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As a form of exploratory data analysis, dimensionality reduction (DR) for visualization seeks to pro-
vide a representation of a dataset in dimension at most 3 (we will focus on 2D) that, combined with
the human visual ability to pick patterns, is able to find structure of interest in a high-dimensional
dataset. Many DR methods have been proposed over the years. Currently, t-SNE [4] and PCA are
the most popular choices and have seen widespread application in many areas.

We propose a new model for dimensionality reduction, the PCA tree, which works like a regular
autoencoder, having explicit projection and reconstruction mappings. The projection is effected
by a sparse oblique tree, having hard, hyperplane splits using few features and linear leaves. The
reconstruction mapping is a set of local linear mappings. The PCA tree provides significant, com-
plementary advantages over previous methods: 1) They optimize the reconstruction error, which
has a clear meaning. They do not require a neighborhood graph (and perplexity parameter, etc.),
which is tricky to estimate so it captures manifold structure, and computationally very costly; 2)
PCA trees define nonlinear out-of-sample mappings; 3) PCA trees are highly interpretable and, as
demonstrated in fig. 1, they extract a wealth of information from complex datasets. This comes from
the fact that both trees and PCA are techniques with well understood interpretability; 4) PCA map
shows clusters, these are real—in contrast with t-SNE’s tendency to create false clusters [2]; 5) A
final advantage is that the loss function is really a self-supervised regression problem. This makes it
possible to use cross-validation to determine the hyperparameters.

Definition of the PCA tree as an autoencoder Like any autoencoder, the PCA tree defines an
encoder F and decoder f , but in a peculiar way, as follows. Firstly, consider a fixed rooted directed
tree structure with decision nodes and leaves indexed by sets D and L, respectively, and N = D∪L.
Both the encoder and autoencoder use this tree structure. Each decision node i ∈ D has a decision
function hi(x;wi, wi0): R

D → Ci, where Ci = {lefti, righti} ⊂ N , sending instance x to the
corresponding child of i. We use oblique trees, having hyperplane decision functions “go to right if
wT

i x + wi0 ≥ 0”, with wi ∈ R
D and wi0 ∈ R. The tree’s prediction for an instance x is obtained

by routing x from the root to exactly one leaf and applying this leaf’s predictor (defined below). We
define the reduced set (RS) Ri ⊂ {1, . . . , N} of a node i ∈ N as the training instances that reach i
given the current tree parameters, where N is the number of training samples.

Encoder F This is given by a tree mapping Te(x;Θ): RD → L × R
L where the predictor for

leaf j has the form of a linear mapping Fj(x;Uj ,µj) = UT
j (x − µj), where Uj ∈ R

D×L is an
orthogonal matrix and µj ∈ R

D. The encoder parameters are Θ = {wi, wi0}i∈D ∪ {Uj ,µj}j∈L.
Thus, the encoder maps an input instance x ∈ R

D to a leaf index j ∈ L and an L-dimensional
real vector z = UT

j (x − µj), which at an optimum will be the PCA projection in that leaf. This
means that the PCA tree does not have a common latent space of dimension L where all instances
are projected. Instead, it has one separate L-dimensional PCA space per leaf.

Decoder f This maps a leaf index j and L-dimensional vector z (in L×R
L) to a vector in R

D. It
consists of a set of linear mappings of the form fj(z;Uj ,µj) = Ujz+ µj for j ∈ L.

Tree autoencoder We can now define the autoencoder as the composition of the decoder and
encoder, T = f ◦ F. Conveniently, we can absorb the leaf index implicitly into each leaf. Thus,
T(x;Θ) is simply a regression tree identical to the tree encoder Te(x;Θ) but where the predictor
mapping of leaf j has the form gj(x;Uj ,µj) = UjU

T
j (x−µj)+µj . Note this is a linear mapping

of rank L < D, and it is the composition fj ◦ F of leaf j’s decoder with the encoder.
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Figure 1: PCA tree trained on the Fashion MNIST dataset. The decision nodes’ weight vectors
(and the leaves’ PCs Uj) are shown as 28 × 28 images, with negative/zero/positive values colored
blue/white/red, respectively. Each leaf shows a 2D PCA scatterplot of its RS (instances reaching it),
and below it the mean µj as a grayscale image and the 2 PCs Uj as color images. To the right of
the scatterplot, a bar chart displays class proportions and class means. The legend (top left) shows,
for each class, its mean (grayscale image), color (for the scatterplots) and description.

Optimization algorithm and time complexity We borrow the idea of alternating optimization
over the tree nodes from [1]. Essentially, it repeatedly updates the nodes in turn: at a leaf it solves
a PCA, and at a decision node it solves an ℓ1-regularized, logistic regression problem. The cost
of optimization over decision nodes is as in the sparse oblique classification trees of [1], which is
O(ND∆), where ∆ is the tree depth. For the leaves, as ∆ increases, RS becomes smaller, allowing
us to use the Gram matrix instead of the covariance matrix. The overall result is that the cost is
at most linear in N and quadratic in D, just like in regular PCA. As a useful summary, the rough
cost is Θ(ND2) for shallow trees and O(ND) for deep trees—which is asymptotically faster than
PCA! (although very deep trees having few instances per leaf are likely not practical). This makes
the algorithm highly scalable to large sample sizes without the need for any approximation as shown
in Fig. 2. This is a significant advantage over neighbor embedding algorithms such as t-SNE, which
have a quadratic cost on N and require some approximation to reduce this [3, 5, 6].
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Figure 2: Training time per itera-
tion on Infinite MNIST for PCA
trees with differentN,∆, and for
t-SNE and UMAP.

Visualization of PCA tree We show results for the Fashion
MNIST dataset (fig. 1). Even at a glance we can see lots of
structure in the tree. We do not show the whole tree for readabil-
ity. Although our algorithm is unsupervised, it has the ability to
separate different types of classes. For example, leaves L1 and
L2 contain different types of shoes. The coordinate axes in the
leaves show the most variance in the data within the leaf’s region.
The decision nodes’ weight vectors select features sparsely, of-
ten focusing on parts of the image that can differentiate groups
of images and send them selectively to the left or right subtree.
The figure is annotated in some places to make this clear. For
example, decision node D2 separates clothes “with” and “with-
out” sleeves. In some cases, this results in the tree separating
actual classes, as in leaves L1 and L4. Since each leaf applies
2D PCA on its corresponding reduced set, its linear projection
scatterplot shows the most variance directions in the leaf region. As expected with PCA, amplified
by the fact that it focuses on a region of the whole data, this often shows insights about the intrinsic
local structure of the data. In particular, we can usually identify the coordinate axes (PCs) with
meaningful quantities or degrees of freedom. For example, leaves L1, L2, L4, L7 contain objects of
a specific type, such as L1 containing high-heel and high-ankle boots and sandals. Interestingly, we
find all these leaves often detect similar degrees of freedom: usually, PC1 is (overall) pixel intensity
in the image and PC2 is object size (either height or width). Again, this is the result of minimizing
reconstruction error, which projects along maximum-variance directions.
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