
Adaptive Softmax Trees for Many-Class Classification

Rasul Kairgeldin
Dept. CSE, University of California, Merced

rkairgeldin@ucmerced.edu

Magzhan Gabidolla
Dept. CSE, University of California, Merced

mgabidolla@ucmerced.edu

Miguel Á. Carreira-Perpiñán
Dept. CSE, University of California, Merced
mcarreira-perpinan@ucmerced.edu

Classification problems involving thousands to millions of classes occur naturally in many real-
world applications. Examples include predicting the next word in a sentence where the vocabulary
size can be in the order of hundreds of thousands, and categorizing products for e-commerce systems
where the number of distinct labels can be in the order of millions. A linear softmax model, either
standalone or as the last layer in a neural network, is widely used for general classification problems.
Its inference time, however, is proportional to the number of classes K , as it needs to evaluate
the score for every class no matter the input, which makes it very slow for large-K classification
problems. A natural way to speed it up would be through conditional computation during inference,
so that only a small subset of classes needs consideration [2, 5, 4, 3]. Recently, Zharmagambetov
et al. [6] proposed a novel Softmax Tree (ST) model that strikes a good balance between linear
methods and decision trees: the model takes the form of a (hard) decision tree with sparse oblique
(linear) decision nodes and small softmaxes at the leaves. However, a significant drawback is that it
assumes a complete tree structure, whose size grows exponentially with depth, and this limits their
power in both accuracy and inference time. The key to achieve fast inference time is to decrease the
size of the leaf softmaxes by increasing the depth of the leaf path. Thus, we propose a new model,
Adaptive Softmax Trees (ASTs), where we learn jointly the structure and parameters of the tree, by
interleaving steps that grow the structure optimally with steps that optimize the parameters of the
current structure. This makes it possible to learn ASTs that can grow much deeper but in an irregular
way, adapting to the data distribution. As we show experimentally, the resulting ASTs improve
considerably the predictive accuracy while reducing the number of parameters and inference time
even further.
Softmax tree Let {(xn, yn)}Nn=1 ⊂ R

D × {1, . . . ,K} be our training set of size N of D-
dimensional input features and K classes. Write the Softmax Tree as τ (x;Θ), a rooted binary
tree with a set of decision (internal) nodes Ndec and a set of leaf nodes Nleaf. Each decision
node i ∈ Ndec has a decision function gi(x; θi): R

D → {lefti, righti} ⊂ {Ndec ∪ Nleaf}
that sends an instance x to its left or to its right child. We use oblique (linear) decision nodes:
“if wT

i x+wi0 ≥ 0 then gi(x) = righti, otherwise gi(x) = lefti” where the learnable parameters
are θi = {wi, wi0}. Note how the decision function makes hard decisions, unlike in soft trees, where
an instance x is propagated to both children with a positive probability. Each leaf j ∈ Nleaf contains
a predictive function fj(x; θj): R

D → S
K that produces the actual output of the tree τ (x;Θ) for an

instance x, where S
K = {x ∈ [0, 1]K : 1T

x = 1}. In Softmax Trees, fj(x; θj) takes the form of a
small softmax linear classifier: fj(x; θj) = σ(Wjx+wj0) where θj = {Wj ∈ R

k×D, wj0 ∈ R
k}

are the learnable parameters, and σ(·) is the softmax function. The leaf predictor function fj(x; θj)
can output only k nonzero probabilities, with k ≤ K , for a set of k classes (this set is learned); for
all the other K − k classes fj(x; θj) assigns exactly zero probability. For problems with a large
number of classes we want k ≪ K to allow for fast inference. The predictive function of the whole
Softmax Tree τ (x;Θ) then works by routing an instance x to exactly one leaf through a root-leaf
path of (oblique) decision nodes and applying that leaf’s small softmax predictor function. Overall,
a ST can be seen as a hierarchical collection of local softmax classifiers each operating on a small
subset of classes.

Bay Area Machine Learning Symposium (BayLearn 2024).



100 200 300
0

0.05

0.1

0.15

0.2

Iterations

0/
1

lo
ss

31

45

45

65

65

95

95

138

138

200

200

Figure 1: (Left) 0/1 loss of the final AST model for training (dashed line) and test (solid line),
compared with the complete Softmax Tree. The arrows point to where expansions of the AST
happened. The line colors indicate the performance of the ST (blue), ST(AST) (green) and AST
(red). This shows that the adaptive growth gradually enhances the performance of the model on
both training and test tests (red solid and dashed lines). On the other hand, a ST initialized randomly
(blue line) or on the final structure of AST (green line) is unable to improve after a certain number of
iterations. (Right) AST for the Wiki-Small subs. dataset. Size of the blue nodes (on the tree) shows
the actual number of classes in the leaves after pruning. Green (left column) shows theoretical max.
values at each aligned depth.

Adaptive Softmax Tree We first train a shallow (e.g. depth ∆ = 2) complete Softmax Tree
τ (·;Θ) with relatively large k0-class softmaxes in the leaves. The number of classes k0 is set such
that the total number of predictable classes by the model is at least the total number of classes K in
the dataset: k02∆ ≥ K . We then attempt to replace each leaf j ∈ Nleaf softmax predictor function
fj(·; θj) by yet another shallow Softmax Tree τ̂ j(·; Θ̂j) of depth ∆̂ = 1 or 2, whose leaves contain
smaller k̂j-class softmaxes, k̂j < k0. To control by how much these large softmaxes are reduced we
use the following simple heuristic: k̂j = αk0, whereα ∈ (0, 1) is the softmax contraction coefficient
hyperparameter. We obtain this small tree τ̂ j(·; Θ̂j) by fitting it using the TAO [1] algorithm on the
training instances that reach the leaf j, i.e., on the reduced set Rj . This step can be considered as
a recursive application of the Softmax Tree method with the goal of replacing large, flat softmaxes
with faster “softmax subtrees”. But instead of directly substituting the leaf softmax fj(·; θj) with
the tree τ̂ j(·; Θ̂j), we first ensure that the accuracy of τ̂ j(·; Θ̂j) is at least as good as the original
softmax fj(·; θj) or within a reasonable tolerance ratio hyperparameter ρ > 1. If this is not the case,
the leaf predictor function fj(·; θj) remains unchanged. Otherwise, the substitution happens, and
this results in the structure change of the original tree model τ (·;Θ) where it is expanded through
the leaf j (the expansion step). In this way, after attempting to expand all the leaves j ∈ Nleaf, and
assuming some or all of them are expanded, we obtain a deeper, irregular Softmax Tree τ exp(·;Θexp)
with smaller leaf softmaxes which has comparable or better training accuracy and faster inference.
Now, importantly, we retrain the whole model τ exp(·;Θexp) globally using TAO (the regular step),
which will further improve the model accuracy and possibly sparsify nodes. We repeat these local
expansion and global optimization steps until the model converges or some predetermined stopping
criterion is reached. Table shows results on the text classification dataset WIKI-Small. We report
the test error, depth ∆ of the tree, and the average inference time per test sample in milliseconds.

Method Etest(%) ∆ inf.(ms) Train time

RecallTree 92.64 15 0.97 53m
one-vs-all 85.71 0 10.70 > 7d
MACH 84.80 – 252.64 1445m
ST(k = 200) 84.70 8 0.18 ≈1000m
(π, κ)-DS 78.50 – 10.33 –
ST(k = 150) 77.26 8 0.57 ≈1000m
AST(α=0.6, ρ=1.0) 77.30 12 0.03 ≈2000m
AST(α=0.60, ρ=1.1) 76.21 12 0.04 ≈2000m

2



Acknowledgments: Work funded in part by NSF award IIS–2007147.

References

[1] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with appli-
cation to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
(NeurIPS), volume 31, pages 1211–1221. MIT Press, Cambridge, MA, 2018.

[2] J. Goodman. Classes for fast maximum entropy training. In Proc. of the IEEE Int. Conf. Acous-
tics, Speech and Sig. Proc. (ICASSP’01), pages 561–564, Salt Lake City, Utah, USA, May 7–11
2001.

[3] T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similarities among languages for machine
translation. arXiv:1309.4168 [cs.CL], Sept. 13 2013.

[4] A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model. In D. Koller,
Y. Bengio, D. Schuurmans, L. Bottou, and A. Culotta, editors, Advances in Neural Information
Processing Systems (NIPS), volume 21, pages 1081–1088. MIT Press, Cambridge, MA, 2009.

[5] F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In R. G.
Cowell and Z. Ghahramani, editors, Proc. of the 10th Int. Workshop on Artificial Intelligence
and Statistics (AISTATS 2005), pages 246–252, Barbados, Jan. 6–8 2005.

[6] A. Zharmagambetov, M. Gabidolla, and M. Á. Carreira-Perpiñán. Softmax tree: An accurate,
fast classifier when the number of classes is large. In M.-F. Moens, X. Huang, L. Specia, and
S. W.-t. Yih, editors, Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP
2021), pages 10730–10745, Online, 2021.

3


