
Pros and cons of soft vs hard decision trees
Kuat Gazizov1 and Arman Zharmagambetov2 and

Miguel Á. Carreira-Perpiñán1, 1EECS, UC Merced, 2 FAIR at Meta

1 Introduction
Decision trees come in two basic types: soft (SDTs)

and hard (HDTs). An input instance follows each root-

leaf path with a positive probability in SDTs, and ex-

actly one root-leaf path in HDTs (because each deci-

sion node picks only one child). We focus on oblique

trees (having hyperplane decision nodes) for classifi-

cation. Effective training of oblique trees can be done

by gradient descent for SDTs and, since recently, by

alternating optimization for HDTs. This makes it possi-

ble to perform an objective comparison between both

models along multiple dimensions, including: the accu-

racy as a function of tree size and inference time; the

scalability to training on large datasets; the effect of

singularities of SDTs; the impact of hardening a SDT

into a HDT; the extent to which experts specialize and

its effect on tree interpretability; and the benefit of us-

ing sparsity in the weight vectors and of pruning. We

conclude that HDTs are generally preferable to SDTs

in most use cases.

Work partially supported by NSF award IIS–2007147.

3 Predictive accuracy
For the exact same tree structure, a SDT has a strictly higher representation power than a

HDT. But, depending on the dataset, this need not result in a more accurate tree, particularly

if one accounts for inference time and number of parameters.

MNIST Letter

10
4

10
5

0

2

4

6

E
te

s
t
(%

)

HDT

SDT
SDTg

SDTp

HDTp

HDTg Ensembles

10
4

10
5

0

10

20

30

40

Ensembles

SensIT Bank Marketing

10
4

10
5

10

12

14

16

18

20

#params.

E
te

s
t
(%

)

SDTg, SDTp

Ensembles

10
4

10
5

6

8

10

12

14

#params.

Ensembles

2 Training trees
Soft tree. Each decision node i assigns a probability to its right child of

σ(wT
i

x+wi0), The output is computed as follows: S
(
∑

j∈leaves pj(x;W)qj

)

where pj(x;W) is a leaf probability. We use a cross-entropy loss to opti-

mize the tree.

Hard tree. We use the TAO (Tree Alternation Optimization) algorithm to

train a hard decision tree.

E(W,Q) =

N
∑

n=1

L(yn,T (xn;W,Q)) + λ
∑

i∈nodes

φi(wi) (1)

where L is a loss function (here, the 0/1 loss) and φi a regularization on

the decision weights (here, ℓ1)

5 Training and inference time
For a complete tree of depth ∆, training a HDT with TAO is linear on ∆
while training a SDT with SGD is exponential on ∆. The same holds for

inference time. HDTs are thus scalable to large datasets, while SDTs

cannot be very deep.

MNIST Letter

6 8 10 12 14 16 18

10
3

10
4

Depth

SDT
HDT

T
ra

in
T

im
e

(s
e

c
)

6 8 10 12 14 16 18

10
2

10
3

Depth

6 8 10 12 14 16 18

10
-4

10
-3

10
-2

10
-1

Depth

In
fe

re
n

c
e

T
im

e
(s

e
c
)

6 8 10 12 14 16 18

10
-4

10
-3

10
-2

Depth

4 Do the experts specialize in a SDT?
Empirically, the leaves (“experts”) in a SDT overlap heavily, rather than

specializing narrowly, and an input instance reaches multiple leaves with

significant probability. This makes interpreting SDTs very hard.

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0 MNIST
Letter

Spambase

F.MNIST

SensIT

Bank Marketing
Connect4 Hard Tree

E
n

tr
o

p
y

Depth

3 3
3 3 3 2

8
8

8 8 8 9
2

3
3

3
4 4 4

9

12
13

14

6 10 14 22

4
4

4 5
5 5

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

U
n

c
e

rt
a

in
ty

Depth

 8
1

6
2

4
3

2
4

0
4

8
5

6
6

4

 8 16 24 32 40 48 56 64 -6

-5

-4

-3

-2

-1

L
e

a
ve

s

Leaves

6 Hardening a SDT into a HDT
Hardening a SDT into a HDT (as sometimes done to make it

faster and interpretable) significantly decreases its accuracy and

is much worse than training a HDT with TAO.

We consider the following hardening techniques: Greedy Harden-

ing (SDTg), Path-Based Hardening (SDTp), Weight-Based Hard-

ening (HDTg), Sample-Leaf Probability Hardening (HDTp).

7 Singularities of SDTs
The SDT cross-entropy has singularities corresponding to hard splits (in

the limit). These typically result in portions of the SDT being wasted and,

being intrinsic to the loss function, are hard to avoid during the optimiza-

tion.

Sample Instance Root node weights

8 Sparsifying and pruning
Sparsifying the weight vectors via an ℓ1 penalty results in fewer nonzero

parameters and a smaller tree structure. Specifically, when a decision

node’s weights wi = 0, it makes this node redundant. However, in SDTs,

this node continues to send each instance to both children, so it cannot

be pruned.

