
A NEW FORMULATION FOR DEEP NEURAL NET LEARNING
Miguel Á. Carreira-Perpiñán and Weiran Wang.

EECS, University of California, Merced.

1 The difficulty of optimizing deep nets

•Training mappings with many hidden layers (deep nets) is a long
standing problem and remains an art. Slowness of the optimization
is caused by ill-conditioning of the objective function, which is deeply
nested:

E1(W) =

N
∑

n=1

‖yn − f(xn;W)‖2,

f(x;W) = fK+1(. . . f2(f1(x;W1);W2) . . . ;WK+1),

where each layer function has the form fk(x;Wk) = σ(Wkx), i.e., a
linear transformation followed by a squashing nonlinearity.

•Most widespread methods are stochastic gradient descent (SGD) and
off-the-shelf optimizers (CG and L-BFGS), taking tiny steps towards
a minimum. SGD is hard to parallelize and requires carefully tuned
learning rates. Second order methods have limited application due to
large size of the Hessian.

•Speeding up the optimization will free up computer time that can be
spent on testing different architectures, cross-validating hyperparame-
ters and trying different initializations.

2 The method of auxiliary coordinates (MAC)

x

y

z1

z2

z3

W1

W2

W3

W4

σσ

σσ

σ σ

Net with K = 3

hidden layers (Wk:
weights, zk: auxiliary
coordinates).

•We introduce one auxiliary variable per data
point and per hidden unit and define the
following equality-constrained optimization
problem:

E(W,Z) =

N
∑

n=1

‖yn − fK+1(zK,n;WK+1)‖
2

s.t.

{

zK,n = fK(zK−1,n;WK)
. . .
z1,n = f1(xn;W1)

}

n = 1, . . . , N.

•One way to solve this problem is quadratic-
penalty method . We optimize the following
function over (W,Z) for fixed µ > 0 and drive
µ → ∞:

E2(W,Z;µ) =

N
∑

n=1

‖yn − fK+1(zK,n;WK+1)‖
2

+
µ

2

N
∑

n=1

K
∑

k=1

‖zk,n − fk(zk−1,n;Wk)‖
2
.

3 Optimization of the quadratic-penalty objective

•This defines a continuous path (W∗(µ),Z∗(µ)) which, under mild
assumptions, converges to a minimum of the constrained prob-
lem.

•The MAC formulation breaks the functional dependencies in the
nested mapping f and unfolds it over layers. Every squared term
involves only a shallow mapping, improving the conditioning of
the problem; and the derivatives required are simpler.

•We apply alternating optimization over Z and W.

•W-step: a separate nonlinear, least-squares regression for
each hidden unit , of the form minwkd

∑N
n=1 (zkd,n − fkd(zk−1,n;wkd))

2,
k = 1, . . . , K and d = 1 . . . , H. We solve each of these KH prob-
lems with a Gauss-Newton approach with a simple line search
procedure, which practically converges in 1–2 iterations.

•Z-step: minimizing over Z for fixed W separates over each Zn

for n = 1, . . . , N . The problem is also a nonlinear least-squares
fit, formally very similar to those of the W-step. We optimize it
again with Gauss-Newton method.

•Because each W- or Z-step operates over very large blocks
of variables, the decrease in the quadratic-penalty object ive
function is large in each iteration, unlike the tiny decreas es
achieved in the nested function.

•One should increase µ as quickly as possible, in order to ap-
proach the solution faster, but not too fast that ill-conditioning
would prevent progress. Early stopping criterion can be used.

•MAC affords a good parallelization, due to the decoupling
(on W or on Z) into many small independent problems.

5 Discussion
Even with a simple optimization (quadratic-penalty with exact steps)
and without parallelism or GPUs, MAC is competitive with heavily
engineered state-of-the-art methods. Many easy speedups are
possible:

•Embarrassingly parallel steps.

•The Z-step is expensive (linear system of dim zn = KH variables
for each data point), but there are many ways to approximate it
so its cost is comparable to a backprop step.

•Stochastic updates using minibatches.

•etc.

4 Experimental results

•Reconstructing USPS input im-
age through a nonlinear, deep
autoencoder. Training/validation
set size: 5 000.

•The architecture consists of K

layers of sigmoidal hidden units,
and each layer contains the same
number of units H, with another
linear output layer.

•We focus on the depth of the ar-
chitecture and vary K from 1 to
13, while keeping the total num-
ber of weight parameters (around
(K − 1)H2 + 2DH) approximately
constant (about 92 000).

•Report reconstruction error vs
runtime on a single processor
for different algorithms, with care-
fully tuned hyper-parameters:
method of auxiliary coordinates
(MAC), stochastic gradient de-
scent (SGD), nonlinear conjugate
gradient (CG), limited memory
BFGS (L-BFGS), Hessian Free
(HF). Weights randomly initial-
ized using the fan-in rule.

⇒ Mean squared error per in-
put E1(W) as a function of run
time. Markers shown every epoch
(SGD), every 100 iterations (CG, L-
BFGS) or every 1 iteration (MAC,
HF).

0 5 10
0

10

20

30

 

 

MAC
SGD
CG
L−BFGS
HF

K
=
1,

E
1(
W

)

0 10 20
0

10

20

30

K
=
5,

E
1(
W

)

0 20 40 60
0

10

20

30

K
=
9,

E
1(
W

)

post-proc. step
and switch to HF

0 20 40 60 80
0

10

20

30

K
=
13

,E
1(
W

)

run time (minutes)

post-proc. step
and switch to HF

5 minutes 10 minutes 25 minutesxn
MAC SGD CG L-BFGS HF MAC SGD CG L-BFGS HF MAC SGD CG L-BFGS HF

Autoencoder (K = 5) output of several difficult examples xn in the
validation set obtained by each algorithm at three times.


