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Abstract

It is known that some speech sounds are produced by more than
a single vocal tract shape. Here, we study to what extent in-
dividual articulators (e.g. the tongue tip) are constrained by a
given acoustic feature vector. We use parametric and nonpara-
metric methods for articulatory inversion and quantify the er-
ror incurred by inversion methods, and the dimensionality and
multimodality of the inverse region in articulatory space that
corresponds to a speech sound.
Index Terms: articulatory inversion, nonuniqueness, neural
networks, mode-finding.

1. Introduction
Articulatory inversion is the problem of recovering the sequence
of shapes of the vocal tract (from the glottis to the lips) that pro-
duces a given acoustic utterance [1]. It is a difficult problem
because the forward mapping from articulators to acoustics is
many-to-one, i.e., different vocal tracts can produce the same
acoustics. This makes its inverse not only highly nonlinear but
also one-to-many. Many methods have been proposed to per-
form articulatory inversion. However, in this paper we focus
not on specific inversion methods, but on characterizing the de-
gree and nature of the nonuniqueness of the inverse mapping
itself. Although specific instances of nonuniqueness are known
(e.g./ô/), little is known about the geometry (size, dimension-
ality, multimodality) of the region in articulatory space (of the
whole vocal tract, or of individual articulators) that corresponds
to sounds occurring in normal speech.

One question we address in this paper is whether the prob-
lem of articulatory inversion is simpler when trying to recover
only a portion of the vocal tract rather than all of it. It is known
that a certain amount of nonuniqueness exists during normal
speech in the vocal tract [2]. However, while (1) nonunique-
ness of one articulator implies (2) nonuniqueness of the entire
vocal tract, (2) does not necessarily imply (1) for all articula-
tors. For example, two different vocal tract shapes that produce
the same acoustics might place the lips in the same position. In
fact, it is conceivable that certain articulators are uniquely de-
termined by the acoustics for every phoneme. Thus, recovering
certain articulators only may be an easier problem, and articu-
latory inversion methods could benefit from this. A less funda-
mental but practically important argument is that by considering
a portion of the vocal tract, the dimension of the space to model
decreases, so the efficiency and robustness of the methods in-
creases (in particular of probabilistic methods such as [3]).

Recovering only a portion of the vocal tract is of interest
in several applications. For example, recovering the shape of
the lips and anterior tongue is useful for facial animation [5].
Recovering the geometry of the velum could be useful as an
aid in the diagnosis of dysarthria (which is characterized by hy-

pernasalization, caused by an impairment of the velopharyngeal
function). Also, it has been suggested [6] that linguistic infor-
mation is coded in the geometry of the frontal cavity of the vocal
tract, whereas speaker-dependent aspects are controlled by the
geometry of the back cavity.

Several studies of the inverse mapping exist. Some of these
are based on vocal tract models, that is, articulatory synthesiz-
ers based on a tube-like geometric model of the vocal tract,
controlled by a few parameters [7, 8]. For example, Boë et
al [8], using Maeda’s model, argued that the lip area and the
location and dimension of the oral constriction used in French
vowel production could be derived from the first 3 formants,
even though the complete shape of the vocal tract could not be
recovered. However, as argued by Hogden et al [9] and oth-
ers, these studies contain significant uncertainties. For example,
vocal tract models have the problem of ensuring not only that
vocal tract shapes are physically feasible, but also that they are
actually used in normal speech. Some of these problems can be
avoided by using measured articulatory data. Several such stud-
ies exist (e.g. [10, 9]), although they are often limited to small
datasets (often just vowels, represented only by their first 3 for-
mants). We use two large articulatory databases that cover most
sounds in American (XRMB) and British (MOCHA) English.
However, these databases include information only up to the
velum, with no information about the pharyngeal region of the
vocal tract. No other public database that we know of includes
data about the entire vocal tract during large enough amounts
of conversational speech. Thus, our work will be limited to the
lips–velum portion of the vocal tract.

In the following two sections, we quantify how difficult it
is to recover portions of the vocal tract and individual articu-
lators from the instantaneous acoustics. Section 2 uses model-
based inversion methods, in particular neural nets and radial ba-
sis functions. These methods cannot model multivalued map-
pings, but get good results if there is little nonuniqueness, and
are useful as a baseline. Section 3 uses nonparametric methods
based on searching the articulatory data for frames matching
the given acoustics within a certain tolerance. These methods
can deal with multivalued mappings and rely on fewer assump-
tions about the data. This extends previous work [2] where we
studied the nonuniqueness of the whole vocal tract.

2. Prediction Error of Individual
Articulators in Inverse Models

Dataset. We used the MOCHA-TIMIT database ([11], see
fig. 1) which records, simultaneously with the acoustic wave,
positions of7 receiver coils in the midsaggital plane of the vo-
cal tract (VT) shape, sampled at500 Hz. We used the dataset
from speakerfsew0, which is divided into a training, valida-
tion and test set of10 000 frames,4 000 frames, and15 unseen
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Fig. 1. Left: pellet locations in the MOCHA database.Middle: plot of the entire dataset for speakerfsew0 (this is the corrected dataset
by mean-filtering in [13]); each pellet’s data uses a different color andshows a 1–stdev contour of its covarianceΣr centered at its
mean.Right: distribution of estimation errors at each pellet, centered at each pellet’s mean, and contour for its covarianceΣe.

UL UL...LL UL...LI UL...TT UL...TB UL...TD UL...V RBF Individual
RMSE corr RMSE corr RMSE corr RMSE corr RMSE corr RMSE corr RMSE corr RMSE corr RMSE corr

ULx 1.02 0.48 1.02 0.49 1.01 0.49 1.01 0.49 1.01 0.49 1.01 0.49 1.00 0.51 0.99 0.51 1.02 0.48
ULy 1.36 0.58 1.36 0.58 1.35 0.58 1.36 0.58 1.35 0.59 1.34 0.59 1.36 0.57 1.33 0.60 1.36 0.58
LLx 1.34 0.48 1.31 0.49 1.32 0.49 1.34 0.48 1.32 0.49 1.32 0.49 1.28 0.51 1.35 0.47
LLy 2.99 0.70 2.95 0.70 2.95 0.70 2.96 0.70 2.96 0.70 2.96 0.70 2.93 0.71 2.95 0.71
LIx 0.94 0.48 0.95 0.48 0.96 0.47 0.94 0.49 0.94 0.48 0.92 0.51 0.95 0.47
LIy 1.35 0.74 1.33 0.75 1.34 0.74 1.33 0.75 1.33 0.75 1.32 0.75 1.35 0.74
TTx 2.78 0.71 2.74 0.72 2.76 0.72 2.74 0.72 2.71 0.73 2.79 0.71
TTy 3.06 0.77 2.99 0.78 3.04 0.77 3.06 0.77 3.01 0.78 3.05 0.77
TBx 2.36 0.77 2.38 0.76 2.37 0.77 2.36 0.77 2.44 0.75
TBy 2.65 0.73 2.63 0.74 2.63 0.74 2.60 0.74 2.65 0.74
TDx 2.22 0.74 2.21 0.74 2.19 0.75 2.26 0.72
TDy 2.75 0.59 2.75 0.59 2.72 0.59 2.78 0.59
Vx 0.51 0.69 0.52 0.68 0.52 0.68
Vy 0.46 0.70 0.46 0.70 0.46 0.70

Table 1. Results (RMSE in mm and correlations, for thex andy coordinates of each articulator) of recovering the whole vocal tract
(VT) or portions of it using neural networks and an RBF net. The first 7columns are for MLPs trained to recover different portions of
the VT; the last column is for MLPs trained to recover individual articulators.

utterances, respectively. We used a mean-filtering procedure as
in [13] to normalize the raw EMA data, and further downsam-
pled the EMA data from500 to 100 Hz to match the acoustic
frame rate of10 ms. As acoustic features, we used line spectral
frequency (LSF, order12, 20 ms window) with dynamic fea-
tures, which was found in [14] to be best suited for inversion.

Inversion methods. We use neural networks for the inverse
mapping. We train: 1)7 multilayer perceptrons (MLP), each to
recover a portion of the front VT from the acoustics, as fol-
lows: UL+LL+LI+TT+TB+TD+V, UL+LL+LI+TT+TB+TD,
UL+LL+LI+TT+TB, UL+LL+LI+TT, UL+LL+LI, UL+LL,
and UL. 2) 6 MLPs, each to recover an individual ar-
ticulator (LL, LI, TT, TB, TD, V). 3) One radial-basis
function (RBF) network to recover the entire front VT
(UL+LL+LI+TT+TB+TD+V). Note that the result for a given
articulator (e.g.UL) may be different among different MLPs
(e.g. UL+LL or UL+LL+LI) because the first-layer weights
are shared among all outputs. However, for RBFs where the
first layer (the means and widths of the RBFs) is trained based
only on the inputs (as commonly done), the outputs are in-
dependent from each other. All MLPs have a single hidden
layer with 100 hidden units. We trained them (using Netlab
http://www.ncrg.aston.ac.uk/netlab) with con-
jugate gradient descent and early stopping. For each MLP, we
picked the one with lowest test error over10 random initializa-
tions. The RBF is trained with weight regularization (λ = 0.1
and hasM = 600 basis functions with widthσ = 0.1.

Table 1 shows the root-mean-square error (RMSE) in mm
and the correlation in[−1, 1] for the neural nets and RBF net.
As can be seen, one can achieve approximately the same error
whether recovering part of the VT with dedicated networks, or
the whole of it with a single network. Thus, although some pre-
vious work has focused on inverting specific articulators (e.g.
the velum height in [12]), our results suggest that one may just
as well fit a single mapping to recover the entire vocal tract.
The RMSE and correlations we obtain are comparable to others
[13] (noting that we do not use an acoustic context window and
our dataset is much smaller than in [13]). We obtained simi-
lar results with different number of hidden units and different
initialization strategies.

Fig. 1 shows the distribution of the errorsei
j = ai

j − âi
j

between the true (ai
j) and estimated (̂ai

j) articulator in framej,
for each articulatori. We plot these errors as vectors centered
at each articulator’s mean. We see that the covariance of each
articulator’s errorΣe is roughly aligned and proportional to the
covariance of that articulator’s positionΣr (compared to fig. 1),
except forTB, which is roughly spherical. To evaluated quanti-
tatively the errors over different articulators we used the a rela-
tive error( 1

2
tr (Σ

−1/2

r ΣeΣ
−1/2

r ))1/2. If Σr andΣe have the
same eigenvectors sorted by decreasing eigenvalue (and thus are
aligned), then this relative error becomes( 1

2

P

2

i=1
λi

e/λi
r)

1/2

in terms of the eigenvalues. Table 2 lists these relative estima-
tion errors for each articulator. Overall, they are similar for all
articulators, although somewhat larger values occur onUL, LI
andV, which have smaller ranges than the tongue.



UL LL LI TT TB TD V
RBF 0.84 0.77 0.83 0.72 0.70 0.74 0.82
MLP 0.85 0.79 0.84 0.72 0.71 0.75 0.82

Table 2. Relative estimation error for each MOCHA articulator.

3. Nonuniqueness of Individual Articulators
In [2], we studied nonuniqueness of the entire vocal tract. Our
approach was to estimate nonparametrically the conditional
density in articulatory space given an acoustic feature vector,
and then search for modes in this density. Here, we use this
approach to study the nonuniqueness of individual articulators.
As noted earlier, nonuniqueness of the entire VT shape does not
imply nonuniqueness of each articulator. Likewise, a Gauss-
ian mixture in XY space with modes at(±1, 0) only has one
mode in Y space. We already noted from our previous work [2]
that the same sound could be produced by very different tongue
shapes but with almost the same upper lip position. The ba-
sic idea in our approach is to fix one acoustic vectoryn and
search the database for itsinverse set, i.e., all articulatory vec-
tors{xm} that approximately map toyn (inversion). Then, we
apply aclusteringalgorithm to determine whether the inverse
set{xm} in each articulator’s 2D space (e.g.ULx andULy) is
unimodal or not, and compute statistics from the inverse set for
each articulator. Repeating this for every acoustic vectoryn in
the database allows an exploration of the nonuniqueness of the
inverse mapping for a wide range of sounds, and a characteri-
zation of the geometry of the inverse set. Let us consider each
step in detail.
Dataset. In this study, we use the Wisconsin X-ray microbeam
database (XRMB [15]), which records, simultaneously with the
acoustic wave, the positions of8 pellets in the midsaggital plane
of the VT (see fig. 2), sampled at147 Hz, for various types
of speech (isolated words, prose, etc.). The XRMB measure-
ment error for the pellets is0.7 mm. As acoustic features, we
use linear predictive coding (LPC) coefficients because they are
closely related to the vocal tract spectral envelope, which allows
direct visualization of spectral differences and formant struc-
tures. We use LPC of order20 to obtain an accurate formant
structure (for order12, F3 is smoothed out in e.g./ô/). The
acoustic feature vectors use a window and step size to yield147
Hz as with the articulatory features; we removed silent frames
using energy-based endpoint detection. We use a single speaker
(jw11, male,90 utterances including isolated words, prose pas-
sages, etc.), resulting in a dataset of45 760 vectors(x,y) with
x ∈ R

16 andy ∈ R
20. Due to the fact that LPC is not effec-

tive at modeling unvoiced sounds, e.g. fricative and plosive, we
eliminated those unvoiced frames (roughly5%) from the orig-
inal dataset of45 760 vectors, making the final dataset43 260
vectors.
Searching for multimodality in the inverse set in each ar-
ticulator’s space. This requires a distanced(y,y′) between
acoustic vectors; we use the Itakura distance [16], which em-
phasizes the role of the formants and is a reasonable approxi-
mation to a perceptual distance. The VT shape representation
is simpler: each component of the articulatory vectorx is the
horizontal or vertical coordinate (in mm) of a pellet, and we can
use the Euclidean distance. Next, we fix an acoustic reference
distancer = 0.2 for which we consider two acoustic vectors to
be roughly the same sound. In [2], we usedr = 0.4, but further
analyses indicate that this can be too large and include some
frames that have different phonetic identities in the inverse set,
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Fig. 2. Left: pellet locations in the XRMB database.Right: plot
of the entire dataset for speakerjw11; each pellet’s data uses
a different color and shows a 1–stdev contour of its covariance
centered at its mean.

hence affecting the mode search. We find that the size of the in-
verse set varies considerably depending on the acoustic vector,
so that searching for theK nearest vectors as in [17], instead
of for those vectors withd(y,y′) ≤ r, results in missing true
inverses or including false inverses depending on the value of
K. We also discard those acoustic vectors whose inverse set
contains less than10 vectors so as to obtain meaningful statis-
tics. An approximate inversion of this type is unavoidable given
the discrete nature of the data. In summary, the inversion for
an acoustic vectory returns a set{xm : d(ym,y) ≤ r}. To
search for modes in this inverse set, we first fit to it a nonpara-
metric kernel density estimatep(x) ∝

P

m G
`

x−xm

σ

´

with
Gaussian kernel and bandwidthσ. Then, we find the modes
of p(x) using a mean-shift algorithm [4], which iterates a hill-
climbing algorithm initialized at everyxm and collects all the
resulting, distinct modes. We useσ = 6 mm; we found this
to be a reasonable value based on visual inspection of the 2D
inverse sets.

Shape statistics of the inverse set. The number of modes gives
only partial information about the geometry of the inverse set.
If the latter is a manifold of dimension zero, it can consist of
one or more tight clusters (and so one or more modes). If it has
dimension one and is thus elongated, it may also consist of one
or more modes along it. We report additional shape statistics for
each inverse set{xm} (for a given acoustic vector) based on its
covariance matrix. Its eigenvaluesλ1 ≥ λ2 measure the spread
of the inverse set along its principal axes. Ifλ2 ≈ λ1, the in-
verse set is usually distributed as a round cloud. If bothλ1 and
λ2 are quite small, the inverse set is tightly concentrated and
may be considered a zero-dimensional manifold. Ifλ2 ≪ λ1,
the inverse set has an elongated shape, perhaps corresponding
to a 1D manifold. These shape statistics only depend on the
acoustic reference distancer, but on no other parameters (e.g.
σ, since they are not obtained from the kernel density estimate).
We also explore visually the inverse sets for many acoustic vec-
tors to try to characterize their shape.

Exploratory analysis of the geometry and dimensionality of
the inverse set. Fig. 3 shows the distributions of the square-
root of λ2 vs λ1 (in mm) for selected articulators and for the
entire VT. Each point corresponds to one acoustic vector and
is colored according to the number of modes of its inverse set.
Points can lie roughly on the diagonal or below and to the right
of it, corresponding to circular and elongated shapes, respec-
tively. The following table lists the percentage of frames with
1, 2 or more modes in each articulator space and in the entire
VT space:



modes UL LL MNI MNM T1 T2 T3 T4 all
1 99.6 93.1 99.5 99.8 78.3 88.3 89.1 91.4 78.1
2 0.4 6.7 0.5 0.2 17.6 10.2 9.6 7.9 16.7

3+ 0 0.2 0 0 4.1 1.5 1.3 0.7 5.2

This shows that multimodality occurs in all articulators, i.e., for
each articulator there are acoustic vectors for which multiple
VT shapes exist that differ in that articulator (and possibly oth-
ers). As noted in [2], the percentage of multimodal frames in the
entire VT shape is small (here, 21.9%). However (and unlike in
table 2), there are marked differences among articulators. Mul-
timodality is very infrequent forUL, MNI, andMNM (upper lip,
teeth), which mostly show circular, tight inverse sets, that may
be considered as 0D manifolds. Multimodality is more frequent
for the tongue (T1–T4, in particular the tip,T1) and the lower
lip (LL).

Fig. 4 shows the histogram of each square-root eigenvalue
for individual articulators and for the entire VT.T1 to T4 and
LL have higher variability than other articulators (UL, MNI,
MNM). Many frames satisfy

√
λ3 ≤

√
λ2 ≤

√
λ1 ≤ 4 mm

and can be considered as tight inverse sets. The full-VT his-
togram shows thatλ1 is typically quite larger thanλ2 andλ3,
and that the latter are more comparable. Thus, many inverse
sets in the 14D space are somewhat or considerably elongated
in 1D; this can also be seen in the 2D projections in fig. 5. They
are particularly common with the lips and teeth but also with the
tongue. We suspect this may be the result of rigid 1D motion
(for example, the jaw can mostly rotate around its axis, so the
lower teeth track a circle) of an articulator that has little effect
on the acoustics, or more generally a coordinated motion of sev-
eral articulators. Finally, as reported in [2], we also find clearly
multimodal sets with two or more tight clusters (0D manifolds).

Fig. 5 shows inverse sets (in the tongue 2D spaces) repre-
sentative of the variety of shapes we find: compact unimodal
(e.g. vowels), compact multimodal (e.g. “the” or /ô/ in “row”
or “real”), or elongated 1D shapes (e.g. glides/l/, /w/). Other
sounds (e.g./m/) seem to show very complex tongue shapes.

In summary, we find most inverse sets are compact uni-
modal, but among the remaining ones, we find many that are
elongated in a 1D shape (possibly indicating rigid motion of a
non-critical articulator) or that consist of two compact but sepa-
rated clusters (distinct 0D manifolds). Beyond this, we find sets
with more complex shapes too.
Relation with critical articulators. The issue of nonunique-
ness of the vocal tract shape is related but not identical to that
of critical articulators [10]. The latter refers to the sensitivity of
the acoustics as a function of small changes in different articula-
tors. For a given phoneme, a critical articulator is one such that
motions of it can strongly alter the sound, while motions of a
non-critical articulator have a small effect on the sound. For ex-
ample, the lower lip is critical for producing/b/ (since slightly
opening the lips alters the acoustics strongly), but the tongue
dorsum is not; this is reflected in a low variance of the lower
lip’s position over different realizations of/b/ sounds. In con-
trast, nonuniqueness (strictly defined) means entirely different
vocal tract shapes produce exactly the same acoustics. Depend-
ing on how loosely we define nonuniqueness (i.e., how much
acoustic variation we tolerate), a non-critical articulator may or
may not result in nonuniqueness. More importantly, a critical
articulator need not be uniquely determined. For example, the
tongue dorsum in/ô/ has a bimodal distribution of two tight
clusters; thus, while small variations of the tongue can change
the acoustics significantly, entirely different tongue shapes re-
sult in almost the same acoustics.

4. Conclusion
Our results, based on parametric and nonparametric inversion
techniques, suggest that nonuniqueness affects all the vocal tract
articulators that we considered (in particular the tongue). How-
ever, for any given acoustic sound some or even all articulators
may be strongly constrained. The set of articulatory shapes that
correspond to a given sound (within a small Itakura distance in
acoustic space) is usually tightly concentrated around a roughly
spherical region in articulator space (dimension0). However,
many sounds do show more complex shapes: multimodality (di-
mension0), very elongated in a straight or curved path (dimen-
sion 1), or even more complex. When averaged over a large
dataset containing most English sounds, the inversion error us-
ing a neural net of each articulator normalized by its range of
variation is approximately the same over all articulators; yet,
the tongue and lower lip are much less constrained by the sound
than the teeth and upper lip. How these results depend on spe-
cific classes of sounds or different speakers is a topic of future
research. Acknowledgments. Work funded by NSF awards
IIS–0754089 (CAREER) and IIS–0711186. XRMB funded (in
part) by NIDCD grant R01 DC 00820.
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Fig. 5. Sample plots of the inverse sets (blue dots) for a given soundyn in the XRMB database (speakerjw11) in the space ofT1 to
T3, density contours, modes (green dot) and palate (black line). The red mark is the articulatory vectorxn corresponding to the sound.


