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Introduction Semi-supervised learning (SSL) seeks to learn a machine learning model when only
a small amount of the available data is labeled. The most widespread approach uses a graph prior,
which encourages similar instances to have similar predictions. This has been very successful with
models ranging from kernel machines [1] to neural networks [6], but has remained inapplicable to
decision trees, for which the optimization problem is much harder.

Why trees? First, trees are considered to be interpretable models. Second, they are widely used in
ensemble learning (e.g. random forests [2] or boosting [4]) as well as standalone classifiers [9]. How-
ever, similar to many non-linear methods, DTs are well-known to overfit for small sized (labeled)
data which is the case in SSL. In our proposed approach, we first state the objective which con-
sists of supervised loss (for labeled data only) and the graph Laplacian regularization (also known
as manifold regularization [1]). The resulting optimization problem is long considered to be hard
to solve since trees define non-differentiable and non-convex mapping. We solve this based on a
reformulation of the problem which requires iteratively solving two simpler problems: a supervised
tree learning problem, which can be solved by the Tree Alternating Optimization algorithm [3]; and
a label smoothing problem, which can be solved through a sparse linear system. The algorithm is
scalable and highly effective even with very few labeled instances, and makes it possible to learn
accurate, interpretable models based on decision trees in such situations.

LapTAO: semi-supervised learning framework for decision trees We are given the datasetD =
Dl ∪ Du, where Dl = {xn, yn}

l
n=1 is the labeled portion of data with size l and Du = {xn}

N
n=l+1

is unlabeled portion of data with size N − l. We minimize the following regularized objective:

E(Θ) =
1

l

l
∑

n=1

(T (xn;Θ)− yn)
2 + α φ(Θ) +

γ

N2

N
∑

n,m=1

wnm (T (xn;Θ)− T (xm;Θ))
2
. (1)

Here, wnm are the entries in the similarity matrix, T : RD → R is the tree predictive mapping with
parameters Θ = {θi}nodes, φ(·) is the regularization term such as ‖·‖

1
and γ,α are hyperparameters.

If T was differentiable, one could optimize (1) via gradient-based methods as it was done for neural
nets [6]. However, this is non-trivial with a tree. Instead, we will reformulate the problem as
equivalent constrained problem by introducing a new variable z for each training point:

min
z1,...,zN ,Θ

1

l

l
∑

n=1

(zn − yn)
2 + α φ(Θ) +

γ

N2

N
∑

n,m=1

wnm(zn − zm)2 (2)

s.t. zn = T (xn;Θ) n = 1, . . . , N. (3)

Denote y = [y1, y2, . . . , yl, 0, 0, . . . ]
T ∈ R

N , as the augmented ground truth vector. Similarly,
introduce a diagonal matrix J = diag(1, . . . , 1, 0, . . . , 0) ∈ R

N×N with the first l diagonal entries
equal to 1 and the rest 0. We also introduce graph LaplacianL = D−W where diagonal matrixD ∈
R

N×N with entries dnn =
∑N

m=1
wnm and W = (wnm) ∈ R

N×N is the affinity matrix. Finally,
denote z = [z1, . . . , zN ]T and t(X;Θ) = [T (x1;Θ), . . . , T (xN ;Θ)]T where X = (x1, . . . ,xN ).
Then we rewrite eq. (2)-(3) as follows:

min
z,Θ

(z − y)TJ (z− y) + α φ(Θ) + γ zTL z s.t. z = t(X;Θ). (4)
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Figure 1: Results on regression and classification tasks. Numbers in brackets report the training size,
number of features and output dimension (or number of classes).

Here, we absorb some constants (e.g. normalization 1

l
) into matrices. We solve this using the

augmented Lagrangian [5] method which defines a new, unconstrained optimization problem:

min
z,Θ

(z− y)T J (z− y) + α φ(Θ) + γ zTL z− λ
T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖

2 (5)

where λ ∈ R
N are the estimates of Lagrange multipliers. Optimizing this for fixed µ > 0 produces

the sequence of (zµ, tµ(·)) and as µ → ∞, we force the minimizer to be in the feasible region for
the constrained problem. Finally, we apply alternating optimization to minimize (5) over z and t(·):

• Label–step (optimizing over z given fixed t(X;Θ)). The objective in eq. (5) is a quadratic func-
tion and a minimizer is obtained by solving the linear system:

min
z

(z− y)TJ (z − y) + γ zTL z− λ
T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖

2
⇒

Az = Jy + µt(X;Θ) +
1

2
λ

(6)

where A = J + µI + γL is a positive definite matrix. Moreover, A will be a sparse matrix if
graph Laplacian L is sparse. This allows us to solve the large scale linear system in an efficient
way. Intuitively, the “label–step” can be interpreted as “approximating” the labels (for Du) using
the graph Laplacian and predictions obtained from the current tree (i.e., label smoothing).

• Tree–step (optimizing over Θ given fixed z). The problem (5) reduces to a regression fit of a tree:

min
Θ

µ‖z− t(X;Θ)‖
2
+ α φ(Θ)− λ

T (z− t(X;Θ))⇔

min
Θ

∥

∥

∥

∥
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)
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∥

∥

∥

∥

2

+
α

µ
φ(Θ).

(7)

Note that here we use (z− 1

2µ
λ) as labels (not yn which is not defined for Du anyway). We solve

this problem using TAO algorithm and refer a reader to [3, 8] for details. Intuitively, this step can
be understood as fitting a tree with the current “estimates” of the labels.

After each (label,tree)–step, the penalty term µ increases, λ is updated and we keep iterating until a
stopping criterion. We denote our proposed iterative algorithm as LapTAO. Although we derive our
algorithm specifically for a tree, it is obvious to extended it to other models: gradient boosted trees,
neural networks, etc. The only part that trivially changes is the “tree–step”.

Experiments We pick a sparse oblique tree with constant leaves as our main model for LapTAO.
We compare against the following baselines: 1) oblique–all fits an oblique tree with full supervision
(theoretical maximum performance); 2) oblique–lbl is the oblique trees trained on labeled data only;
3) Self-training (axis–self, oblique–self ) is an iterative procedure that uses the model predictions
to enlarge the portion of labeled data [7]; here, “axis” means traditional axis-aligned trees. The
results in fig. 1 shows that LapTAO consistently improves over all other SSL baselines, often by a
considerable margin. For instance, in case of 3% in cpu_act and 1% in mnist, the difference in the
error with the second best SSL approach is several orders of magnitude. It shows acceptable results
even in extreme label scarcity scenarios, e.g. when we provide < 0.5% of labeled data on year_pred
and susy. Moreover, LapTAO approaches the fully supervised baseline more quickly: for mnist, we
can achieve the same ∼ 5% test error as “oblique–all” using only 20% of labeled training points.
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