-
ergyPlus, etc. to evaluate and recommend energy retrofits.

Regulating ventilation based on occupancy data has been
shown to reduce HVAC energy usage by 10-15% [4]. Stud-
ies have optimized HVAC system usage based on occu-
pancy [5, 15, 2]. In all these approaches, the core idea is to
instrument the building extensively to infer occupancy data.
Other studies [7, 15, 8] have created models from the oc-
cupancy data and have used them to estimate energy sav-
ings. The drawback is the need for large training datasets
(weeks, months) to compute reliable estimates for the nu-
merous model parameters. Also, once a model is created, it
is not possible to directly port it to a different building due to
different floor-plans, room functions and the resulting occu-
pancy patterns. Therefore, it implies that for modeling new
buildings, it is required to record occupancy traces for ex-
tended periods of time (weeks, months) using extensive sen-
sor network infrastructure comprising of sensor nodes, data
logging units, power cables, etc. This prevents applications
such as building energy auditing from making use of occu-
pancy data to maximize the energy savings of a new building
using short occupancy data traces (1-2 days).

For such situations, it makes sense to use a reference
building occupancy model that has been trained with exten-
sive data and adapt it to the new building given a far smaller
occupancy data trace than would be necessary to train a
new model from scratch. Such occupancy datasets can be
recorded using few sensors with the data being stored in the
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Figure 1. Building floorplans for reference model dataset
(a) and adaptation model dataset (b), respectively.

on-board memory. Also, there is no need to install cabling
to power these nodes as they can survive for a single day
using their battery packs. This will enable highly accurate
buildings energy auditing based on usage patterns.

In this paper, we try to address the problem posed by the
large data requirement for training occupancy models. We
propose a technique to adapt the parameters from a refer-
ence building occupancy model to fit the smaller occupancy
dataset for the new building.

2 Background and Motivation

2.1 Occupancy Modeling Approaches
Building energy simulation tools such as eQuest and En-

ergyPlus use predefined occupancy profiles for office build-
ings based on day-type and maximum room occupancy.
Recent studies have optimized energy consumption by ad-
justing the HVAC based on occupancy data. Several ap-
proaches [6, 15, 16, 2] have proposed aggregating data from
multiple sensor streams to infer occupancy data. These ap-
proaches involve measurement of electrical loads, extensive
deployment of sensors such as CO2 and passive infra-red
(PIR) sensors and computer network activity monitoring for
determining whether a room is occupied. Other approaches
have utilized PIR and door sensors, which give a binary in-
dication of occupancy to optimally ventilate rooms in of-
fice buildings [2]. In [7, 8], occupancy models were pro-
posed which were estimated using data from a camera sen-
sor network. In the aforementioned approaches, the studies
assumed/required the presence of IP-based connectivity for
a back-channel to transmit and store data, electronic door
locks which could provide access logs, submetering to mon-
itor the consumption within a building and dense camera sen-
sor network deployment. Also, to enable their models to
predict occupancy in advance to optimally control lighting
and ventilation, the data streams need to be recorded over
days, weeks and months to incorporate occupancy data to
improve building conditioning by doing occupancy predic-
tion. For example: 5 day dataset using a camera sensor net-
work [7, 8], 3 month dataset from contact and PIR sensors,
network activity, building energy usage [15] and 10 month
dataset from multiple streams (room maps, appliance power
meters, building sub-metering) [16].

2.2 Model Adaptation Techniques
Similar to occupancy modeling, in the area of speech

recognition, training word recognition systems involve es-
timating parameters for Gaussian-mixture based HMMs,

which have a very high number of states and mixture com-
ponents. For example: in [13], the HMM had 1778 states
with 6 mixture components per state. The training process to
estimate good parameter estimates for such models required
huge amounts of training data. Model adaptation techniques
such as Maximum A-Posteriori (MAP) [9] and Maximum
Likelihood Linear Regression (MLLR) [13] have been pro-
posed to solve the training data problem. The drawback of
MAP is that it can only update the parameters seen in the
training data. MLLR is based on tying together groups of
parameters (means, covariances) and using linear transfor-
mations of the parameters. It significantly outperforms MAP
with very little data. In [10], the means of an mixture of
multivariate Bernoulli (MMB) distribution were tied using
a non-linear transformation for modeling the MNIST hand-
written digits dataset and 802.15.4 wireless traces. Thus,
parameter-sharing based techniques have proven their util-
ity for solving a wide variety of modeling problems that re-
quired large training datasets.

In this paper, we apply these well-studied techniques to
solve the large data requirement problem of occupancy mod-
eling. Our approach for estimating occupancy models makes
the occupancy data collection process practical and easy to
carry out for practitioners such as building energy auditors.

2.3 Motivation
Figure 1 shows parts of two different building floorplans.

The occupancy patterns for areas within these floorplans is
shown in Figure 2. As the occupancy patterns are differ-
ent over different floorplans, it is not possible to port occu-
pancy models created for one floorplan to a completely dif-
ferent floorplan . Then the only way to create a new model
is to deploy a sensing infrastructure to record the occupancy
patterns. However, most of the current occupancy estima-
tion approaches are ill-suited for existing buildings that lack
infrastructure such as submetering systems and electronic
locking systems among others. In such situations, the impor-
tance of wireless sensor networks (WSNs) is realized as they
allow for sensing without any pre-existing infrastructure.
However, the limitations of a WSN, namely limited storage
and limited battery life, are exposed when deployed to record
occupancy data. This is because when there is no network
access, the sensor nodes cannot transmit the data and hence,
need to store it on-board. PIR sensor have long lifetimes but
give binary indication of occupancy, whereas cameras sen-
sors are capable of accurate occupancy estimates [17, 11]
but quickly deplete the limited battery-life of sensor nodes.
This imposes a practical limit on the amount of data that can
be recorded using a sensor network to train occupancy mod-
els. In the context of energy auditing where data collection
is limited to 1-2 days [12], there is need for models that can
provide reliable, or at a minimum, conservative estimates of
occupancy using 1 or 2 days of training data as input.

3 Proposed Approach
In general, model adaptation techniques adapt the pa-

rameters of a pre-existing model, called reference model,
to match the distribution of the new data (adaptation data)
from a small dataset. In this paper, we present a technique
to adapt the parameters of the multivariate Gaussian model
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Figure 2. Room occupancy averaged over the length of dataset (5-days) for every hour for the reference model (a) and
adaptation (and retrained) model (b), respectively.

(MVGM) [7]. Our reference model is an MVGM trained us-
ing an extensive 5-day occupancy dataset from building with
floorplan as shown in Figure 1(a). The occupancy data that
we record for the new building floorplan (see Figure 1(b))
is called adaptation data. The variation in room occupan-
cies for the reference model dataset and adaptation dataset
is shown in Figure 2. The reference model dataset rooms
show occupancy patterns that are drastically different from
the adaptation dataset rooms. The room occupancies for both
datasets were recorded using a camera sensor network [11].

In this section, we briefly describe the MVGM, explain
our proposed approach for adapting the MVGM parameters
using a non-linear transformation and provide a generalized
EM algorithm to estimate the transformation parameters.

3.1 Multivariate Gaussian Model (MVGM)
In [7], Erickson et al. have proposed a multivariate

Gaussian model (MVGM) for modeling occupancy data. A
separate multivariate Gaussian distribution was trained for
every hour of the day using occupancy data from several
rooms of a building floorplan. A natural extension of the
MVGM is to use a mixture of multivariate Gaussians in place
of a single multivariate Gaussian. This gives the model ad-
ditional flexibility to model the room occupancy patterns for
every day of the week for each hour. In this paper, we use
a mixture of multivariate Gaussian distribution for modeling
occupancy for each hour. Let Xh = (xh1, . . . ,xhN) denote a
series of N (=3600, one per second) occupancy data obser-
vations collected during hour h of a day. Each xhn is a vector
of dimension D, where D is the number of rooms. The prob-
ability density is given by:

p(xhn) =
M

∑
m=1

πhmp(xhn|m)

and

p(xhn|m) =
1

(2π)
D
2 |Σh|

1
2

exp

{
1

2
(xhn−µhm)

′Σ−1
h (xhn−µhm)

}

where there are M components and the parameters are the
mixing proportions πhm (which are positive and sum to one),
the means µhm (µhm ∈ R

D, µhm > 0) and the covariance ma-
trix Σh. From this, the average occupancy vector for any
given hour can be computed as follows:

µh =
M

∑
m=1

πhmµhm

The parameter estimation for a mixture of multivariate
Gaussian distribution is done with an EM algorithm [3]. EM
is an iterative algorithm that alternates between an expec-
tation (E) step and a maximization (M) step, till the algo-
rithm converges to a local minima. In the E step, the pos-
terior probability of each component given a data vector is
computed using the current parameter. The M step estimates
updated parameters for each component using the posterior
probabilities. In the context of adaptation, we will call re-
training the process of estimating the mixture of multivari-
ate Gaussian parameters using this EM algorithm given the
adaptation data, and initializing the parameters to those of
the reference model. Retraining with little data results in
over-fitting. Such models generalize poorly to future data.
In case of occupancy modeling, when little adaptation data
is available, some rooms may be unoccupied on the day the
data was recorded. The corresponding µhm will clamp to
0, indicating that the room remains unoccupied at all times,
whereas the room may be heavily utilized on other days.

4 Adapting the MVGM
Suppose we have a MVGM (the reference model) cor-

responding to a building floorplan for every hour (h ∈
{1, . . . ,24}) of the day. The reference model for each hour
is trained on an extensive occupancy dataset resulting in
good parameter estimates for the mean (µm), covariance Σ

(same for all components) and mixture proportions πm where
m ∈ {1, . . . ,M} (h is dropped from subscript to simplify no-
tation). We are now given an adaptation occupancy dataset
comprised of N D-dimensional vectors for a different build-
ing layout for which we need to estimate the adapted MVGM

parameters, {π̃m, p̃m}
M
m=1 and Σ̃. Our adaptation algorithm is

based on the idea of tying the MVGM parameters, specif-
ically the means, through a transformation of the reference
MVGM means. Adapting with a linear transformation can
restrict the changes in some of the µ̃md , because when the
smallest or largest room occupancy value reaches satura-
tion, it prevents less extreme occupancy values from adapt-
ing significantly (since all rooms share the same transforma-
tion within a component of the Gaussian mixture). Adapt-
ing with a sigmoid transformation avoids this problem. This
strategy is similar to the approach in [10], where Bernoulli
parameters must lie in [0,1]. In our proposed approach, we
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Figure 3. Occupancy models for Office, Lab and Conference rooms using retrained MVGM trained with 4 days of
data (MVGM-R4), adapted MVGM trained with 1 day of data (MVGM-A1), and the corresponding retrained model
MVGM-R1.

tie the means of the reference model together using a scaled-
sigmoid transformation as follows:

µ̃md = σ(µmd ;am,bm) =
Om

1+ e−(amµmd/Om+bm)
, d = 1, . . . ,D

where, Om is the maximum room occupancy out of all rooms
and is known a priori. The transformation has only two pa-
rameters am,bm per component, which enables us to estimate
good values from the small adaptation occupancy dataset. As
am,bm are shared among the D-reference model means, their
effect is propagated among all the component means. The
mixture proportions are considered free during adaptation,
subject to constraint that they sum to 1. The covariance for

the mixture distribution is kept fixed (Σ̃=Σ) during the adap-
tation. Thus, our algorithm needs to maximize the likelihood
of the adaptation data over 3M−1 parameters (π̃1, . . . , π̃M−1

and a1,b1, . . . ,aM,bM), which are small in comparison to the
(D+ 1)M +D2 − 1 parameters (means, covariance matrix
and mixing proportions) for the retrained MVGM.

We solve for am,bm for the adapted MVGMs for each
hour using a generalized EM algorithm. The objective func-
tion is the log-likelihood of the adaptation data given the con-
strained MVGM with 3M−1 free parameters:

L
(
{π̃m,am,bm}

M
m=1

)
= ∑

N
n=1 log∑

M
m=1 π̃mp(xn;am,bm)

where p(xn;am,bm) is a multivariate Gaussian where µ̃md =
σ(µmd ;am,bm). We maximize the objective function using
a generalized EM (GEM) algorithm [14], which resembles
the one in [10]. We initialize from the reference model,
setting π̃m = πm, and use an identity transformation (ap-
proximated using a sigmoid with am = 6,bm = −3) to set
µ̃md = µmd . The GEM algorithm stops iterating between the
E and M steps after converging to a local minima (estimates
of am,bm,πm where (m ∈ {1, . . . ,M}).

5 Modeling Results
To evaluate the performance of our proposed approach,

we compare the adapted models with the retrained models in
terms of model log-likelihood. Out of the 5-day adaptation
dataset, we used 4 days for training using the retraining and
adaptation, and the 5th day was used as the test set.

Figure 4 shows the variation in test set log-likelihood
of the retrained and the adapted MVGMs as a function of
the amount of adaptation data. With just 1 day of data,
the log-likelihood of the adapted model (MVGM-A1) is al-
ready significantly better than the corresponding retrained
model (MVGM-R1). As we increase the adaptation data,
the log-likelihood of the adapted model approaches the opti-
mal log-likelihood (MVGM-R4). The retrained model needs

much more data to achieve a comparable log-likelihood to
the adapted model; and its performance is much more vari-
able depending on the specific adaptation vectors used (large
error bars). Figure 3 displays the occupancy models for ev-
ery hour for each room. We can observe that for rooms such
as the Office and Lab that are heavily utilized, there is very
little difference between the 3 models. However, for the con-
ference room (Figure 3), we can that MVGM-A1 is able to
capture the occupancy behavior similar to MVGM-R4 and
also the average occupancy as shown in Figure 2. This is in
stark contrast to MVGM-R1 that overfits to the adaptation
data used for training the model, where the conference room
was occupied only between 18:00-20:00 hours.

This clearly demonstrates that the adapted model gener-
alizes to data in the unseen test-sets much better than the
retrained model with significantly less training data.

6 Building Energy Simulation Results
Using the MVGM-R4, MVGM-R1 and MVGM-A1

models, we construct an expected occupancy schedule for
each hour using the average occupancy vector. For simu-
lating the building energy consumption, we use these oc-
cupancy schedules to estimate ventilation and temperature
schedules. We inputted these schedules into an EnergyPlus
model of the building floorplan (total 32,000 sq.ft.) from
which we have adaptation data for a Hall, Office, Lab and
Conference room (approx. 12,000 sq.ft., see Figure 1). The
building is complaint to applicable codes and has a single
duct terminal-reheat HVAC system. To estimate the energy
savings and conditioning effectiveness, we compared to a
baseline strategy. The baseline strategy conditions rooms as-
suming maximum room occupancy between 7 a.m. and 10
p.m. and is off at other times. Also, we compare with OB-
SERVE [8]. It utilizes a Markov chain, in conjunction with
a camera sensor network, to model the temporal changes in
occupancy of a building. In OBSERVE, the camera sensor
network sources the data to contrast and correct the transition
probabilities of the Markov chain. OBSERVE has shown
significant energy savings and close to optimal conditioning.

6.1 Energy Savings
Figure 5 shows the energy savings. Note, only the

Hall, Office, Lab and Conference rooms (12,000 sq.ft.), for
which adaptation data was available, were conditioned us-
ing MVGM-R4, MVGM-R1, MVGM-A1 and OBSERVE.
The other parts of the floorplan (20,000 sq.ft.) were condi-
tioned using the baseline strategy. In our EnergyPlus sim-
ulations, energy consumption was computed for the major
HVAC components; the fans, heating (gas), and cooling
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Figure 6. Comparison of the models with respect to temperature in the Conference room and Office 3 for the summer
and winter seasons. The root mean square error of the target and measured temperature is examined for each hour.

(gas). OBSERVE and MVGM-R4 which are trained using
4 days of occupancy data show average annual energy sav-
ings of 11.2% and 11.4%, respectively. In comparison, our
proposed approach MVGM-A1, which used only 1 day of
occupancy data, shows annual savings of 10.9%. MVGM-
R1 estimates annual savings of 12.9%. This is explained by
the fact that the MVGM-R1 model parameters (Figure 3) in-
dicate that the conference room is mostly empty compared
to MVGM-R4 and MVGM-A1. OBSERVE predicts occu-
pancy using its Markov chain model and also corrects the
ventilation and temperature using occupancy data updates
from the sensor network. Therefore, the energy savings from
OBSERVE are the most that one can expect to achieve. Our
proposed approach, MVGM-A1 is conservative in its energy
saving estimate, whereas MVGM-R1 over-estimates savings
due to overfitting of the model parameters.

6.2 Conditioning Effectiveness
There are two different conditioning criteria that need to

be examined: thermal comfort (ASHRAE Std. 55) and out-
side air ventilation effectiveness (ASHRAE Std. 62.1). We
compare the different models on the test day occupancy con-
ditions for the winter and summer seasons.

6.2.1 Thermal Comfort
The optimal temperatures for the heating and cooling

schedules used in the analysis are 78oF and 75oF respec-
tively. Figure 6 shows the root mean squared error (RMSE)
of the room temperature to the target temperature during oc-
cupied periods for the Conference Room and Office for the
winter and summer seasons. The Baseline strategy is optimal
between 7:00-22:00 hours as it conditions rooms between

those times and is off at other times. OBSERVE has the best
overall performance of the four models with lower RMSE
for almost all hours for both the winter and summer. This is
because OBSERVE has perfect visibility of the room occu-
pancy based on data from the camera sensor network. In con-
trast, the models (MVGM-R4, MVGM-R1 and MVGM-A1)
have static temperature schedules created using the mean oc-
cupancy of each model at every hour.

For Office and Lab, all models do equally well. This is
because, the adaptation data used for training the models is
not significantly different from the test day. However, for
the conference room, which is mostly unoccupied, except
for certain hours on certain days, we can see the deviation
from the Baseline. In summer, the RMSE of the Baseline,
MVGM-R4, OBSERVE and MVGM-A1 models is below
0.5oF whereas the RSME for MVGM-R1 is 1.8oF. In win-
ter, the RMSE of the Baseline, MVGM-R4, OBSERVE and
MVGM-A1 models is below 1.4oF whereas the RSME for
MVGM-R1 is 2.4oF. The MVGM-R1 model conditions the
conference room only starting from 18:00 hours till 20:00
hours, as the corresponding schedule indicates occupancy
between those hours. This explains the worse behavior of
MVGM-R1. The RMSE error is higher for the winter than
the summer because the heating plant used for the simulation
is less effective than the cooling plant.

6.2.2 Ventilation
Figure 7 shows a comparison of the ventilation rates. We

computed the ventilation required for the area occupied by
Hall, Lab, Office and Conference rooms. All ventilation
strategies perform better than Baseline (maximum ventila-
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Figure 7. Comparison of the ventilation rates. The ven-
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tion from 7am-10pm); the Baseline rate exceeds the required
by at least 23%. OBSERVE has perfect visibility and there-
fore, ventilates the best, exceeding required by 2.8%. The
static models over and under ventilate at times. MVGM-R4,
MVGM-R1 and MVGM-A1 all perform similarly, exceed-
ing required by average of 8.3%. At times, when the models
under-ventilate, it is by an average of 12 CFM (2 people)
over a floorplan area of roughly 12,000 sq.ft.

7 Discussion
Our adapted model, MVGM-A1 outperforms the cor-

responding retrained model, MVGM-R1, trained with one
day of adaptation data in terms on test-set log-likelihood.
MVGM-A1 gives a conservative estimate of energy sav-
ings when compared to MVGM-R1, which over-estimates
the energy savings. In terms on conditioning effective-
ness, MVGM-A1 matches MVGM-R4 in being closer to tar-
get temperature compared to MVGM-R1. This is because,
MVGM-R1 overfits to the adaptation data and estimates that
the conference will only be occupied only between 18:00-
20:00 hours for all days of the week, resulting in greater en-
ergy savings than all other models. In contrast, MVGM-A1
generalizes beyond the adaptation data, estimating that the
conference room will be occupied more times than is ob-
served in the limited adaptation data. This behavior can be
attributed to the use of the parameter-sharing based model
adaptation approach. As the reference model parameters are
tied together with the transformation, the resulting adapted
model parameters cannot clamp to 0 when the room is unoc-
cupied. This results in the adapted model parameters having
non-zero mean occupancy for rooms that are unoccupied in
the adaptation data, which is closer to reality.

Typically, model adaptation is effective if the reference
model is close enough to the new adaptation occupancy data,
such that the transformation parameters can then map to the
distribution of the adaptation data. As an analogy, for a Eng-
lish word-recognition system, the reference model from one
English language speaker can be adapted to a different (new)
English speaker with just a few utterances. However, this
does not work when using a English speaker reference model
for French word recognition system, i.e. adaptation data is
from a French speaker. Therefore, in our paper, our refer-
ence and adaptation data were from two different floorplans
but both were office buildings. Our results may be differ-
ent if the adaptation data were from a building used exclu-
sively for classrooms. For the purpose of energy auditing,
it would be useful to have reference models for a few dif-

ferent types of buildings with fundamentally different usage
patterns such as government offices, private offices, schools,
research buildings, etc.

8 Summary
In this paper, we addressed the issue of estimating occu-

pancy models when it is possible to collect only 1 or 2 days
of occupancy data. Using model adaptation, we reduced
the amount of data required for estimating good parame-
ter values for the occupancy models to 1 day. The adapted
model generalizes to occupancy conditions not recorded in
the small training dataset, conservatively predicting 10.9%
energy savings and conditioning effectiveness on par with
other models that require 4 times as much training data.

Our model adaptation approach can enable highly accu-
rate building energy auditing, by allowing auditors to esti-
mate energy savings using the 1-2 days of occupancy data
recorded on-site. Also, it is a useful tool for building energy
managers to optimize their baseline strategies. They can col-
lect occupancy data using a handful of wireless sensors over
1 day and use model adaptation to get reliable occupancy
model estimates. In both these cases, apart from the battery-
operated wireless camera sensor nodes, there is no need for
additional infrastructure to infer occupancy data that can pro-
vide significant energy savings in return.

9 References
[1] 2010 Building Energy Data Book. U.S. Dept. of Energy, 2011.
[2] Y. Agarwal, B. Balaji, S. Dutta, R. K. Gupta, and T. Weng. Duty-

cycling buildings aggressively: The next frontier in HVAC control. In
IPSN’11.

[3] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag, 2006.

[4] M. J. Brandemuehl and J. E. Braun. The impact of demand-controlled
and economizer ventilation strategies on energy use in buildings.
ASHRAE Transactions, 1999.

[5] D. T. Delaney, G. M. P. O’Hare, and A. G. Ruzzelli. Evaluation
of energy-efficiency in lighting systems using sensor networks. In
BuildSys ’09.

[6] R. Dodier, G. Henze, D. Tiller, and X. Guo. Building occupancy de-
tection through sensor belief networks. Energy & Buildings, 2006.

[7] V. Erickson, Y. Lin, A. Kamthe, R. Brahme, A. Cerpa, M. Sohn, and
S. Narayanan. Energy efficient building environment control strategies
using real-time occupancy measurements. In BuildSys, 2009.
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