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Introduction

Univariate decision trees, while being interpretable, they

often lack competitive predictive accuracy due to their

inability to model feature correlations, use a limited num-

ber of input features, and rely on heuristic algorithms
for training. In contrast, multivariate (oblique) trees
can use multiple features in each node, capturing high-
dimensional correlations better. However, they can be
difficult to interpret. Bivariate decision trees offer a
practical compromise by using pairs of features in each
node, striking a balance between interpretability and
accuracy. By adapting the Tree Alternating Optimiza-

tion (TAO) algorithm, bivariate trees can be trained more

effectively, resulting in smaller and more accurate trees.
The TAO algorithm updates node parameters iteratively,
optimizing a well-defined objective function over the
entire tree. While slower than traditional algorithms, it
scales well to large datasets. Our experiments demon-
strate that bivariate trees outperform univariate trees
In terms of interpretability and accuracy. We believe bi-
variate trees offer a practical and scalable solution for
data analysis tasks.
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Effect of regularization and Interpretability
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Learning bivariate trees with TAO

We establish the following objective function over all parameters of a tree:
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where L(-,-) is 0/1 loss function. Furthermore, we introduce the following regularization:
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Separability condition implies that equation 1 can be separated and optimized over pa-
rameters of any non-descendant nodes (located on the same depth) independently and in
parallel. Reduced problem over a node (RP) states that optimizing equation 1 over param-
eters of the given node i € N reduces to simpler, well-defined problem involving its reduced
set R;.

For leaf i € N g5t the exact solution of RP is a majority class of samples in R;.

For decision node i € Nyec RP is 0/1 loss binary classification problem:

Ei(wj, b)) = > L(Vn, fi(Xn W, b)) + Ap(W;), sit. [[wllg <2, bj € R (2)
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where Lis a 0/1 loss and y, € {left,right} corresponds to a pseudolabel assigned to a

training instance xp, signifying the child that yields a lower loss value. The loss is computed
by propagating a sample through the corresponding child.

it [[willg = 2
if lwillg <2

input training set {Xp, ¥n}ner, Of
decision node i € Nyec,
matrix of orientations W € R2*"
for each pair of features j, k € D
forw, c W
x/* « project selected features onto w
b « optimal thresholding over x}*
if j, k,wy, b/ produce lowest value of eq. 2
0°v «— {w* b/"}, where w* is a sparse vector
of all zeros with corresponding value of w;,
atj. k
end if

end for
end for

return "

Figure: Pseudocode of bivariate solution.
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Figure: Figure 1 shows resulting bivariate tree trained on Segment dataset. We show 0/1 loss of each node on its
reduced set along with number of samples in it. In decision nodes we visualize the best univariate or bivariate split.
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Figure: lllustration of our approximate solution of the
RP at a decision node. The instances in the reduced
set of the node are labeled according to their
pseudolabels (preferred child, left o or right +). The
thin red lines are all the possible thresholds (passing

A=3, #leaves=5 through midpoints between projected instances) for the

Eicst = 4% Eiest = 2% red orientation.
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Figure: Left: Figure shows proportion of bivariate nodes as C and X are changed on Segment dataset. As A
iIncreases beyond 280 tree collapses into a root. We indicate regions where tree is fully bivariate or fully
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univariate. Right: Partitioning of the space provided by univariate and bivariate trees.



