
LEARNING SUPERVISED BINARY HASHING
WITHOUT BINARY CODE OPTIMIZATION
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1 Abstract
The goal of binary hashing is to learn a hash function that maps high-

dimensional points to bit codes, which can be used to speed up search

on large databases. Most papers use optimization approaches based

on a suitable objective function with a difficult and inexact optimization.

Recently, it has been shown that the hash function for a code bit may

be learned independently from that of the other code bits. One simply

optimizes a single-bit objective function defined on a random data sam-

ple, and then fits a binary classifier to the resulting codes. We show

that it is even possible to dispense with the single-bit optimization, by

assigning binary codes to the points based on their similarity to a ran-

domly chosen seed point. This procedure is very simple, scalable, and

is competitive with the state-of-the-art methods in retrieval metrics.
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2 Binary hash functions for fast image retrieval
In K nearest neighbors problem, there are N training points in D-

dimensional space (usually D > 100) xi ∈ R
D, i = 1, . . . ,N. The goal is

to find the K nearest neighbors of a query point xq ∈ R
D. Exact search

in the original space is O(ND) in time and space.

A binary hash function h takes as

input a high-dimensional vector

x ∈ R
D and maps it to an b-bit

vector z = h(x) ∈ {0, 1}b.

The main goal is preserving

the neighborhood, i.e., assign

(dis)similar codes to (dis)similar

patterns.
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In supervised hashing, we try to preserve the semantic similarity be-

tween the images (e.g. images from different view points are similar,

while they are far in the Euclidean space).

Finding K nearest neighbors in

Hamming space needs O(Nb)

in time and space. Distances

can be computed efficiently us-

ing binary operations.

N = 109, D = 500 and b = 64

Search in Space Time

Original space 2 TB 1 hour

Hamming space 8 GB 10 seconds

3 Affinity-based objective functions
Most hashing papers try to minimize an affinity-based objective, which

directly tries to preserve the original similarities in the binary space:

minL(h) =
∑N

n,m=1 L(h(xn),h(xm); ynm)

where xi ∈ R
D is the i th input data, h is the parameters of the hash

function, L(·) is a loss function that compares the codes for two images

with the ground-truth value ynm that measures the affinity in the original

space between the two images xn and xm. Many such loss functions

L(zn, zm; ynm) exist, e.g.:

KSH: (zT
n zm − bynm)

2 Laplacian: (ynm ‖zn − zm‖
2)

4 An ensemble diversity approach
Optimizing L(h) is difficult because h is discrete. Many optimization-

based methods have been considered in the binary hashing literature

to optimize the objective approximately.

Limitations of the optimization-based methods:

•The hash function outputs binary values, hence the problem is

nonconvex and nonsmooth. The underlying problem of finding

the binary codes for the points is an NP-complete optimization

over Nb variables.

•They do not scale beyond a few thousand training points.

•The b single-bit hash functions are coupled (to avoid trivial

solutions where all codes are the same).

• In the end, there is little practical difference between the different

objective functions and optimization algorithms proposed.

Is optimizing all the functions jointly crucial anyway? In fact, it isn’t.

Rather than coupling the b hash functions into a single objective func-

tion, a recent method, Independent Laplacian Hashing (ILH) (Carreira-

Perpiñán and Raziperchikolaei, NIPS 2016), proposed to train each

hash function independently from each other.

To get good retrieval results, the single-bit hash functions have to be

different from each other. ILH uses the ensemble learning techniques

to make the hash functions different from each other. In ILH, the best

results were achieved when different training subsets are used. We

consider this mechanism to make the functions diverse.

ILH minimizes L(h) over a single-bit hash function which gives the

following optimization problem:

min
h

P(h) = h(X)Y h(X)T =
N∑

n,m=1

ynm h(xn) h(xm)

where h(X) = (h(x1), . . . , h(xN)) ∈ {−1,+1}N is a row vector of N

bits, h(xn) =  (w
Txn), and  (t) = +1 if t ≥ 0 and −1 if t < 0.

The ensemble-based approach gives several advantages:

•The ensemble-based approach is better or comparable to the

optimization-based methods in terms of retrieval performance.

•Much simpler optimization: ILH deals with b independent

problems each over N binary codes rather than 1 problem with

Nb binary codes.

•Hence, faster training and better accuracy, because ILH deals

with optimization problems of a smaller size.

•Training the b functions can be parallelized: this helps to learn a

large number of single-bit functions very fast. One can then use

pruning to select a small subset of them that has comparable

retrieval performance.

In this paper we show that it is even possible to dispense with the

single-bit optimization, by assigning binary codes to the points based

on their similarity to a set of randomly chosen seed points.

5 Independent Supervised Hashing (ISH)
While in the b-bit case the binary code space can have 2b different codes, with b = 1

there are just two possible codes, +1 and −1.

The goal of the single-bit objective function: if image xn is similar (dissimilar) to the

image xm then ideally xn and xm should have the same (different) binary code(s).

ISH first picks a point xn (the “seed”) and finds a sample S+ of points that are similar

to xn (ynm > 0) and a sample S− of points that are dissimilar to xn (ynm < 0). This

defines a two-class problem on the training set S+ ∪ S−, on which ISH trains a linear

SVM or any other classifier to use as single-bit hash function.

Advantages of the Independent Supervised Hashing (ISH):

• It is very simple, requiring only the similarity values and training binary classifiers.

• Like ILH, ISH is embarrassingly parallel over the b bits, and suitable for

implementation in a distributed-data setting.

• It is faster than ILH, because it eliminates the NP-complete optimization of the

single-bit objective function, and much faster than approaches that optimize over

the b bits for the entire dataset jointly.

• It scales to bigger datasets, as big as long as we are able to train a binary

classifier on them, while ILH is limited because of the NP-complete optimization.

• ISH learns hash functions comparable to the state-of-the-art. The precision of

ISH consistently increases as more bits are added over a range of b values.

6 Experiments

Infinite MNIST Infnite COIL
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Infinite MNIST contains 1 000 000/2 000 images for training/test, in 10 classes. The

groundtrurh is defiend based on the labels of the images.

Infinite COIL contains 140 440/5 000 images as training/test. The groundtruth is de-

fined based on both the class labels and the angles of the objects in Infinite COIL.

We compare the following methods. (1) ISH, selecting the seeds randomly to create

the training set. (2) ISH-clever: selects seeds by cycling over the C classes in the

labeled datasets. (3) SVM-class: for the labeled datasets with C labels, we train C

one-vs-all classifiers and report the classification accuracy. (4) SVM-Hamming: We

use the C one-vs-all classifiers of SVM-class as the hash functions. (5) ILH.

When the ground-truth is given by the class label, SVM-class gives better precision

than the hashing methods, but is inapplicable to the Infinite COIL dataset.

ILH and ISH outperform SVM-Hamming and optimization-based methods. They are

comparable in different datasets, sometimes a bit better, sometimes a bit worse.


