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1 Nonlinear Embedding Methods

For high-dimensional data set Y ∈ R
D×N and X ∈ R

d×N

its low-dimensional projection we can formulate nonlin-

ear embedding algorithms as: E(X;λ) = E+(X)+λE−(X),
with a trade-off parameter λ ≥ 0. For example, in the

Elastic Embedding algorithm:
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A nonlinear embedding preserves structure in the high-

dimensional data better than linear or spectral methods,

but existing training algorithms have quadratic runtime on

the number of points N . We address this bottleneck by

formulating the optimization as an N -body problem and

using fast multipole methods (FMMs) to approximate the

gradient in linear time.

2 N -Body Methods

1. Tree-based methods build a high-dimensional tree
around the dataset. Each node contains a subset of the

data. Savings occurs by replacing certain point-point in-

teractions with node-point or node-node ones. Typical

complexity of these methods is O(N logN). Particular

case include Barnes-Hut algorithm:
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2. Fast Multipole Methods do a series expansion

(up to p terms) of the interactions locally around every

point. This decouples the computation of each term and

reduces a single computation between N 2 number of

terms into a series of computations with N terms. Over-

all complexity thus reduces to O(N).
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3 Accuracy in gradient computation

Each iteration k we always incur a small er-

ror ǫk. It is better to increase the accuracy
with the iterations:

•Cheaper to compute low-accuracy value.
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•Analogous to simulated annealing ⇒ gradually increase the

accuracy to avoid wandering behavior.

•Assuming ǫk ∼ N (0, σ2
I) we show that adding noise is benefi-

cial only where the mean curvature 1
n
tr
(

∇2E(x)
)

is negative,

which can happen only in the beginning of the optimization.

Role of changing the accuracy in FMM optimization
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4 Experiments
• 1 000 000 points from infiniteMNIST.

•Elastic Embedding algorithm (λ = 10−4) optimized with gra-

dient descent (GD), fixed point iterations (FP) and L-BFGS.

•No line search and fixed step size. The accuracy was in-
creased for the first 100 iterations from p = 1 to p = 10 terms.
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5 Conclusions

•N -Body methods we can address the main bottleneck of

nonlinear embedding methods: quadratic cost of the objec-

tive function and the gradient.

•Fast Multipole Methods are more beneficial than Barnes-

Hut both theoretically and empirically (4 − 7× speedup for

106 elements dataset).

•Gradual increase of the accuracy parameter is advisable.


