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1 Introduction
Univariate decision trees, while being interpretable, they

often lack competitive predictive accuracy due to their

inability to model feature correlations, use a limited num-

ber of input features, and rely on heuristic algorithms

for training. In contrast, multivariate (oblique) trees

can use multiple features in each node, capturing high-

dimensional correlations better. However, they can be

difficult to interpret. Bivariate decision trees offer a

practical compromise by using pairs of features in each

node, striking a balance between interpretability and

accuracy. By adapting the Tree Alternating Optimiza-

tion (TAO) algorithm, bivariate trees can be trained more

effectively, resulting in smaller and more accurate trees.

The TAO algorithm updates node parameters iteratively,

optimizing a well-defined objective function over the

entire tree. While slower than traditional algorithms, it

scales well to large datasets. Our experiments demon-

strate that bivariate trees outperform univariate trees

in terms of interpretability and accuracy. We believe bi-

variate trees offer a practical and scalable solution for

data analysis tasks.
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2 Learning bivariate trees with TAO
We establish the following objective function over all parameters of a tree:

min
Θ

E(Θ) =

N
∑

n=1

L(yn,T (xn;Θ)) + λ
∑

i∈Ndec

φ(wi), s.t. ‖wi‖0 ≤ 2, bi ∈ R, i ∈ Ndec;

cj ∈ {1, . . . ,K}, j ∈ Nleaf

(1)

where L(·, ·) is 0/1 loss function. Furthermore, we introduce the following regularization:

φ(wi) =

{

C, if ‖wi‖0 = 2

‖wi‖0, if ‖wi‖0 < 2

Separability condition implies that equation 1 can be separated and optimized over pa-

rameters of any non-descendant nodes (located on the same depth) independently and in

parallel. Reduced problem over a node (RP) states that optimizing equation 1 over param-

eters of the given node i ∈ N reduces to simpler, well-defined problem involving its reduced

set Ri .

For leaf i ∈ Nleaf the exact solution of RP is a majority class of samples in Ri .

For decision node i ∈ Ndec RP is 0/1 loss binary classification problem:

Ei(wi ,bi) =
∑

n∈Ri

L(ȳn, fi(xn;wi ,bi)) + λφ(wi), s.t. ‖wi‖0 ≤ 2, bi ∈ R
(2)

where L is a 0/1 loss and ȳn ∈ {left, right} corresponds to a pseudolabel assigned to a

training instance xn, signifying the child that yields a lower loss value. The loss is computed

by propagating a sample through the corresponding child.

3 Effect of regularization and Interpretability
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Figure: Figure 1 shows resulting bivariate tree trained on Segment dataset. We show 0/1 loss of each node on its

reduced set along with number of samples in it. In decision nodes we visualize the best univariate or bivariate split.

input training set {xn, ȳn}n∈Ri
of

decision node i ∈ Ndec,

matrix of orientations W ∈ R
2×H

for each pair of features j , k ∈ D

for wl ∈W

xj ,k
l ← project selected features onto wl

b
j ,k
l ← optimal thresholding over xj ,k

l

if j , k ,wl , b
j ,k
l produce lowest value of eq. 2

θ
biv
i ← {w

∗,bj ,k
l }, where w∗ is a sparse vector

of all zeros with corresponding value of wl

at j , k
end if

end for
end for

return θ
biv
i

Figure: Pseudocode of bivariate solution.
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Figure: Illustration of our approximate solution of the

RP at a decision node. The instances in the reduced

set of the node are labeled according to their

pseudolabels (preferred child, left ◦ or right +). The

thin red lines are all the possible thresholds (passing

through midpoints between projected instances) for the

red orientation.
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Figure: Left: Figure shows proportion of bivariate nodes as C and λ are changed on Segment dataset. As λ
increases beyond 280 tree collapses into a root. We indicate regions where tree is fully bivariate or fully

univariate. Right: Partitioning of the space provided by univariate and bivariate trees.

4 The size of the pruned tree
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