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Introduction. Searching a large database of high-dimensional images for the most similar images
to a query image is a nearest-neighbor search whose exact solution takes too long to be practical. One
way to approximate this is to map the query image to a short binary vector and search for this instead,
possibly using an inverted index [2]. This is much faster because the binarized database takes far
less space, so it may fit in fast memory, and Hamming distances are fast with hardware support
[2]. The success of this approach crucially relies on designing a binary hash function h: R

D →
{−1,+1}b (mapping input x ∈ R

D to a b-bit code z = h(x) ∈ {−1,+1}b) such that the ground-
truth similarity between any two given images correlates well with the Hamming distance between
their corresponding binary codes. We focus on the supervised hashing where the semantic similarity
between the images defines the ground-truth. So two images that are far in Euclidean distance may
in fact be similar (e.g. an object seen from different viewpoints). The only way to define good hash
functions is to learn them from similarity information provided for the training data.
Learning the hash function: optimization-based approach vs diversity-based approach. To
learn the hash function, the leading approach has so far been optimization-based [4, 5, 7, 10]. The
approach works by first defining an objective function over the hash function and then minimizing it.
The objective formalizes the notion that similar images should have lower Hamming distance than
dissimilar images. However, the optimization is difficult, usually NP-complete, and the existing
optimization algorithms are approximate and slow, and most do not scale to large training sets.

A recent work, Independent Laplacian Hashing (ILH) [1], has proposed a very different, diversity-
based approach. Rather than optimizing over the hash function of every code bit jointly, it trains the
b single-bit hash functions h(·) = (h1(·), . . . , hb(·)) independently from each other while ensuring
they differ via diversity-inducing mechanisms from the ensemble learning literature. For example,
optimizing each single-bit code on a different, random data subset, and then fitting a hash function
(binary classifier) to each bit.

To learn each single-bit hash function, ILH samples a training set of N points and assigns a single-bit
code to each of them by optimizing the following objective function:

E(z) =
∑N

n,m=1
ynm(zn − zm)2, z ∈ {−1,+1}N (1)

where ynm = +1 or ynm = −1 indicates that the images n and m are similar or dissimilar. Then,
ILH learns the hash function by training a classifier given the original points as the input and the
single-bit codes as the output. This performs surprisingly well compared to approaches based purely
on optimization, while being simpler, more scalable and embarrassingly parallel.
Our proposed method: independent supervised binary hashing (ISH). The motivation for our
approach stems from trying to push the frontier of independent single-bit hash function learning.
While in the b-bit case the binary code space can have 2b different codes, with b = 1 there are just
two possible codes, +1 and −1, and every training point must be assigned to one of them. This
partitions the training set into two classes. What do these two codes, or classes, represent?

Recall the purpose of defining an objective function over binary codes: if for image xn we know
that xm is a similar point and xq is a dissimilar point, then ideally xn and xm should have the same
code (say, +1) and xq a different code (necessarily −1). This will assign a Hamming distance of 0
to (xn,xm) and of 1 to (xn,xq). In fact, the objective function was a mathematical device precisely
designed to be able to translate the available similarity information into codes whose Hamming
distances preserve such similarity. Hence, all we have to do to learn a single-bit hash function is to
pick a point xn (the “seed”) and find a sample S+ of points that are similar to xn (ynm > 0) and a
sample S

−
of points that are dissimilar to xn (ynm < 0). This defines a two-class problem on the

training set S+ ∪ S
−

, on which we can train a classifier to use as single-bit hash function.
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Figure 1: Column 1: robustness of ISH over its parameters, the number of training points N and the
number of similar points K+. Columns 2–4: precision as a function of the number of bits b.
We call this Independent Supervised Hashing (ISH). It has the following advantages. It is very sim-
ple, requiring only the available similarity values and training binary classifiers. We need not encode
the supervision information into some matrix Y for use in a single-bit objective function (1). Like
ILH, ISH is embarrassingly parallel over the b bits, and suitable for implementation in a distributed-
data setting. It is faster than ILH, because it eliminates the NP-complete optimization of the single-
bit objective, and much faster than approaches that optimize over the b bits for the entire dataset
jointly. It scales to bigger datasets, essentially as big as long as we are able to train a binary classi-
fier on them, while ILH is still somewhat limited because of the NP-complete optimization. One can
keep adding single-bit hash functions until a desired precision and/or maximum number of bits is
reached, effectively selecting the value of b. As we show later, ISH learns hash functions comparable
to the state-of-the-art. The precision of ISH (and ILH) consistently increases as more bits are added
over a range of b values. Finally, we can prune the ensemble of b single-bit hash functions produced
by ISH as proposed in [8] and achieve a smaller ensemble with similar precision performance.

When class labels are available for the training set, supervised binary hashing works define the
ground-truth for a query as all the points in its class. This is problematic because perfect retrieval can
be achieved by training C one-vs-all perfect binary classifiers (assuming C classes), and returning
the entire class predicted for a query at test time. So, in this case, binary hashing experiments should
report the retrieval performance for a C-class classifier as a baseline. Although ISH works with
arbitrary similarity values, it is instructive to see how it behaves in this case. The training set for a
given single-bit hash function consists of a sample S+ of points from class k (the class of the seed)
and a sample S

−
from all other classes. This is (a sampled version of) a one-vs-all classifier.

Experimental setup. We report the results on CIFAR10 [3], CIFAR100 [3] and Infinite COIL
datasets. Infinite COIL is created by adding 100 images uniformly along the straight line segment
between every pair of consecutive images of COIL20 [6]. We use D = 4 096 VGG network features
(the last fully connected layer of VGG) [9]. The ground-truth is defined based on the class labels
in CIFAR0 and CIFAR100 and based on both the class labels and the angles in Infinite COIL. We
compare the proposed method ISH with ILH [1], which outperforms the state-of-the art methods.

Experiments: parameter robustness. The parameters of ISH are the size K+ of the seed class
and the training set size N for a single-bit hash function. Intuitively it might seem that using
K+/N = 1

2
would work well, and our experiments show this is true. The first column of fig. 1 shows

the ISH precision as a function of the ratio K+/N for b = 100 bits and for N ∈ [1 000, 20 000], in
CIFAR10. ISH is very robust, performing reasonably well over a wide range of K+/N values. The
same experiment on the parameters of ILH shows that ILH is not as robust as ISH.

Experiments: precision over the number of bits. The last three columns of fig. 1 compare the
following methods. (1) ISH, selecting the seeds randomly to create the training set. (2) ISH-clever:
selects seeds by cycling over the C classes in the labeled datasets. (3) SVM-class: for the labeled
datasets with C labels, we train C one-vs-all classifiers and report the classification accuracy. (4)
SVM-Hamming: We use the C one-vs-all classifiers of SVM-class as the hash functions. (5) ILH.
When the ground-truth is given by the class label, SVM-class gives better precision than the hashing
methods, but is inapplicable to the Infinite COIL, which has no image labels. ILH and ISH out-
perform SVM-Hamming and are generally comparable in different datasets, sometimes a bit better,
sometimes a bit worse. The precision of ISH and ILH keeps growing throughout the range of b.

Conclusion. ISH is a drastic innovation in the field of binary hashing: we have essentially rede-
fined the problem of supervised binary hashing as a collection of independent binary classification
problems. We have demonstrated that it is not necessary to optimize an objective function of binary
codes in order to learn good hash functions for information retrieval. We assign binary codes to the
points based on the similarity to a set of seeds. The proposed algorithm is simple, fast, embarrass-
ingly parallel, robust, and achieves state-of-the-art performance in precision and recall.
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