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Abstract

Model interpretability is a topic of renewed
interest given today’s widespread practical
use of machine learning, and the need to
trust or understand automated predictions.
We consider the problem of optimally learn-
ing interpretable out-of-sample mappings for
nonlinear embedding methods such as t-SNE.
We argue for the use of sparse oblique deci-
sion trees because they strike a good tradeoff
between accuracy and interpretability which
can be controlled via a hyperparameter, thus
allowing one to achieve a model with a de-
sired explanatory complexity. The resulting
optimization problem is difficult because de-
cision trees are not differentiable. By using
an equivalent formulation of the problem, we
give an algorithm that can learn such a tree
for any given nonlinear embedding objective.
We illustrate experimentally how the result-
ing trees provide insights into the data be-
yond what a simple 2D visualization of the
embedding does.

While predictive accuracy is usually the primary rea-
son to learn a machine learning (ML) model, the abil-
ity to interpret the resulting model has always been
important, and work in both statistics and computer
science shows this. Early examples are the use of vari-
max rotation to facilitate the interpretation of factor

analysis , ), or the use of expert systems in
medical diagnosis (IN&Qhﬁm_a.Ll, |_L9&5|) However, it is
in the last few years, due to the widespread adoption of
ML models in many practical applications, that model
interpretability has become paramount. Indeed, new
regulations have been proposed or are already in effect
that require, in one form or another, that ML model
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decisions be explainable to end users. These include
regulations by the EU (GDPR and AI Act), US Fed-
eral Trade Commission (FTC), ete[] This implies that
companies that use Al should be prepared to handle
audits of their systemsﬂ. In fact, some sensitive uses of
ML models have long been regulated. An example is
credit scoring. The FTC’s 1970 Fair Credit Reporting
Act and 1974 Equal Credit Opportunity Act both ad-
dress automated decision-making, and require compa-
nies to disclose to the consumer the principal reasons
why they were denied credit.

Model interpretability has seen much research in su-
pervised settings (classification, regression) but much
less in unsupervised ones, specifically in dimensional-
ity reduction (DR) and nonlinear embeddings (NLE),
which we focus on here. Two outputs of a DR proce-
dure are relevant for interpretability. One is the low-
dimensional projections of the data points (the embed-
ding, which can be visualized (typically in 2D scat-
terplots) to find patterns in the data. This has been
widely exploited and is indeed a main application of
DR. The other output is the projection mapping from
high- to low-dimensional points. This has received
some attention for linear models such as PCA but very
little otherwise, in particular for NLE methods such as
t-SNE, which do not naturally define an out-of-sample
mapping, rather they directly learn a low-dimensional
projection for each training point, by optimizing an
objective function of the latter. A further consider-
ation is that interpretability is not a black-and-white
concept. In learning an explainable DR mapping, it is
useful to be able to control the complexity of the ex-
planation so as to span a range from a very accurate,
detailed but complex explanation, to a less accurate
but simpler explanation that may capture important
overall patterns.

. GDPR: mttps://gdpr-info.eu. Al Act: https://www.bbc.
com /news /technology-56830779. FTC: [https://www.ftc.gov/new
s-events/blogs/business-blog/2021 /04 /aiming-truth-fairness-equity-
your-companys-use-ai.

https://news.bloomberglaw.com/tech-and-telecom-law /bias-in
-artificial-intelligence-is-your-bot-bigoted
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There is another, important advantage of learning an
interpretable projection mapping jointly with the em-
bedding. While an NLE method such as ¢-SNE is
precisely defined by an objective function of the low-
dimensional coordinates, this does not mean that the
latter offer a faithful projection of the original, high-
dimensional data. Firstly, the result depends in an
obscure way on the objective function and on hyper-
parameters such as the perplexity in ¢-SNE. Second,
the resulting embedding may give a misleading view
of the data. For example, t-SNE has a strong ten-
dency to find clusters where none exist, as can be seen
with manifolds of known structure, such as the Swiss
roll (Carreira-Perpindn, M) Many papers present
t-SNE embeddings of data without perhaps realizing
that t-SNE may introduce artifacts that do no exist
in the data (this criticism extends to most NLE meth-
ods, not just t-SNE, of course). Augmenting the ¢-
SNE embedding with an interpretable out-of-sample
mapping, such as the sparse oblique trees we use here,
allows one to understand how the high-dimensional in-
put instances are projected to the embedding and un-
derstand whether that makes sense, thus helping to
validate the embedding.

This opens several technical issues. What mapping
should we use? In section ] we argue that sparse
oblique trees are ideally suited for DR interpretabil-
ity and that they can provide explanations of control-
lable complexity. SectionBldescribes how to learn such
trees. How do we learn such a mapping for a given
type of NLE? In section ] we argue that the optimal
mapping must be jointly learned during the embed-
ding process, not after the fact. However, this implies
a difficult optimization problem, because the tree is
not differentiable. We give an algorithm that solves
this by alternatingly updating an embedding and a
tree, and which works with any type of NLE, such as
t-SNE , 2008), the elas-
tic embedding (ICarrelra—Permnarﬂ [ZQM) multidimen-
sional scaling (Bor ,U)_Oﬂ), the Sammon
mapping , ) or others. Finally, in sec-
tion Bl we show that the resulting tree can indeed pro-
vide useful insight into the data beyond what the 2D
visualization of the embedding itself providesﬁ.

1 RELATED WORK

Much work exists in achieving interpretability for
linear DR models such as PCA and factor analysis.
In both cases, the objective function directly depends
on the D coefficients of the linear mapping (if the in-

%Note that sections BH3] describe supervised models (re-
gression trees), while our overall problem is unsupervised.
This is because our joint optimization algorithm in sec-
tion Ml relies on a subproblem involving a regression tree.

stances are D-dimensional) z = F(x) = Ax + b. The
most natural way to make this usually large number
of coefficients is to make most of them zero, so each
projection dimension depends on few input features.
An early way to do this is with varimax rotation

, M), which postprocesses the mapping as
z' = Rz = (RA)x+Rb with a rotation matrix R that
encourages having many zero elements in RA. Later
work revisited this by making use of other rotations

%‘Mﬁdﬂ 2000; (Chennubhotla and Jepson,
), or of sparse formulations using the ¢; or

ly norms (d’Aspremont et all, [2008; LJournée et all,
2011; WJolliffe et all, 2003; Kuleshov, 2013; Mackey,
2009; Moghaddam et all, [2006; [Papailiopoulos et all,
2013; |Shen and Huang, [2008; Sriperumbudur et al,
2007; [Thiac et all, [2010; |Zhang and El Ghaoui,
2011; [Zou et al., l29_0ﬂ) and nonnegative coefficients
(Zass and Shashnd, [2_@_2‘ . Most of these works focus
on the algorithmic or theoretical aspects of achieving a
fast, possibly approximate solution, which is NP-hard
in some formulations.

We are aware of very little work, if any, regarding
learning interpretable mappings for nonlinear embed-
dings such as t-SNE. An obvious approach would be to
optimize the embedding and then fit to it a sparse lin-
ear or otherwise nonlinear but interpretable mapping,
but as we note later this is suboptimal.

Since the form of our projection mapping is a tree of
linear mappings, this can also be regarded as a form
of local DR. Examples of this are mixtures of factor

analyzers (Ghahramani and Hintonl, [1996) or of PCAs
[1997; |T11:>1:)1np_r and Bishop,

) and related models (Roweis et all, 2009).

2 CHOICE OF PROJECTION
MAPPING

Let us call F: x € RP — z € RE the projection map-
ping, which maps a high-dimensional point x in D di-
mensions to a low-dimensional point z in L < D di-
mensions. This mapping is in general nonlinear and
we seek a type of mapping that can be interpreted.
Black-box mappings such as a neural net or a ran-
dom forest, while highly accurate, are very hard to
interpret in a robust way, in spite of many efforts in
this direction, such as feature importance or saliency
maps , ) We focus here on models that
are easier to interpret by construction. One candi-
date are linear mappings, but they are too restrictive
and would distort the NLE considerably. (A linear
mapping is also a particular case of our model be-
low.) Another candidate are generalized additive mod-
els (Hastie and Tibshirani, [1990), which define F as a

sum of functions each operating on a single feature (or
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perhaps a pair of them). These functions can then
be plotted to inspect them. This model is also very
restrictive, in that features are generally expected to
interact, and it scales poorly with the dimension D. A
third candidate are traditional, axis-aligned decision
treeﬂ, where each decision node thresholds a single
input feature and has two children. This is also very
restrictive for several reasons. First, the axis-aligned
structure of the splits is wholly inadequate if features
interact or have correlations, and it gives rise to a large
number of nodes, which makes the tree hard to in-
terpret. Besides, the maximum number of features a
binary tree with K leaves can use is K — 1 (one per
decision node), and each root-leaf path would use even
fewer. If D is large, as is expected in DR, this would
force the tree to have many nodes, or else it would
apply a drastic feature selection on the embedding.

Then, our proposed mapping is a sparse oblique tree,
where each decision node i uses a sparse linear map-
ping (a hyperplane split using few features): if w? x +
w,;o > 0 we send instance x to the right child, else to
the left child, where the D x 1 vector w; is sparse. Each
leaf i uses a sparse linear mapping A;x + b; where A;
is a sparse L x D matrix. Such a tree is learned by
optimizing the following objective function over a tree
T of fixed structure (say, a complete tree of depth A):

N
E©)=> Lyn T(xas;0)+ A > ¢:(0:). (1)

i€nodes

Here, T: RP — R’ is the tree predictive mapping
with parameters @ = {6, }0des, Where 0; = {w;, w0}
for a decision node and 6, = {A;,b;} for a leaf; the
loss is the squared error L(y,y’) = |ly — ¥'||*; and the
regularization terms have the form ||w;||; for decision
nodes and ||A;||; for leaves, i.e., they are ¢; penalties
promoting sparsity. Note that if w; = 0 for a deci-
sion node, the node becomes redundant (it sends all
instances to the right child if w;p > 0 and to the left
child otherwise) and can be pruned, hence reducing
the tree size. This type of tree is ideal for our goal for
several reasons. It can model nonlinear mappings us-
ing very few nodes compared to an axis-aligned tree.
It is especially convenient when clusters exist in the
data, which can be captured by the tree leaves. It can
make full use of any and all features of an instance,
and exactly which features will be used depends on
the path the instance follows. And, crucially, we can
control the tree complexity in number of nodes, num-
ber of features used in each decision node and number

4We do not consider “soft” trees, where an input in-
stance traverses every path of the tree, because they greatly
complicate interpretability. (Soft trees do have the advan-
tage of being differentiable, so learning them jointly with
the NLE is straightforward via gradient-based methods.)

of nonzero weights in each leaf mapping via the hyper-
parameter \. This offers a convenient way to achieve a
range of explanation levels, from detailed and accurate
to simple and less accurate. If A is large enough, the
tree will collapse to a single leaf node, i.e., a sparse lin-
ear mapping. Indeed, and as seen in our experiments,
the sparse oblique tree is much more accurate than an
axis-aligned tree while using many fewer nodes, which
makes the tree quite interpretable.

3 LEARNING SPARSE OBLIQUE
TREES FOR REGRESSION

The desire to learn oblique trees was already expressed
in the pioneering CART book (Breiman et. all, [1984),
but until recently no effective way existed to optimize
an arbitrary objective function such as ([{II) over them.
A recent algorithm, Tree Alternating Optimization
(TAO) (Carreira-Perpinan and Tavallali, 2018) is able
to learn such trees in a scalable way to large dimension
and sample size and produces highly accurate trees
Zharmagambetov et all, 2021d). Importantly, TAO
can use any initial tree (structure and parameter val-
ues) and monotonically decrease ({l) at each iteration.
This is crucial since TAO appears as a subproblem of
our overall algorithm in section @l TAO was originally
proposed for classification but can be modified to
handle regression with sparse linear mappings at
the leaves ira- inan,
M) Furthermore, recent works on TAO have
demonstrated a great improvement in training numer-
ous tree-based models: forests of boosted and bagged
trees (Carreira-Perpinan and Zharma gambgi;gyl,
12020; |Zharmagambetov et all, 20214), neural trees
softmax trees (lZ_b_a.tmaga.m_t}_(.J:(QL(.{La.]_,|7 lZQZlH), etc.
Here, we provide a brief description of the modified
algorithm; see Appendix [A] for details.

TAO assumes that the initial tree structure is given
(for example, a complete binary tree of depth A). To
optimize eq. () over the parameters 0; of a tree T,
TAO uses alternating optimization over the nodes of
the tree. This is possible due to two facts. Firstly,
a separability condition: optimizing () over a set of
nodes that are not descendants of each other separates
over each individual node, so they can be handled in
parallel (Carreira-Perpifian and Tavallali, 2018). Sec-
ond, optimizing over a single node can be shown to be
equivalent to a simpler, reduced problem, over just the
training instances that reach the corresponding node
under the current tree (the reduced set R; of node 1),
as described next.

Reduced problem over a decision node While
the TAO algorithm can be applied to an arbitrary
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tree structure, we consider binary trees, i.e., a
decision node i has two children. If node i sends
an input instance x to the left child, propagating
x down that subtree (whose parameters are fixed)
to a leaf results in a certain output (given by
that leaf’s linear predictor). Similar arguments
hold for the right child. Therefore, the loss term
L(yn, T(x,;0)) in eq. ([I) can take only one
of two possible values for each x,, € R;. Then
the problem of optimizing (I) over the node’s
parameters can be equivalently formulated as a
weighted 0/1 loss binary classification problem
where x,, has a “pseudolabel” %, which denotes
the child achieving the lower loss. It is weighted
because the loss of the best child is different
for each instance (see details in Appendix [A]).
Moreover, we add a regularization with penalty
A (eq. () to control the model complexity.
Training such a classifier is NP-hard but can be
approximated efficiently using an ¢;-regularized
logistic regression using existing tools, such as

LIBLINEAR (Fan et all, 200).

Reduced problem over a leaf Optimizing () over
a leaf is easier since it has no children. It is equiv-
alent to optimizing the leaf’s predictor on its re-
duced set, as seen by replacing the tree output
in () replaced by the output of a leaf. With our
linear-predictor leaves, this corresponds to fitting
a linear regressor with an ¢, penalty, i.e., a Lasso

problem (Hastie et all, 2015).

We repeat the described procedure for each node (ei-
ther leaf or decision node) in our tree and one pass over
the entire tree constitutes one TAO iteration. TAO
keeps optimizing nodes in this way until some stop-
ping criterion is met (e.g. error tolerance or maximum
number of iterations). Fig. [] gives the pseudocode.

3.1 Choice of the complexity
hyperparameter \ and tree depth A

We take the initial tree structure as a complete binary
tree of depth A, which gives the largest tree we can
learn. A should be set to a large enough value so A
is the actual complexity control. Then, the hyperpa-
rameters in our model are A and A\ > 0, which con-
trols the actual number of nodes and nonzero weights
in the tree. In a supervised setting, A and \ would
be obtained by cross-validation, but in DR (which
is an exploratory task) we have no ground truth la-
bels. Indeed, just as the dimension L of the embedding
space or the perplexity in t-SNE, these hyperparame-
ters should be left to the user to select depending on
the case. By running our algorithm for a range of A val-
ues, from zero to very large, we obtain a range of trees

input training set {(x,,y,)}\_,; penalty \;
initial tree T(-; ®) of depth A with params {0;};
No,...,Na < nodes at depth 0,..., A, resp.;
generate R; (instances that reach node ) using
an initial tree;
repeat
for d = A down to 0
for ¢ € Ny (can be done in parallel)
if ¢ is a leaf then
0; < fit Lasso linear regressor on R;
with penalty A
else
generate pseudolabels ¥,, and weights w,,
for each instance x,, € R;
0; < fit {1 regularized weighted binary
classifier on {(x,,Wn,7,)} € Ri
with penalty A
end for
end for
update R; for each node
until stop
return T

Figure 1: Fitting a regression tree with TAO.

whose accuracy and complexity to explain decrease as
A increases, hence a range of explanation levels.

4 JOINTLY LEARNING AN
OPTIMAL TREE AND
EMBEDDING

A nonlinear embedding (NLE) method defines an ob-
jective function E(Z) over the low-dimensional coor-
dinates Zpxn = (2z1,...,2zy) of the high-dimensional
training points Xpxny = (x1,...,xy). For example,

for t-SNE ,12008) this is:
N N »
E(Z) = Z D (P,[|Qn(Z)) = Z Dnm 10g q nznz)
n=1 n,m=1 nm

(2)

while for the elastic embedding d&a‘mm;&r_mﬁaﬂ,
) it is:

N

> (wnmllzn = zul* + ac~l===1%) (3)

n.m=1

E(Z) =

where the specific terms are not relevant here, what
matters is that F is a function of the low-dimensional
projections and that is what must be optimized over.
Call the result the free embedding, in that it is not
constrained to obey any particular mapping F. How-
ever, if we want an out-of-sample mapping F so we can
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project new points, then z,, = F(x,) forn=1,...,N
by definition and so we have a parametric embedding
objective function:

min P(F) = E(F(X)) + X 6(F) @)
where ¢(F) is a regularization term on the mapping.
For example, for the elastic embedding F(F (X)) would
be:

N
S (wamlFn) = Flocn) | + ae P =Feen),

n,m=1

Note that the process (which we call direct fit) of train-
ing a mapping directly to predict the free embedding,
i.c., ming || Z — F(X)||? (possibly with regularization),
will work poorly unless F is very flexible, and will re-
sult in a new embedding “F(X)” that can considerably
distort the optimal embedding. This is particularly
true if we limit the complexity of F' to make it more
interpretable.

If F was differentiable, we could easily optimize [ via
gradient based methods, as done for the Sammon map-

% or MDS with a RBF network (Lowe and Tippi gi

m m or for t-SNE with a neural net
(ImnﬁmMa@L_eﬂ, |2_0_0_Q) However, this is not pos-
sible with a tree, which defines a non-differentiable
mapping. Instead, we will reformulate the prob-
lem in a way that allows us to derive an iterative
algorithm that capitalizes on the fact that we can
use TAO to train a regression tree and the original
NLE algorithm to train the embedding. To do this,
we apply the method of auxiliary coordinates (MAC)

rreira-Perpindn an ng, 12012, 2014), which is
applicable to problems involving nested functions,
such as (), as follows.

First, consider the following constrained problem,
where the nesting is broken:

win B(Z) + A¢(F) st. Z=F(X) (5)

where FE is the original, free embedding objec-
tive function. This is equivalent to the paramet-
ric embedding problem (@), but with “auxiliary co-
ordinates” Z introduced which capture the output
of F. (A similar formulation was presented by
Carreira-Perpinan and Vladymyroy (2015), but here
F is a nondifferentiable decision tree.) We solve (@)
using a penalty method. We describe the quadratic-
penalty method for simplicity, but in the experiments
we use the augmented Lagrangian. This defines a new,
unconstrained objective function of Z and F:

g{glE(Z)+>\¢(F)+MHZ—F(X)H2- (6)

Optimizing this for fixed ¢ > 0 produces (Z,,F,)
which, as g — oo, progressively force the constraints
to be satisfied while making the objective as large as
possible. Note that, for 4 — 07 (and A = 0), this
produces as Zg the free embedding and as F( a tree
fitted to that embedding; this is what we called direct
fit earlier (without regularization). As u increases, Z
and F cooperatively reorganize to find a better solu-
tion of (B)). Finally, we optimize (@) itself by alternat-
ing optimization over Z and F. Over Z, eq. (@) is the
original embedding objective E but with a quadratic
regularization term on Z:

mzinE(Z)+M||Z—F(X)||2- (7)

This can be easily solved by reusing an algorithm to
optimize the original embedding (t-SNE, the elastic
embedding or whatever), with a minor modification to
handle the additional quadratic term. This is very con-
venient because we can capitalize on the literature of
NLE optimization, specifically on algorithms that scale
to large datasets (Vladymyrov and Carreira-Perpifidn,

Wang et all, [2013; Ivan der Maatenl, [2014;
Blladxmxmmiﬁaumra_lﬁmumﬂ 2014). Over F,
the problem reduces to a regression fit which we solve
using TAO:

i 12— F(X)|? + 50() Q

The ability of TAO to take an initial tree and improve
over it is essential here to make sure the step over F
improves over the previous iteration, and to be able to
use warm-start to speed up the computation.

In summary, our algorithm alternates between training
an embedding with a regularization term that pushes
it towards the current tree predictions, and training
a tree to fit the current embedding. As the penalty
term g increases, the embedding and the tree coadapt
until they agree on an optimal result. Fig. 2] gives the
pseudocode for the overall algorithm.

5 EXPERIMENTS

Our experimental findings demonstrate that 1) tree
embedding as an out-of-sample mapping is quite ac-
curate and helps to interpret the embeddings; 2) our
optimization algorithm generally finds better optima
compared to the naive direct fit. Moreover, we illus-
trate that tree embeddings can provide helpful insights
(which are not covered by the original embeddings)
about data. To show that, we consider three datasets
from different domains: breast cancer (available from
UCI ML repository by dﬁﬂ)), 20 news-
groups and MNIST. Here, we mainly focus on breast
cancer and 20 newsgroups, whereas additional results
(including MNIST) can be found in Appendix [Cl



Learning Interpretable, Tree-Based Projection Mappings for Nonlinear Embeddings

input training set X = {x,}N_;;

Z «+ fit the free embedding (eq. @), @), etc.);
F « fit a tree to (X, Zg) (algorithm in fig. [T);
B < 0 (initialize Lagrange multipliers);

for pp=po < p1 < p2 <+ < fimax;
repeat
F«F+.5
optimize over Z given F (eq. ([@));
77— iﬂ,

optimize over F given Z (eq. ([{)
via TAO (algorithm in fig. [l);
B <« B — pu(Z —F) (multipliers step);
until stop
end for
return F

Figure 2: Joint optimization framework for learning a
tree and embedding (augmented Lagrangian version).

5.1 Setup

Although our method generalizes to any type of non-
linear embeddings, we perform experiments on t-SNE
and elastic embedding (EE). We use our in-house im-
plementation in Matlab so that we can easily handle
Z-step (eq. () of our algorithm. The reduced dimen-
sion is set to 2D. The details of the NLE training are
as follows. We compute the perplexity usmg the en-
troplc affinities -
. We use the spectral direction method

V adymyrgy and Carreira-Perpinrl, 2019) where the
gradients of the embedding objective were approxi-
mated by the Barnes-Hut method
M) for t-SNE and the fast multipole method
(Vladymyrov and Carreira-Perpifian, 2014) for EE.
We apply spectral directions until the relative error
of the two recent iterates is less than 10~%. For com-
puting pairwise distances between input instances, we
use entropic affinities with varying perplexity depend-
ing on dataset (Hinton and Roweis, ).

We use TAO to train decision trees in F-step (eq. (8))
which is implemented in Python. All reported trees
in this section are sparse oblique trees with linear
leaves. To optimize individual nodes, we use Lasso

linear regression (Hastie et all, [2017) in leaves and ¢;-

regularized logistic regression in decision nodes (both
implemented in scikit-learniPedregosa. et all (2011))
and they use the same sparsity penalty (A\). Through-
out this section, direct fit means a minimizer of
ming [|Zo — F(X)||> + A ¢(F), i.e., fitting a tree (with
TAO) on the free embedding using the same A penalty
as our method. To train the direct fit, we initialize
TAO from a complete tree of depth A with random
parameters at each node. Maximum number of TAO

iterations is set to 15. We denote our proposed method
as the tree embedding which closely follows the im-
plementation described in fig. Initial value for 3
(estimate of the Lagrange multipliers) is set to zero.
The initialization for Z is the free embedding (e.g. by
running ¢-SNE on data). We use the direct fit as the
beginning of the path (line 3 in fig ). Empirically
we found out that rescaling the penalty parameter in
eq. (@) such that it always equals to A (instead of %)
shows better performance, so we apply it in our ex-
periments. After each AL step, we use warm-start in
both steps by starting from the previous iteration’s
values. Our main running script is in Python which
uses Matlab Engine API to run Z-step.

5.2 Results

We first evaluate our method on the EE objective. We
use a subset of 6 classes from 20 newsgroups document
classification benchmark. Tf-idf statistics on unigrams
and bigrams were used to represent each document
(1000 features in total). Before running EE, we project
data into 20 dimensions using PCA which helps us to
eliminate noises. Pairwise distances were calculated
using entropic affinities with perplexity K = 15. Then
we run EE with homotopy parameter [ = 100 to obtain
the free embedding. For our method (tree embedding),
we set the number of iterations to 15 and start from
small value for py = le — 6 which is multiplied by
1.4 after each iteration. Please, refer to Appendix
for description of the preprocessing steps and other
details.

Fig.Bl (bottom) shows 2D embeddings obtained by sev-
eral methods. Directly applying EE on preprocessed
data (free embedding) yields the best results since it
does not have any constraints. Next, we train a TAO
tree to learn out-of-sample mapping either by the di-
rect fit or by using our method (tree embedding). For
both methods, we set the sparsity penalty for TAO
A = 0.067. However, the spectrum of various values
for A was explored in the suppl. mat. (see anima-
tions). Tree embedding maps the data into 2D with
a slight degradation compared to the free embedding,
but noticeably better than the direct fit. The learning
curves (bottom-right) align with that: the 1st itera-
tion of the tree embedding is the direct fit and there
is a clear improvement over iterations.

Fig. Bl (top) shows the visualization of the tree embed-
ding (our method). Since each decision node is oblique
(having hyperplane splits) and input features use tf-idf
where each entry is a word, we show up to top-7 words
which corresponds to the largest non-zero values in the
weight vector. For each leaf, we show the region of its
responsibility by using instances falling into that leaf
(obtained via convex hull of the 2D mappings) and pro-
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Figure 3: 20 newsgroups using EE objective. Bottom: 2D projections using the free embedding, direct fit and

tree embedding (ours).

Right figure shows the objective value over iterations.

Top: Final tree embedding.

Decision nodes show top-7 words with the largest positive (blue) or negative (red) non-zero values. Each leaf
shows the region of its responsibility (top) and the histogram of class distributions (bottom, see section for
the encoding of classes in x-axis). Text at the bottom of the tree shows the most frequent 10 words in documents
falling into the corresponding leaf (leaf 1, leaf 2, etc.). Note: plots at leaves are the same as the 2nd right 2D

embeddings (but with uniform color).

vide histogram counts of classes where encodings in x-
axis mean: “b”fmotorcycles “h”~hockey, “c”—crypt,
“s”—space, “m”-mideast and “g”-guns. According to
the leaf regions, there is a Clear clustering structure
in the tree hierarchy because majority of leaves focus
on few classes and this was obtained without explicit
ground truth information. Moreover, the hierarchy
respects class ontology by merging instances of sim-
ilar classes under one subtree. For example, gun and
mideast (leaf #5 and #6) are located under the same
parent, whereas their locations in 2D are not next to
each others. Explanation for such separation can be
obtained from decision nodes: features (words) with

the highest positive/negative values were responsible
for sending an instance to a certain child. In some
cases, only several words were enough to identify the
next node (e.g. 4 words for leaf #7 and only 1 word
for leaf #8). Occasionally, the tree provides some sur-
prising insights: leaf #8 has only one point which lies
within the region of leaf #7 (hockey). However, the
tree decided to separate that point from the remaining
group and assign it closer to leaf #9 (mixed classes).
By closely inspecting that document, we have found
that it discusses several topics (hockey team, donation
form some person, private company name and a url)
which seems to be an outlier. These types of insights
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Figure 4: Similar to fig. Bl but for “breast cancer” using t-SNE.

are not possible to infer using embeddings only. Fi-
nally, for each leaf, we collect all documents reaching
that leaf and show the most frequent words (text at
the bottom of the tree). Although such information
can be extracted from embeddings as well, we argue
that this alone is not sufficient for interpretability. For
example, top words in leaf #1 are quite generic words
(mostly verbs) and it is understandable since docu-
ments in that group are from all 6 classes. But they
are not insightful to determine why all these docu-
ments ended up in that region. On the other hand,
the hierarchy allows us to trace the root-to-leaf path
and identify region-specific words by observing weights
at each decision node.

Similar conclusion can be made for fig. @l which is for
the “breast cancer” dataset. Our approach leads to
the parametric embedding with a high quality (bot-
tom panel) and tree allows us to interpret the map-
ping. Highlighted region at each leaf makes sense and

in agreement with data. Surprisingly, leaf #1 covers
the part of leaf #3. However, careful inspection shows
that the border of leaf #3 contains a lot of patients
from benign class and thus, the algorithm decided to
assign that region to the first leaf. Again, such obser-
vations are not trivial to detect using only embeddings
as we see clear separation into two clusters. In this ex-
periment, we run ¢t-SNE to obtain the free embedding.
We use the original input features (no PCA) to com-
pute pairwise distances and apply entropic affinities
with perplexity K = 15. To train the tree embedding,
we set g = le — 5 and multiply by 1.4 after each step
(20 iterations in total). More details of the experimen-
tal setup can be found in Appendix

5.3 Direct fit using CART

The naive way to get the tree embedding is to first
train the free embedding (e.g. via EE, t-SNE, etc.)
and then fit the traditional decision tree (e.g. using
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Figure 5: Top: 2D embeddings for 20 newsgroups provided by CART trees of depth 30 (left) and 7 (right).
Each tree was trained using the free embedding (the same one as in fig. B) as a ground truth (i.e., direct fit).
Bottom: corresponding decision trees. It is clear that smaller (although more interpretable) CART trees lead to

significant distortion of the embeddings.

CART, C4.5) to learn the mapping. However, apart
from being suboptimal, we show that it can be im-
practical. Potentially, we can fully grow a tree which
will perfectly match the free embedding. But it is well
known that such model hugely overfits and the final
tree could be very deep making it hard to interpret.
Instead, it makes sense to apply some pruning. We use
scikit-learn’s implementation of CART regression trees
and apply pre-pruning strategy using 30% of data as
validation set. Top plot in fig. Blshows 2D embeddings
obtained by CART for the same problem as in fig.
For the top left figure, although the general structure
is preserved, we can clearly see artifacts in certain re-
gions due to discrete nature of CART. Substantially
reducing the depth causes a significant increase in loss
(right plots). More importantly, bottom plot shows
the visualization of the trees. Even for relatively sim-
ple problem as 20 newsgroups, the final pruned tree
in the bottom left is very deep and contains > 2400
nodes. Moreover, for regression problems, scikit-learn
fits a separate tree for each output dimension and here
we show one tree. It is clear that interpretability be-
comes non-trivial in such cases which practically limits

this approach only to toy problems.

6 CONCLUSION

We have argued for the use of sparse oblique trees
as a convenient choice of explanatory dimensionality
reduction mapping, and provided an algorithm that
learns an optimal tree for an arbitrary choice of the
nonlinear embedding objective. Hence, the latter de-
termines what the ideal low-dimensional point projec-
tions should be, while the tree determines the projec-
tion mapping that will actually produce the embed-
ding. By controlling the tree complexity (number of
nodes and nonzero parameters) via an ¢; penalty we
achieve a range of solutions that span a tradeoff of
accuracy and interpretability. Inspecting the tree we
obtain insights about the data and about how high-
dimensional instances are projected to the embedding,
which go beyond the insights obtained by simply visu-
alizing the embedding in 2D.
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Supplementary Material:
Learning Interpretable, Tree-Based Projection Mappings
for Nonlinear Embeddings

Supplementary Material provides the following: 1) Extended explanation of the tree learning algorithm with
TAO. 2) Experimental setup for datasets and methods. 3) Additional experiments, including: results for CART
trees and visualizations; results for MNIST; exploring the effect of sparsity penalty in trees and visualizing the
linear mapping at each leaf.

A LEARNING SPARSE OBLIQUE TREES FOR REGRESSION

This section provides a detailed explanation of the tree learning algorithm, Tree Alternating Optimization (TAO),
that we use (i.e., extended version of section 4). Originally developed for training classification trees (oblique and
axis aligned), Tree Alternating Optimization (TAO) (Carreira-Perpifidn and Tavallali, 2018) can be extended to
fit multi-output regression trees, which enables us to use it in F—step of our proposed algorithm. TAO assumes
that the initial tree structure is given (can be random or generated from other methods, such as CART) and it
minimizes a supervised regression objective function:

N
E(©) =) Ly, T(x:;0)) + X > ¢i(6:) (9)

i€nodes

where {(xn,yn)})_; € RP x RE is the training set of D-dimensional input and K-dimensional outputs. In
our problem, the ground truth outputs Z come from nonlinear embeddings (NLE). We use the mean squared
error (MSE) as the loss function L(-,-), but other regression losses can be employed (e.g. huber loss). We apply
regularization (¢) for parameters at each node ¢ to encourage sparsity (¢; penalty was used in our experiments).
T(-;©) € RE denotes the tree output parametrized by © = {6}, where 0, are the weights at node i. Throughout
this paper, we consider oblique decision trees with linear leaves. That is, 8; = {w;,w;0} for a decision node
which applies a dot product to determine the next child (e.g. wlx + w;p > 0); and 6; = {A;,b;} for a leaf
which performs matrix-vector product and produces the actual output (embedding mapping).

To learn parameters 6; of a tree T, TAO uses coordinate descent which fixes one part of the tree and optimizes
over the remaining set of nodes. Under a certain assumptions, TAO guarantees the monotonic decrease of the
objective function value in eq.[@ To make it work, the loss function must be separable over each instance (most
losses in regression satisfy this property) and unfixed nodes must be non-descendants w.r.t. each others. All
such nodes can be optimized in parallel (see fig. [l left). This is called—a separability condition. We omit the
formal proof of this condition since it is identical to (Carreira-Perpinan and Tavallali, M) Next, optimization
of a single node (which we call a reduced problem) depends on its type: it is weighted 0/1 loss binary classification
problem (with ¢; penalty) for a decision node and fitting ¢; penalized linear regressor for a leaf. For both of
them, the optimization utilizes a subset of instances that reach the corresponding node under the current tree.
Such subset is called a reduced set (denoted as R;). We discuss each of these optimization steps below.

Reduced problem over a decision node A single decision node optimization can be intuitively explained
using fig. [0 (right). Suppose we optimize over the node i = 2, which means we fix all parameters of a tree except
65 and we need to only consider the reduced set Ro. The given node has two children Co = {4,5} with the
corresponding subtrees: T4 and T for the left and right children of node i, respectively. If node ¢ = 2 sends an
instance x to the left child, then we compute T4(x) and return its prediction. Note that the parameters of T4
are fixed which means x follows a unique path starting from node i = 4 down to a certain leaf. Then we apply
a predictor at that leaf (linear mapping, in our case) to compute the output. Similar arguments hold for the
right child. Therefore, the loss term L(y,,, T(x,;®)) in eq. ([@) can take only one of two possible values for all
Xp € Ro: lin.a = L(yn, Ta(xy)) if the left child is chosen and l;, 5 = Ly, (yn, T5(x,)) if the right child is chosen.
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Figure 6: Left: Separability condition which states that non-descendant set of nodes (e.g. yellow nodes) can
be optimized independently. Right: Optimizing a single decision node for ¢ = 2 (i.e., reduced problem) which
includes: 1) calculate errors induced by left/right subtrees for each instance x that reaches the given node (R;);
2) assign pseudolabels and weights; 3) solve the weighted binary classification problem. Note: highlighted region
(with dashed lines) indicates the fixed part of the tree.

Then, define a cost function l;,: C; — R as l;,, = L(yn, T»(x,)), where z € C; is any child of ¢ and T,(-) is
the output of subtree z. In other words, the cost function [;, gives the loss value incurred by each of the two
children of node i. Since we have only two children, our problem reduces to encouraging a decision function at
node i = 2 (denoted as f2) to send x to the “best” child. Suppose our best child is denoted as ¥;,, and we want
to send x to that child (ideally). In order to achieve this, define a function L;, that satisfies L, (¥;,,y) = 0
if y =7,,,, and Li,, (¥, y) = max, (lin,») — min, (l;;, .) otherwise, hence it is a weighted 0/1 loss function with
“ground-truth” label 7, (the best child). For example, if C; = {left,right} and l;,(left) > l;,(right) then
Uim = Tight, L;,(right,right) = 0 and L;,(right,left) > 0. This leads us to the following weighted binary
classification problem over a single decision node i:

r%mE Z Lin nyz(Xm i) +a¢i(0i) (10)

‘ neER;

Optimizing the given welghted 0/1 loss above (eq. (I0) over a hyperplane is an NP-hard problem even for the
unweighted case (Pi , ; , ). However, good approximate solutions can be
obtained efficiently by using a convex surrogate loss. In all our experiments, we use the logistic loss with an ¢,
regularizer (implemented in LIBLINEAR (Fan et all, 2008))

Reduced problem over a leaf Optimizing a leaf is much easier since leaves do not have any children.
Clearly, leaves are non-descendant w.r.t. each others and we can apply the separability condition. By fixing the
remaining parameters of a tree, we can train each leaf independently. Note that x follows root-to-leaf path and
actual prediction is given by a leaf. Therefore, tree output from eq. (@) can be replaced by the output of a leaf.
But that leaf operates only on a subset of points reaching the given leaf (its reduced set R;). Therefore, the
solution for any leaf i is the minimization of (@) over its parameters 0; on a reduced set R; which, in our case,
corresponds to fitting a linear regressor with ¢; penalty (i.e., Lasso problem dHasLie_eI_aJJ, 120_15))

We repeat the described procedure for each node (either leaf or decision node) in our tree and one pass over the
entire tree constitutes one TAQ iteration. TAO keeps optimizing nodes in this way until some stopping criterion
met (e.g. error tolerance or maximum number of iterations). Fig. [[lin the main paper provides the pseudocode
of the algorithm.

B EXPERIMENTAL SETUP

This section provides details of the conducted experiments for replicability purposes. It includes: datasets
descriptions and preprocessing steps; implementation details and hyperparameters choice for NLE methods; and
implementation details for TAO.
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B.1 Datasets

Dataset N D  classes
20 newsgroups 3496 1000 6
MNIST 2000 784 10
Breast cancer 699 9 2

Table 1: Datasets used in our experiments: number of instances (IV), number of features D, number of classes K.
Note: class information is not used by any of the methods, only for reporting purposes.

Table [l summarizes the datasets used in this study. Below, we provide the details of the preprocessing steps:

- 20 newsgroupsﬁ We select a subset of 6 classes: ’rec.motorcycles’, ’rec.sport.hockey’, ’sci.crypt’,
‘sci.space’, ’talk.politics.mideast’, ’talk.politics.guns’. The resulting documents are collected and trans-
formed into tf-idf representations with top 1000 unigrams and bigrams. We use scikit-learn’s implementation
for tf-ifd and set min_df= 3. Before that, we apply standard preprocessing steps: removing non-alphanumeric
symbols, English stopwords and headers/footers from documents. To compute entropic affinities, we first
project the data into 20 dimensions using PCA.

- MINIST (ILf_Q_m_Qt_a.lJ, U%ﬂ) We randomly select a subset of 2000 points from the training data with
equal number of instances per class. We normalize features to have values between [0,1] and subtract mean.
To compute entropic affinities, we first project the data into 50 dimensions using PCA.

- Breast cancelfd. We normalize features to have values between [0,1]. Entropic affinities are computed
directly on the original input features.

B.2 NLE methods

Although our method generalizes to any type of nonlinear embeddings, we perform experiments on ¢-SNE and
elastic embedding (EE). For both of them, we use our in-house implementation in Matlab so that we can easily
handle Z-step of our algorithm. The reduced dimension is set to 2D. The details of the optimization are as

follows: we use the spectral direction method rreira-Perpinan, [2019) where the gradients
of the embedding objective were approximated by thc Barncs Hut method (van dgr Maaten, 201 3 for t-SNE

and the fast multipole method (I}[Lad;zmymandﬁamm;ﬁnpméd, |20_1_4]) for EE. We apply spectral directions
until the relative error of the two recent iterates is less than 10™*. For computing pairwise distances between

ut instances, we use entropic affinities with varying perplexity (K ) depending on dataset dHlnLQn_and_Rmd
@E) K = 15 for 20 newsgroups and breast cancer; and K = 30 for MNIST. The « (see eq. [B])) parameter for
the elastic embedding is set to [ = 100 in all experiments.

B.3 Decision trees

TAO We use oblique decision trees (having a hyperplane function at each decision node) and each each leaf
has a linear mapping which produces continuous output (multidimensional). An initial tree is a complete binary
tree of given depth (A) with random parameters at each node (each node’s weight vector has Gaussian (0,1)
entries, and then we normalize the vector to unit length). We use 15 TAO iterations to train trees at each u
(also in direct fit). The following hyperparameters are set individually for each dataset:

- 20 newsgroups: A = 6, the sparsity penalty A is explored from the following range: A\ =
[1/200,1/100,1/50,1/30,1/20,1/15,1/10,1/7,1/5,1/3,1.0]

- MINIST: A = 6, the sparsity penalty A is explored from the following range: A =
[1/30,1/10,1/5,1.0,1.25,2,2.5,3.33, 5, 10]

Shttp://qwone.com/~jason/20Newsgroups/
Shttps://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
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- Breast cancer: A = 4, the sparsity penalty (\) is explored from the following range: A\ =
[1/200,1/100,1/50,1/30,1/20,1/15,1/10,1/7,1/5,1/3,1.0]

We implemented TAO in Python 3.7.6 and do not use any parallel processing. We use ¢; regularized logistic
regression (implemented in LIBLINEAR (Fan et all, 2008)) to solve the penalized binary classification problem
at each decision node. LIBLINEAR is accessed through scikit-learn interface (I&dr_eggsa_et_a.ﬂ, IZD_]_]J) The leaf
optimization involves an ¢;-regularized linear regression (Lasso) for which we also use scikit-learn (internally it
uses coordinate descent solver).

CART We use the Python implementation in scikit-learn |[Pedregosa et all (IM) Potentially, we can fully
grow a tree which will perfectly match the free embedding on the given dataset. But it is well known that such
model hugely overfits (which is undesirable for out-of-sample mapping) and the final tree could be very deep
making it hard to interpret. Instead, it makes sense to apply some pruning. We apply pre-pruning strategy
using 30% of data as validation set. Once the max_depth hyperparameter is identified, we fit the tree with all
available data.

C ADDITIONAL EXPERIMENTS

This section provides additional experimental results and findings. Specifically, we explore the effect of reqular-
ization parameter X in TAO on interpretability and accuracy of the parametric embedding. Separate gif files
further provide a collection of trees with the decreasing value of A for MNIST and 20 newsgroups. Additionally,
we visualize the actual mapping that is happening at each leaf. Finally, we illustrate a subset of the trained
CART trees on the same tasks.

C.1 Experiments on 20 newsgroups

Fig. [[H8] present trained tree embeddings for two different values for A (the sparsity penalty in TAO). It can be
clearly seen that smaller sparsity value A = 0.01 yields more accurate embedding which has smaller objective
value. However, visually there is not much difference compared to A = 0.067 which also provides quite accurate
2D visualization. Moreover, the obtained tree is much smaller and this results to more interpretability. Note that
in both cases, the tree embedding improves over the direct fit (see learning curves in bottom-right) since the 1st
iteration of our algorithm is the direct fit and there is a clear improvement over iterations. This is also noticeable
from visualizations. Please, refer to section for the discussion regarding interpretation of the resulting trees.

C.2 Experiments on MNIST

We conduct similar experiments on MNIST (fig. @HITO). As in the previous case, the tree embedding improves
over the direct fit. This is also noticeable from visualizations (especially in fig. [[0). However, in this experiment,
we choose a different visualization method for decision nodes: sparse vector € R7* at each node is reshaped to
form the matrix € R?®*28 which is then displayed as an image with scaled colors (colored according to the sign).
Since MNIST contains the collection of handwritten digits, we can clearly see which part of the image is being
considered to select the next child (left or right). For example, the leaf #5 in fig [I0l contains mostly digits from
class 0. Consider the parent of that leaf. Red strokes indicate that the positive weights are picking left/right
side pixels in digit 0 which are not presented in other digits. Moreover, 0 does not contain any strokes in the
middle which is clearly shown in that node (blue weights). Similar information can be extracted from fig.
However, this is not trivial since the tree is somewhat bigger due to A, although embeddings look better w.r.t.
free embeddings. These figures further confirm that there is a trade-off between accuracy and interpretability
which can be controlled using our method.
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Figure 7: Results for 20 newsgroups. This is similar to fig. Bl in the main paper but uses A = 0.01 as the tree
sparsity penalty. The purpose of this figure is to show that the output of a tree can better match with the free
embedding (i.e., obj. func. approaches the free emb.) at a cost of having more nodes (which is less interpretable).
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Figure 8: Similar to fig. [ but for A = 0.067 which enforces more sparsity. We obtain more interpretable tree at
a cost of having larger objective function value (compared to fig. [).
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Figure 9: Results for MNIST with A = 0.03 as the tree sparsity penalty. Similar to fig. [[ this figure shows that
the output of a tree can better match with the free embedding (i.e., obj. func. approaches the free emb.) at a
cost of having more nodes (which is less interpretable). Note: title in decision nodes shows a value of the bias

term in node parameters.
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Figure 10: Similar to fig. @ but for A = 1.25 which enforces more sparsity. We obtain more interpretable tree at
a cost of having larger objective function value (compared to fig. [).
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Additionally, fig. [Tl visualizes the linear mapping at each leaf. For MNIST, each leaf contains matrix A € R784x2
which maps an input vector into the 2D manifold. Note that A was obtained by fitting ¢; penalized linear
regression (Lasso). Therefore, the resulting matrix is sparse. We perform row-wise sum of that matrix to obtain
784 dimensional vector. Then, similarly to the decision node visualization, we reshape the resulting vector to
form the matrix € R2®*2?8 and display it as an image. The resulting images make sense. For example, leaf #2
focuses on classes: 4,7 and 9. Therefore, non-zero elements at that leaf are concentrated where we typically have
strokes in these digits (e.g. bottom-center part and in the middle). Similarly, leaf #5 has non-zero weights where
digit 0 typically has pixels. Leaf uses only those features to map an instance into the 2D manifold.
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Figure 11: Similar to fig. [0l but visualization of the linear mapping at each leaf is added.
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C.3 Experiments with CART trees

Free emb Tree emb (A0.01) Tree emb (A =0.067) CART
2.52 2.70 3.86 3.82

Table 2: EE objective value (see eq. (@) in the main paper) for the free embedding, tree embedding and CART on
20 newsgroups (lower is better). Although CART provides a similar error as the tree embedding with A = 0.067,
but the resulting trees are humongous and non-trivial to interpret (see fig. below).
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Figure 12: Directly fitted CART tree using the free embedding as a ground truth (on 20 newsgroup). Input is
the original tf-idf features. Compare this tree with fig. [7H8
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