Nonlinear Embedding Methods

For high-dimensional data set \(Y \in \mathbb{R}^{D \times N} \) and \(X \in \mathbb{R}^{d \times N} \), its low-dimensional projection we can formulate nonlinear embedding algorithms as: \(E(X, \lambda) = E'(X) + \lambda E''(X) \), with a trade-off parameter \(\lambda \geq 0 \). For example, in the Elastic Embedding algorithm:

\[
E_{EE}(X, \lambda) = \sum_{n,m=1}^{N} w_{nm} \| x_n - x_m \|^2 + \sum_{n,m=1}^{N} w_{nm} \epsilon \| x_n - x_m \|^2
\]

A nonlinear embedding preserves structure in the high-dimensional data better than linear or spectral methods, but existing training algorithms have quadratic runtime on the number of points \(N \). We address this bottleneck by formulating the optimization as an \(N \)-body problem and using fast multipole methods (FMMs) to approximate the gradient in linear time.

\section*{2 \textit{N}-Body Methods}

1. **Tree-based methods** build a high-dimensional tree around the dataset. Each node contains a subset of the data. Savings occurs by replacing certain point-point interactions with node-point or node-node ones. Typical complexity of these methods is \(O(N \log N) \). Particular case include Barnes-Hut algorithm:

2. **Fast Multipole Methods** do a series expansion (up to \(p \) terms) of the interactions locally around every point. This decouples the computation of each term and reduces a single computation between \(N^2 \) number of terms into a series of computations with \(N \) terms. Overall complexity thus reduces to \(O(N) \).

\section*{3 Accuracy in gradient computation}

Each iteration \(k \) we always incur a small error \(\epsilon_k \). It is better to increase the accuracy with the iterations:
- Cheaper to compute low-accuracy value.
- Analogous to simulated annealing \(\Rightarrow \) gradually increase the accuracy to avoid wandering behavior.
- Assuming \(\epsilon_k \sim \mathcal{N}(0, \sigma^2) \) we show that adding noise is beneficial only where the mean curvature \(\frac{1}{v} (\nabla^2 E(x)) \) is negative, which can happen only in the beginning of the optimization.

\section*{Role of changing the accuracy in FMM optimization}

\section*{4 Experiments}

- 1 000 000 points from infiniteMNIST.
- Elastic Embedding algorithm \((\lambda = 10^{-4})\) optimized with gradient descent (GD), fixed point iterations (FP) and L-BFGS.
- No line search and fixed step size. The accuracy was increased for the first 100 iterations from \(p = 1 \) to \(p = 10 \) terms.

\section*{5 Conclusions}

- \textit{N}-Body methods we can address the main bottleneck of nonlinear embedding methods: quadratic cost of the objective function and the gradient.
- Fast Multipole Methods are more beneficial than Barnes-Hut both theoretically and empirically (\(4 - 7 \times \) speedup for \(10^6 \) elements dataset).
- Gradual increase of the accuracy parameter is advisable.