
Adaptive Softmax Trees for Many-Class Classification
Rasul Kairgeldin, Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán
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1 Introduction
NLP tasks such as language models or document clas-

sification involve classification problems with thousands

of classes. In these situations, it is difficult to get high

predictive accuracy and the resulting model can be huge

in number of parameters and inference time. A recent,

successful approach is the softmax tree (ST): a decision

tree having sparse hyperplane splits at the decision nodes

(which make hard, not soft, decisions) and small softmax

classifiers at the leaves. Inference here is very fast be-

cause only a small subset of class probabilities need to

be computed, yet the model is quite accurate. However,

a significant drawback is that it assumes a complete tree,

whose size grows exponentially with depth. We propose a

new algorithm to train a ST of arbitrary structure. The tree

structure itself is learned optimally by interleaving steps

that grow the structure with steps that optimize the pa-

rameters of the current structure. This makes it possible

to learn STs that can grow much deeper but in an irreg-

ular way, adapting to the data distribution. The resulting

STs improve considerably the predictive accuracy while

reducing the model size and inference time even further,

as demonstrated in datasets with thousands of classes. In

addition, they are interpretable to some extent.
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2 Adaptive Softmax Tree (AST)
Algorithm starts with a small ST (e.g. ∆ = 2) and large leaf softmaxes k0. It learns both

the parameters and the structure of a softmax tree:

Regular step include optimizing ST of current structure τ (·;Θ) using TAO:

• For a decision node i ∈ Ndec reduced problem is a weighted 0/1 loss binary

classification problem:

Ei(wi ,wi0) =
∑

n∈Ri

cn L(yn,gi(xn)) + λ ‖wi‖1

where L(·, ·) is the 0/1 loss, yn ∈ {lefti , righti} is a pseudolabel indicating the “best”

child and cn ≥ 0 is the loss difference between the “other” child and the “best” one for

the instance xn.

• For leaf node j ∈ Nleaf:

Ej(Wj ,wj0) =
∑

n∈Rj

L(yn, fj(xn)) + µ
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where L(·, ·) is the original cross-entropy loss.

Expansion step on the leaf replaces is with shallow ST with narrower softmaxes:

• Allows one to compare the objective function before and after the expansion in order

pursue a new architecture.

• Softmax contraction coefficient α controls shrinkage of leaf softmaxes.

• Tolerance ratio ρ controls performance of the expanded subtree.

3 Softmax Tree (ST)
Proposed by Zharmagambetov et al., EMNLP 2021.

• Each decision node i ∈ Ndec has a decision function gi(x;θi):

“if wT
i x + wi0 ≥ 0 then gi(x) = righti , otherwise gi(x) = lefti”

• Each leaf j ∈ Nleaf contains a softmax function fj(x;θj) = σ(Wjx + wj0) that

predicts a set of k ≤ K classes.

• Much faster inference compared to linear softmax model.

• Size grows exponentially with depth, and this limits their power in both accuracy

and inference time.

• It can be trained with a variation of the Tree Alternating Optimization (TAO)

algorithm.
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Figure: Training (dashed line) and test (solid line) error of ST (blue), ST

initialized with AST architecture (green) and AST (red). The arrow points to

expansion during AST training. This shows that the adaptive growth gradually

enhances the performance of the model on both training and test tests (red

solid and dashed lines). On the other hand, a ST initialized randomly (blue line)

or on the final structure of AST (green line) is unable to improve after a certain

number of iterations.
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Figure: AST for the Wiki-Small subs. dataset. Size of the blue nodes (on the tree) shows

the actual number of classes in the leaves after pruning. Green (left column) shows

theoretical max. values at each aligned depth.

4 Results

Method Etest% ∆ L k̄ inf.(µs) FLOPs

Softmax 61.4 – – – 10680 423722
ST(k = 70) 62.7 7 128 70.0 65 12279
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S

H
T

C
1

ST(k = 50) 61.2 8 256 49.4 55 9218
ST(from AST) 68.7 9 511 49.7 62 9388
AST∗(α=0.9,ρ=1.2) 60.8 10 1006 11.5 40 3756

Softmax 50.2 – – – 16500 9214
ST∗(k = 4) 51.5 8 30 4.6 36 691
AST∗(α=0.35,ρ=1.2) 49.5 11 73 4.1 16 586
ST∗(k = 9) 48.3 8 50 8.0 27 918
AST(α = 0.38, µ = 0.1) 46.9 11 13 44 8.4 791
ST(k = 13, µ = 0.1) 48.3 8 13 40 12.1 1104
AST∗(α=0.39,ρ=1.2) 47.5 11 34 11.7 12 929
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ST(k = 67, µ = 0.01) 48.4 8 21 256 8.11 2291
ST(k = 95) 44.1 8 256 5.7 30 3065
ST(from AST) 44.0 8 65 12.5 19 3296
AST(α=0.69,ρ=1.2) 42.7 13 184 2.8 13 1437

Table: AST vs ST. We report: test errors; depth ∆, number of leaves L, average leaf

softmax size k̄ of the tree; and average inference time and FLOPs per test instance.

For ST we specify its leaf softmax size k , for AST the softmax contraction coefficient

α and tolerance ratio of expansion ρ. ASTs are trained with µ = 0.01 or (if marked

with ∗) µ = 0.1.


