> LINEAR-TIME TRAINING OF NONLINEAR
) LOW-DIMENSIONAL EMBEDDINGS

BayLearn

Bay Area Machine Learning Symposium

Max Vladymyrov and Miguel A. Carreira-Perpifian
EECS, University of California, Merced

Nonlinear Embedding Methods Accuracy in gradient computation

For high-dimensional data set Y € R”*" and X € R*>¥ Each iteration k& we always incur a small er- e Xi-1

its low-dimensional projection we can formulate nonlin- ror €. It is better to increase the accuracy

ear embedding algorithms as: E(X:\) = £ (X)+AE~(X),  with the iterations: Xkt €k
with a trade-off parameter A > 0. For example, in the e Cheaper to compute low-accuracy value.

Elastic Embeddlng algorithm: e Analogous to simulated annealing = gradually increase the

, . . .
Epp(X: \) Z w 1%, — %> + Z W ol1Xn — x| accuraf:y to avoid wandering behavior. | o |
. et e Assuming e, ~ N (0, o°I) we show that adding noise is benefi-
cial only where the mean curvature + tr (V2E(x)) is negative,
f\ f_ which can happen only in the beginning of the optimization.
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A nonlinear embedding preserves structure in the high-
dimensional data better than linear or spectral methods, .
but existing training algorithms have quadratic runtime on Experlments |
the number of points N. We address this bottleneck by e 1000000 points from infiniteMNIST.
formulating the optimization as an N-body problem and e Elastic Embedding algorithm (A = 10~*) optimized with gra-
using fast multipole methods (FMMs) to approximate the dient descent (GD), fixed point iterations (FP) and L-BFGS.
gradient in linear time. e No line search and fixed step size. The accuracy was in-

creased for the first 100 iterations from p = 1 to p = 10 terms.

N-Body Methods
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1. Tree-based methods build a high-dimensional tree 5 GD, FMM -
around the dataset. Each node contains a subset of the 0 EF;FFC“;AQA M
data. Savings occurs by replacing certain point-point in- z10°)~~ 22
teractions with node-point or node-node ones. Typical -Z. |[--LBFasBH| “as o e i S T
complexity of these methods is O(N log N). Particular O ;¢ 10" 10° ¢ L 2 3 4 5 6 7 8 9 1011

case include Barnes-Hut algorithm: lterations Runtime, hours

5 — R | FMM using L-BFGS after 3 hours  BH using L-BFGS after 3 hours
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2. Fast Multipole Methods do a series expansion 25
(up to p terms) of the interactions locally around every g
point. This decouples the computation of each term and oo
reduces a single computation between N? number of
terms into a series of computations with N terms. Over- | |
all complexity thus reduces to O(N).
B . ) [B - Conclusions
‘ig S — - e N-Body methods we can address the main bottleneck of
= nonlinear embedding methods: quadratic cost of the objec-
sources targets sources targets tive function and the gradient.
B - C'| 1B \ C e Fast Multipole Methods are more beneficial than Barnes-
. >%% . == Hut both theoretically and empirically (4 — 7x speedup for
— o o 10° elements dataset).
sources targets sources targets e Gradual increase of the accuracy parameter is advisable.




