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Abstract Method of auxiliary coordinates (MAC) 2. Cost of the iterations.

Nonlinear embedding algorithms such as stochastic neighbor em-  Convert the nested problem for P(F) into an equivalent constrained problem: EE
bedding do dimensionality reduction by optimizing an objective — 1
function involving similarities between pairs of input patterns. The
result is a low-dimensional projection of each input pattern. A  thatis not nested, where z, are the auxiliary coordinates (low-dim projection)
common way to define an out-of-sample mapping is to optimize  for an input pattern y,. Solve it using the quadratic penalty method:

the objective directly over a parametric mapping of the inputs, N

such as a neural net. This can be done using the chain rule min Py(F, Z; ju) :E(Z)JrgZHzn—F(yn)HQ:E(Z)+%HZ—F(Y)H2, 1L — 00.
and a nonlinear optimizer, but is very slow, because the objec- n=1

tive involves a quadratic number of terms each dependent onthe  The minimization alternates between two well-studied problems:

entire mapping's parameters. Using the method of auxiliary coor- ¢ Over F given Z: ming 3V ||z, — F(y.)|>. This is a standard least-squares

min P(F,Z) = E(Z) st z,=F(y,),n=1,....N

* )

Runtime (seconds)

dinates, we derive a training algorithm that works by alternating regression for a dataset (Y, Z) using F, and can be solved using existing,
steps that train an auxiliary embedding with steps that train the well-developed code for many classes of mappings. P
mapping. This has two advantages: the algorithm is universal  eOver Z given F: ming £(Z) + £||Z — F(Y)|°. This is a regularized embedding
in that a specific learning algorithm for any choice of embedding which can be minimized using existing techniques for £(Z) (such as the spec- ¢« MAC shown by itself and as a split between Z and F steps.
apd mapping can be Cc_)nstructed by Slmply.reusmg existing glgo- tral direction) with simple modifications. e Mapping F: neural net with architecture 3—100—500—2 with sigmoidal activations.
mhms for the em-bepldlng and for the mapping; and the a|90r|thm | | | | - e Z step: approximated w/ Barnes-Hut method for --SNE and fast multipole method for EE.
s fast because reusing N-body methods developed for nonlinear e Easy to develop an algorithm for an arbitrary choice of embedding objective , pg ith chain rule is O(N?); PE with MAC is O(N) for EE and O(N log N) for ¢-SNE.
embeddings yields linear-time iterations. function £ and of mapping F: simply reuse existing algorithms for them.
e Deals with the optimization of £ and of F separately. The optimization detalls B -
Funded by NSF award 11S5-1423515. (step sizes, etc.) of the nested problem decouple and remain confined within 3. MINIST dataset. = N -
the corresponding steps. | | | = o0 MAC
: : Allows for non-differentiable mappings (e.g. decision trees). o We train a t-SNE embedding with a neural — PE (minibatch)
Parametric embeddings ) —500—500—2000— _ S
9 e Same complexity as using the chain rule. However, the quadratic bottleneck R/Ielillgngh?n S\?VOH,[,? g?] 22§ 03 228 g“n i{[i d ati'losoeoto O — PE (batch)
We focus on problems of nonlinear embedding methods, such as Stochastic step over Z can be easily linearized with N-body methods. using entropic affinities J 3 1951
Neighbor Embedding (SNE), ¢-SNE, Elastic Embedding (EE). The goal ofthe ¢ converaence to a minimum quaranteed as 1 — oo. | <
original methods is to obtain low-dimensional coordinates X,.y for a given ) ) g » We reuse most of the code needed forthe .= |
set of high-dimensional points Y. y. For example, in EE: experiment: 9
v v Experiments -7 %tecrj): Spectrgl direCtiOn minimization, LICJ)18 -
L L 1. lllustrative example. —TF step: deep net pretraining, minibatch e T
| | - - - optimization with constant step size and 10 10 10
e Often produce embedding results. Elifree embedding Direct fit ¥ momentum. Runtime (seconds)
e Require elaborate iterative non-convex optimization, which can be mitigated '\f_} ‘.;:,”
with (1) the rection, which uses part of the Hessian efficiently, and { 4 Free embedding (initial Z) Parametric embedding with MAC (final F)
(2) an N-body approximation for the gradient so each each iteration runs in P . . . . . . . . . .
¢ Do not give an out-of-sample mapping for projection of new data. i <3 ﬁ.
We can obtain an out-of-sample mapping F for test data in 3 different ways: PE (CQ) PE (MAC) . }“ ; A i
3 R TERLnEt T —_
e Variational approach: optimize together for training and test data, but keep- £ & 501 L4 T, fidentae BOp .. o TSEEE R
ing training data fixed. No closed form solution, costly optimization. g ~ R TR e BRES N
o Direct fit: fit F directly to (Y, X). The mapping plays no role in the learning i £ 6| N AT - REREAN i RS - 4
of the embedding X. WL R N ol Bl e S N e |
e Parametric embedding (PE): train F using the embedding objective function ¢ A Runtinlfg (seconlcolos) L EENT o ; ' SR
(thus converting the nonparametric embedding into a parametric one): = ¥ 0 ol Bl S A R S e
N N e COIL-20 dataset: 128 x 128 images of the rotation of 3 objects every 5°. SR TR T R R
P(F) Z Wy [F(yn) — Flya) > + A Z exp (= [IF(y) — Flym)?) A >0 e We used EE to produce the free embedding E(X) (i.e., i = 0). -50 | A { -50 | i '*-i
ot ot o Direct fit applies a linear mapping directly to a free embedding. ' R
This ties the mapping to the embedding during the optimization. However, » Parametric embgdding (PE). directly optimizes P(F) using Gradient De-
(1) the gradient of P wrt F must be derived using the chain rule and depends scent (GD), Conjugate Gradients (CG), or MAC. -100 1 1-100

on the form of both P and F, (2) computing the gradient is O(N?). e MAC finds better local minima and is faster. 100 50 0 50 100 100 50 0 50 100



