CUBIST-STYLE IMAGE EFFECTS WITH OBLIQUE DECISION TREES

Edric Chan Great Oak High School Temecula, California

Magzhan Gabidolla Dept. CSE, UC Merced Merced, California

Miguel Á. Carreira-Perpiñán Dept. CSE, UC Merced Merced, California

https://edric-chan.github.io/cubist-TAO/

Figure 1: Learning an oblique regression tree using the Tree Alternating Optimization (TAO) algorithm to represent an image (in general, we can use T trees). Plot 1: an input image, as a grid of points $x_n \in \mathbb{R}^2$ (input features) each with a color $y_n \in \mathbb{R}^3$ (output labels). Plot 2: an oblique regression tree of depth 3 learned on this dataset. Plot 3: the partition of the 2D space induced by the tree. Plot 4: the partition with each leaf polygon colored by the leaf label.

Leonardo

Picasso (cubist style)

Figure 2: Images 1, 2: actual paintings. Rest: tree outputs for image 1.

Figure 3: Left: photograph. Rest: tree outputs using different depths Δ and number of trees T.

Figure 4: Tree outputs over training TAO iteration (*left*: $\Delta = 5$, T = 1; *right*: $\Delta = 6$, T = 1).

Figure 5: Left: original image. Rest: tree outputs using different seeds (for $\Delta = 6$, T = 3). Combining these images into a video produces a jittery effect reminiscent of rotoscopic animation. See https://youtube.be/TXPm0mw4a_A

 $\Delta = 10, T = 1$ $\Delta = 6, T = 1$ $\Delta = 9, T = 1$ $\Delta = 8, T = 1$ $\Delta = 14, T = 1$

Figure 6: Can you guess the original paintings, drawings or photographs?

Bay Area Machine Learning Symposiun (BayLearn 2024), Apple, Cupertino, CA, Oct 10th, 2024. Work partially supported by NSF award IIS-2007147.