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1 Abstract

Nonlinear embedding algorithms such as stochastic neighbor em-
bedding do dimensionality reduction by optimizing an objective
function involving similarities between pairs of input patterns. The
result is a low-dimensional projection of each input pattern. A
common way to define an out-of-sample mapping is to optimize
the objective directly over a parametric mapping of the inputs,
such as a neural net. This can be done using the chain rule
and a nonlinear optimizer, but is very slow, because the objec-
tive involves a quadratic number of terms each dependent on the
entire mapping’s parameters. Using the method of auxiliary coor-
dinates, we derive a training algorithm that works by alternating
steps that train an auxiliary embedding with steps that train the
mapping. This has two advantages: the algorithm is universal
in that a specific learning algorithm for any choice of embedding
and mapping can be constructed by simply reusing existing algo-
rithms for the em-bedding and for the mapping; and the algorithm
is fast because reusing N-body methods developed for nonlinear
embeddings yields linear-time iterations.
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2 Parametric embeddings

We focus on problems of nonlinear embedding methods, such as Stochastic
Neighbor Embedding (SNE), t-SNE, Elastic Embedding (EE). The goal of the
original methods is to obtain low-dimensional coordinates Xd×N for a given
set of high-dimensional points YD×N . For example, in EE:

E(X) =

N
∑

n,m=1

wnm ‖xn − xm‖
2 + λ

N
∑

n,m=1

exp (−‖xn − xm‖
2) λ > 0.

•Often produce high-quality embedding results.

•Require elaborate iterative non-convex optimization, which can be mitigated
with (1) the spectral direction, which uses part of the Hessian efficiently, and
(2) an N-body approximation for the gradient so each each iteration runs in
linear time.

•Do not give an out-of-sample mapping for projection of new data.

We can obtain an out-of-sample mapping F for test data in 3 different ways:

•Variational approach: optimize together for training and test data, but keep-
ing training data fixed. No closed form solution, costly optimization.

•Direct fit: fit F directly to (Y,X). The mapping plays no role in the learning
of the embedding X.

•Parametric embedding (PE): train F using the embedding objective function
(thus converting the nonparametric embedding into a parametric one):

P (F) =

N
∑

n,m=1

wnm ‖F(yn)− F(ym)‖
2 + λ

N
∑

n,m=1

exp
(

−‖F(yn)− F(ym)‖
2
)

λ > 0.

This ties the mapping to the embedding during the optimization. However,
(1) the gradient of P wrt F must be derived using the chain rule and depends
on the form of both P and F, (2) computing the gradient is O(N 2).

3 Method of auxiliary coordinates (MAC)

Convert the nested problem for P (F) into an equivalent constrained problem:

min P̄ (F,Z) = E(Z) s.t. zn = F(yn), n = 1, . . . , N

that is not nested, where zn are the auxiliary coordinates (low-dim projection)
for an input pattern yn. Solve it using the quadratic penalty method:

minPQ(F,Z;µ) = E(Z) +
µ

2

N
∑

n=1

‖zn − F(yn)‖
2 = E(Z) +

µ

2
‖Z− F(Y)‖2, µ → ∞.

The minimization alternates between two well-studied problems:

•Over F given Z: minF
∑N

n=1 ‖zn − F(yn)‖
2. This is a standard least-squares

regression for a dataset (Y,Z) using F, and can be solved using existing,
well-developed code for many classes of mappings.

•Over Z given F: minZE(Z) + µ
2 ‖Z− F(Y)‖2. This is a regularized embedding

which can be minimized using existing techniques for E(Z) (such as the spec-
tral direction) with simple modifications.

Benefits:

•Easy to develop an algorithm for an arbitrary choice of embedding objective
function E and of mapping F: simply reuse existing algorithms for them.

•Deals with the optimization of E and of F separately. The optimization details
(step sizes, etc.) of the nested problem decouple and remain confined within
the corresponding steps.

•Allows for non-differentiable mappings (e.g. decision trees).

•Same complexity as using the chain rule. However, the quadratic bottleneck
step over Z can be easily linearized with N-body methods.

•Convergence to a minimum guaranteed as µ → ∞.

4 Experiments

1. Illustrative example.

EE free embedding Direct fit

PE (CG) PE (MAC)

10
-2

10
-1

10
0

0.5

0.6

0.7

0.8

0.9

1

 

 

Runtime (seconds)

P
(F

)

MAC

CG
GD

•COIL-20 dataset: 128× 128 images of the rotation of 3 objects every 5◦.

•We used EE to produce the free embedding E(X) (i.e., µ = 0).

•Direct fit applies a linear mapping directly to a free embedding.

•Parametric embedding (PE) directly optimizes P (F) using Gradient De-
scent (GD), Conjugate Gradients (CG), or MAC.

•MAC finds better local minima and is faster.

2. Cost of the iterations.
EE t-SNE
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•MAC shown by itself and as a split between Z and F steps.

•Mapping F: neural net with architecture 3–100–500–2 with sigmoidal activations.

•Z step: approximated w/ Barnes-Hut method for t-SNE and fast multipole method for EE.

•PE with chain rule is O(N 2); PE with MAC is O(N) for EE and O(N logN) for t-SNE.

3. MNIST dataset.

•We train a t-SNE embedding with a neural
net 28 × 28–500–500–2000–2 on N = 60 000
MNIST handwritten 28 × 28 digits dataset,
using entropic affinities.

•We reuse most of the code needed for the
experiment:

–Z step: spectral direction minimization,
N-body approximation.

–F step: deep net pretraining, minibatch
optimization with constant step size and
momentum.
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