
Linear-time Training of Nonlinear Low-Dimensional Embeddings

Max Vladymyrov Miguel Á. Carreira-Perpi ñán
Electrical Engineering and Computer Science, School of Engineering, University of California, Merced

Abstract

Nonlinear embeddings such as stochastic neigh-
bor embedding or the elastic embedding achieve
better results than spectral methods but require
an expensive, nonconvex optimization, where the
objective function and gradient are quadratic on
the sample size. We address this bottleneck by
formulating the optimization as anN -body prob-
lem and using fast multipole methods (FMMs) to
approximate the gradient in linear time. We study
the effect, in theory and experiment, of approx-
imating gradients in the optimization and show
that the expected error is related to the mean cur-
vature of the objective function, and that grad-
ually increasing the accuracy level in the FMM
over iterations leads to a faster training. When
combined with standard optimizers, such as gra-
dient descent or L-BFGS, the resulting algorithm
beats theO(N logN) Barnes-Hut method and
achieves reasonable embeddings for one million
points in around three hours’ runtime.

Dimensionality reduction algorithms are often used to ex-
plore the structure of high-dimensional datasets, to iden-
tify useful information such as clustering, or to extract
low-dimensional features that are useful for classification,
search or other tasks. We focus on the class ofembedding
algorithms based on pairwise affinities. Here, a dataset
consisting ofN objects is represented by a weighted graph
where each object is a vertex and weighted edges indi-
cate similarity or distance between objects.Nonlinear em-
beddings (NLE), such as stochastic neighbor embedding
(SNE; Hinton and Roweis, 2003),t-SNE (van der Maaten
and Hinton, 2008) or the elastic embedding (EE; Carreira-
Perpĩnán, 2010), are particularly desirable because they
produce embeddings that are much better than those of
linear (such as PCA) or spectral methods (such as Lapla-
cian eigenmaps or LLE; Belkin and Niyogi, 2003; Roweis

Appearing in Proceedings of the17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

and Saul, 2000), especially when the high-dimensional data
have a complex cluster and manifold structure. Also, given
the weighted graph, the runtime of nonlinear (and spectral)
embedding algorithms is independent of the input dimen-
sionality, and so they can handle very high-dimensional ob-
jects, such as images.

The fundamental disadvantage of NLE is their difficult,
slow optimization, which has prevented their widespread
use (particularly in exploratory data analysis, where inter-
activity is important). Although recent advances in the
optimization algorithms, such as the spectral direction of
Vladymyrov and Carreira-Perpiñán (2012), have signifi-
cantly reduced the number of iterations, each iteration is
still quadratic on the number of pointsN , and this does not
scale to large datasets. Stochastic gradient descent is not
helpful, because each step would only update a small sub-
set of theO(N) parameters, becoming a form of alternating
optimization. As pointed out by Vladymyrov and Carreira-
Perpĩnán (2012), a convenient way to break the quadratic
cost is to approximate the gradient withN -body methods,
in particular fast multipole methods (FMM; Greengard and
Rokhlin, 1987). N -body problems arise when the exact
computation involves the interaction between all pairs of
points in the dataset. They are of particular importance
in particle simulations in biology and astrophysics. Gen-
erally, there are two ways to speed upN -body problems:
using a tree structure (e.g. Barnes and Hut, 1986) or us-
ing a FMM expansion, and they approximate the computa-
tions inO(N logN) andO(N) time, respectively. FMMs
also have known error bounds (Baxter and Roussos, 2002),
while the Barnes-Hut algorithm does not (Salmon and War-
ren, 1994). Unfortunately, both types of methods scale
poorly with the latent-space dimensionalityd. However,
they work well ford ≤ 3, which makes them suitable for
visualization applications, and we focus on that here.

The contributions of this paper are as follows. We review
existing NLE methods andN -body methods that can be ap-
plicable to them. We then propose a linear-time algorithm
based on FMMs and compare it to the Barnes-Hut approxi-
mation and the exact computation. Finally, we evaluate the
role of noisy gradients and propose the use of increasing
schedules for the accuracy parameter ofN -body methods
in order to speed up the optimization. This enables us to

Linear-time Training of Nonlinear Low-Dimensional Embeddings

handle million-point datasets in three hours’ runtime.

1 Review: Embeddings andN -body Methods

1.1 Review of Nonlinear Embedding (NLE) Methods

Many NLE methods can be written in the following generic
form (Vladymyrov and Carreira-Perpiñán, 2012). Given a
symmetric nonnegative affinity1 matrixW defined for a set
of input high-dimensional data pointsY = (y1, . . . ,yN),
we find ad × N matrix of low-dimensional pointsX =
(x1, . . . ,xN) by minimizing the objective function

E(X, λ) = E+(X) + λE−(X), λ ≥ 0, (1)

whereE+ is an “attractive” term that pulls points together
in X-space if they were close in the originalY-space, and
E− is a “repulsive” term that drives all points apart from
each other. Optimal embeddings balance both forces. Spe-
cial NLE cases include EE2:

E(X, λ) =
∑N

n,m=1 wnm ‖xn − xm‖2

+ λ
∑N

n,m=1 exp(−‖xn − xm‖2), (2)

and s-SNE andt-SNE3:

E(X, λ) =
∑N

n,m=1 wnm logK(‖xn − xm‖2)
+ λ log

(∑N
n,m=1 K(‖xn − xm‖2)

)
, (3)

whereK is a Gaussian or a Student’st kernel, respectively.
The gradient of (1) is∇E(X) = 4X(L − λL̃) with graph
Laplacians defined as:

L = diag (
∑N

n=1 wnm)−W L̃ = diag (
∑N

n=1 w̃nm)−W̃

where the weights̃W depend on the embeddingX and
have elements̃wnm given by:

EE:e−‖xn−xm‖2

s-SNE:
exp(−‖xn − xm‖2)

∑N
k,l=1 exp(−‖xk − xl‖2)

t-SNE:
(1 + ‖xn − xm‖2)−2

∑N
k,l=1(1 + ‖xk − xl‖2)−1

.

1.2 Review ofN -Body Methods

All fast computation methods forN -body problems pro-
duce approximate, rather than exact, values for sums
of O(N2) interactions. They are generally based on
tree structures, such as theO(N logN) Barnes-Hut (BH)
method; or on series expansions, such as theO(N) fast
multipole method (FMM) and fast Gauss transform (FGT),
which besides have bounds for the approximation error.

1Computing the affinities efficiently from the input data is an
important problem that we do not consider here. At present, ap-
proximate nearest neighbor methods are one possible solution.

2EE additionally has negative affinitiesw−

nm inside the repul-
sive term. In this paper we take them equal to 1.

3The original, equivalent formulation of s-SNE andt-SNE
was given in terms of KL divergences and usedλ = 1.

xq

c

D

l

⇒

xq

c

D

l 10
−2

10
−1

10
0

10
110

−10

10
−5

10
0

10
−2

10
−1

10
0

10
110

−1

10
1

10
3

10
5

R
un

tim
e

sp
ee

du
p

R
el

at
iv

e
E

rr
or

θ
Figure 1: Left: for l/D > θ, the cell is subdivided into
smaller subcells. Otherwise, the interaction is computed
approximately.Right: speedup and relative error for dif-
ferent values ofθ. The gray area corresponds to the region
with no speedup. Notice the log/log plot.

Tree-based Methods Here, we build a tree structure
around the pointsX, such askd-trees, ball-trees or range-
trees (Friedman et al., 1977; Samet, 2006), and we query
tree nodes rather than individual points. Each node of
the tree represents a subset of the data contained in ad-
dimensional cell, usually a box aligned with the coordinate
axes. The root node represents the whole dataset and each
new level partitions the space into subsets (e.g. in the mid-
dle of the largest-variance dimension) until there is only
one point left in each leaf node. The tree can then be used
to locate points within a given distance of a query point
without exhaustive search on the entire dataset. For faster,
approximate calculations, we replace many point-point in-
teractions with point-node interactions, by pruning nodes
too far away or by subsuming all points in a small cell into
one interaction. In machine learning, this idea has been
used to speed up various nonparametric models, such as re-
gression with locally weighted polynomials (Moore et al.,
1997) or Gaussian processes (Shen et al., 2006). Dual-trees
(Gray and Moore, 2001) yield further speedups by building
trees for both target and query points, which allows node-
node interactions besides point-node ones.

We focus here on the Barnes and Hut (1986) (BH) method.
This first constructs a quadtree in 2D (octree in 3D) around
the set of target points. Then, for every query pointxq, it
traverses the tree down from the root until the cell can be
considered approximately as a single point because it is suf-
ficiently small and far fromxq, as follows. For a cell of size
l, letD be the distance between the cell’s center of massc

andxq (see fig. 1 left). If the fractionl/D is smaller than a
user-defined parameterθ, then all the interactions between
xq and the points inside that cell are approximated by a sin-
gle interaction withc. If the fraction is bigger thanθ, the
algorithm continues to explore the children of the node. If
we reach a leaf, the interaction is computed exactly, since it
contains only one point, otherwise an approximation error
is incurred. As a function ofN , the construction of the tree
costsO(N logN) and for each of theN query points, the
interaction is computed in expectedO(logN) time. Thus,
the overall cost reduces fromO(N2) toO(N logN).

The user parameterθ controls the trade-off between the ac-
curacy of the solution and the runtime speedup. Increas-

Max Vladymyrov, Miguel Á. Carreira-Perpi ñán

ing θ means we approximate cells that are bigger or closer
to the query point. This reduces the runtime because we
prune the tree earlier, but also increases the approxima-
tion error. Fig. 1(right) shows the relative error and the
speedup compared to the exact computation for different
values ofθ. Good speedups with small relative error occur
for θ ∈ [0.5, 2], roughly, but this region does vary with each
problem.

Tree-based algorithms have some limitations. Most cru-
cially, the tree size grows exponentially with the dimen-
siond, thus limiting their use to problems with low dimen-
sionality. Second, the approximation quality declines when
the interaction scale (e.g. the Gaussian kernel bandwidth)is
too big or too small. The hierarchical fast Gauss transform
(Lee et al., 2006) somewhat alleviates the second problem
by combining dual trees with fast multipole methods, but
it still does not work well whend > 3. Finally, it is hard
to estimate the approximation error, which in fact can be
unbounded (Salmon and Warren, 1994).

Fast Multipole Methods (FMM) These were initially
used in astrophysics to compute gravitational interactions
between many particles (Greengard and Rokhlin, 1987)
and have since enabled large particle simulations in many
areas. The idea of FMMs is to do a series expansion of the
interactions locally around every point such that the point
pair decouples in each term of the series. Truncating the
series reduces the cost from quadratic to linear. The fast
Gauss transform (FGT; Greengard and Strain, 1991) ap-
plies this to compute sums of Gaussian interactions

Q(xn) =
∑N

m=1 qm exp(−‖(xn − xm)/σ‖2) (4)

for a set of pointsxn, n = 1, . . . , N and a bandwidthσ. It
has been applied to accelerate problems such as kernel den-
sity estimation (Raykar and Duraiswami, 2006) and matrix
inversion and eigendecomposition (de Freitas et al., 2006)
in machine learning.

In the FGT, we normalize the dataset to lie in the unit
box [0, 1]d and subdivide this into smaller boxes parallel
to the axes of side

√
2σr (for somer ≤ 1/2). To compute

the sum (4), we write each Gaussian interaction between a
source points and a target pointt as a Hermite expansion
around the centersB of the boxB thats belongs to4:

e−‖(t−s)/σ‖2

=
∑

α≥0

1

α!
hα

(s− sB

σ

)(t− sB

σ

)
α

, (5)

where hn(t) = e−t2Hn(t) are Hermite functions with
Hermite polynomialsHn(t). The algorithm decouples the
evaluation of the exponent into two separate computations:
one betweens andsB, and another betweensB andt. Anal-
ogously, instead of a Hermite expansion around the center

4We use multi-index notation:α ≥ 0 ⇒ α1, . . . , αd ≥ 0;
α! = α1! · · ·αd!; tα = t

α1

1
· · · t

αd

d
for α ∈ N

d, t ∈ R
d.

I: B C

sources targets

II: B C

sources targets

sB

III: B C

sources targets

tC

IV: B C

sources targets

sB tC

Figure 2: Different FGT approximations. I: exact interac-
tion (4) (few points in both boxes); II: expansion aroundsB
(many source points); III: expansion aroundtC (many tar-
get points); IV: expansion aroundsB, then Taylor expan-
sion to the Hermite functions (many points in both boxes).

sB, we can use a Taylor expansion around the centertC of
the boxC the targett belongs to. Finally, we can further
approximate the Hermite expansion by also expanding the
termhα(t) in (5). The approximation comes from truncat-
ing the series (5) to terms of up to orderp, which reduces
the cost fromO(N2) to O(Npd) (since there arep terms
per dimension). Strain (1991) has also extended the FGT to
the case of variable bandwidths for source and target points.
Detailed approximation formulas appear in the supplemen-
tary material.

The choice of whether to use the direct evaluation or to ap-
proximate it with a series, and which series to use, depends
on the number of points in a given box (see fig. 2). Green-
gard and Strain (1991) propose the following algorithm: if
the number of points is smaller than a certain thresholdM0,
the interaction is computed exactly between all the points
in that box. Otherwise, it is computed using the centerssB
and/ortC . To gain additional speedup we can use the fast
decay of the Gaussian and compute the interaction to tar-
get points that are located no further thanK boxes away
from the box with the source point. However, note that the
FMM is still O(N) with heavy-tailed kernels such as the
gravitational interaction.

The main drawback of FMMs and the FGT is that they are
limited to small dimensionsd (due to thepd cost). The im-
proved FGT (Yang et al., 2003) uses clustering and other
techniques to grid the data into data-dependent regions, and
a modified Taylor expansion so the cost isO(dpN). This
allows for somewhat larger dimensions, but the issue still
remains, and the IFGT needs careful setting of various pa-
rameters (Raykar and Duraiswami, 2007), or otherwise the
overhead is so large that computing the exact interaction is
actually cheaper. In this paper, we focus ond ≤ 3 and the
plain FGT with parametersr = 1/2, M0 = 5, K = 4,
so that the quality of the approximation is controlled using
just the order of the expansionp.

FMMs do have important advantages over BH: their cost is
lower (O(N) vs O(N logN)), they work well on a wide
range of kernel bandwidths, and they have known bounds
for the approximation error as a function ofp.

Linear-time Training of Nonlinear Low-Dimensional Embeddings

While in this paper we concentrate on the Gaussian kernel
(and the FGT), it is possible to use FMMs for virtually any
kernel, for example the “kernel-independent” FMM (Ying
et al., 2004; Fong and Darve, 2009) needs only numerical
values of the kernel.

1.3 Work on Fast Training of Nonlinear Embeddings

Until recently, NLEs were usually trained with variations
of gradient descent that were slow and limited the appli-
cability of the methods to very small datasets. Fixed-point
iteration algorithms (Carreira-Perpiñán, 2010) can improve
this by an order of magnitude. The currently fastest algo-
rithm is the spectral direction of Vladymyrov and Carreira-
Perpĩnán (2012), which uses a sparse positive definite Hes-
sian approximation to “bend” the true gradient with the cur-
vature of the spectral part of the objective, at a negligible
overhead. This is10–100× faster than previous methods
and beats standard large-scale methods such as conjugate
gradients and L-BFGS. However, each iteration of all these
methods scales quadratically onN .

N -body problems also arise in the graph drawing literature,
where the goal is to visualize in an aesthetically pleasing
way edges and vertices of a given graph, which is typically
unweighted and sparse (Battista et al., 1999). This is sim-
ilar to dimensionality reduction given an affinity (or adja-
cency) matrix. One of the most successful algorithms for
graph drawing are force-directed methods (Battista et al.,
1999; Fruchterman and Reingold, 1991), which try to bal-
ance attractive and repulsive forces on the graph vertices
in a similar formulation to that of NLEs (eq. (1)). Each
iteration of the force-directed method requires the compu-
tation of interactions between every pair of points, which
is O(N2) for a graph withN vertices. Fast, approximate
graph drawing is done with the BH algorithm (Quigley and
Eades, 2000; Hu, 2005) inO(N logN) runtime.

Recently, the BH algorithm has been used to speed up the
training of NLEs (van der Maaten, 2013; Yang et al., 2013)
in a similar way to the work in graph drawing. The use of
dual trees and FMMs to speed up gradient descent training
of stochastic neighbor embedding (SNE) was also proposed
by de Freitas et al. (2006), as a particular case of their work
onN -body methods for matrix inversion and eigendecom-
position problems in machine learning. Our work provides
a more thorough study ofN -body methods and the FGT
for NLEs and demonstrates it in million-point datasets.

2 Applying N -body Methods to Embeddings

For NLEs theN -body problem appears in the computa-
tion of the objective function and the gradient, where the
interactions between all point pairs must be evaluated. In
particular, the objective function (1) involves twoN -body
problems, one for each of the attractive and repulsive terms.

The computation of the attractive term can be mitigated by
the nature of the matrixW: in most practical applications
it is sparse and thus can be computed in linear time. The
repulsive term is not sparse and involves anN -body prob-
lem as a sum of kernel similarities between all point pairs.
For the gradient, the first term involves the graph Laplacian
L, which has the same sparsity pattern asW and can be
computed efficiently. The second term involves the graph
LaplacianL̃ = D̃−W̃, which depends onX through a ker-
nel in W̃. Let us define the following kernel interactions:

S(xn) =
∑N

m=1 K(‖xn − xm‖2) (6a)

Sx(xn) =
∑N

m=1 xmK(‖xn − xm‖2). (6b)

Now we can rewrite the objective function and the gradient
of EE and s-SNE as follows:

E(X) =
∑N

n,m=1 wnm ‖xn − xm‖2 + λ
∑N

m=1 f(S(xm))

∂E
∂X = 4XL− 4λZ(X)Xdiag (S(X)) + 4λZ(X)Sx(xn)

wheref(x) = log x, Z(X) = 1/
∑N

n=1 S(xn) for s-SNE
andf(x) = 1,Z(X) = 1 for EE. GivenS(xn) andSx(xn)
both the objective function and the gradient can be com-
puted in linear time.

The BH method can be applied to compute approximately
the kernel interactions (6). We get

S(xn) ≈
∑N̂

m=1NmK
(
‖cm − xn‖2

)

Sx(xn) ≈
∑N̂

m=1NmcmK
(
‖cm − xn‖2

)

whereNm andcm for m = 1, . . . , N̂ are the number of
points and the centers of mass of the cells, respectively,
for which we need to compute the interaction. For the
weighted kernel interactionSx(xn) we require an addi-
tional approximation of each weightxm, due to its depen-
dence onm. Fortunately, when we compute the approxi-
mation between the cell and the query point, the cell size
is small (compared to the distance to the query point) and
thus can be approximated by its center of mass.

For the FGT,S(xn) can be obtained by takingσ = 1 and
qn = 1 in (4) for all n = 1, . . . , N . Sx(xn) is recovered
by takingσ = 1 andqn = xkn and computing the formula
d times fork = 1, . . . , d.

For t-SNE we cannot apply the FGT, because the former
uses thet-Student kernel. However, a FMM approximation
could be derived with a suitable series expansion, or with a
kernel-independent FMM method (section 1.2).

Out-of-Sample Mapping The N -body approximation
can also be used to obtain a fast out-of-sample mapping.
Carreira-Perpĩnán and Lu (2007); Carreira-Perpiñán (2010)
compute the projection of a new test pointy by keeping the
projection of the training pointsX fixed and minimizing

Max Vladymyrov, Miguel Á. Carreira-Perpi ñán

the objective function of the NLE wrt the unknown projec-
tion x (the mapping of a newx point toy-space is defined
analogously). For example, for EE:

min
x

E′(x,y) = 2
∑N

n=1

(
w(y,yn) ‖x− xn‖2

+ λ exp
(
− ‖x− xn‖2

))
. (7)

For M new test points the formula above can be approxi-
mated inO(M + N) usingN -body methods (iterating all
M minimizations synchronously), instead ofO(NM) with
the exact computation.

Optimization Strategy Since exact values of the objec-
tive function and gradient are not available during the opti-
mization, it makes sense not to use a line search (it might be
possible to use line searches with the FGT because it does
give us an interval for the true value). This also saves time,
since the line search would require repeated evaluations of
the objective function. So the onlyN -body problem we
need to solve per iteration is the gradient.

Our problem has similarities with stochastic gradient de-
scent, for which a convergence theory exists (Spall, 2003,
ch. 4.3), which leads to Robbins-Monro schedules that de-
crease the step size over iterations in a specific way. How-
ever, NLE training is different in that the number of param-
eters is proportional to the number of training points and
the characteristics of the “noise” in the gradient (the ap-
proximation error) are not well understood. As far as we
know, no convergence theory exists for NLEs. We provide
an initial study of the role of this noise in section 3.

In pilot runs, we found that schedules that decrease the step
size over iterations can improve the performance, but they
are difficult to use in a robust way over different problems.
Thus, in this paper we use a constant step sizeη, chosen
sufficiently small, which is simpler.

3 Analysis of the Effect of Approximate
Gradients in the Optimization

The parameters that quantify the trade-off between the ac-
curacy and the speedup areθ for BH and p for FGT. A
higher value ofp (or lower of θ) increases the accuracy,
but so does the runtime. Clearly, the speed at which the
optimization progresses and whether it converges depend
crucially on these accuracy parameters. Here, we try to
gain some understanding of this by considering the iterate
updates as noisy, where the “noise” comes from the ap-
proximation error incurred and has a variance that grows
with p. In order to solve the mathematical derivations, we
will assume zero-mean Gaussian noise, which implies that
the error is not systematic, as one might intuitively expect.
This will allow us to derive some expressions that seem to
hold in experiments, at least qualitatively.

At iterationk during the optimization of an objective func-
tionE(x) with x ∈ R

d, if using exact gradient evaluations,

we would move from the previous iteratexk−1 to the cur-
rent onexk without error. However, if using an inexact
gradient, we would move toxk + ǫk, incurring an errorǫk.
In our case,ǫk is caused by using an approximate method
and is a deterministic function ofxk−1 and the method pa-
rameters. Let us modelǫk as a zero-mean Gaussian with
varianceξ2 in each dimension. The fundamental assump-
tion is that, althoughǫk is deterministic at each iterate, over
a sequence of iterates we expect it not to have a preferred
direction (i.e., no systematic error). The value ofξ corre-
sponds to the accuracy level of the method, whereξ = 0
means no error (θ = 0, p → ∞). In practice,ξ will be quite
small. Then we have the following result.

Theorem 3.1. Let E(x) be a real function withx ∈ R
n.

Call ∆E(x) andδE(x) the absolute and relative error, re-
spectively, incurred at pointx ∈ R

d upon a perturbation
of x that follows a Gaussian noise modelN (0, ξ2I). Call
µ∆(x) = 〈∆E(x)〉, v∆(x) =

〈
(∆E(x)− 〈∆E(x)〉)2

〉
,

µδ(x) = 〈δE(x)〉 and vδ(x) =
〈
(δE(x)− 〈δE(x)〉)2

〉

the expected errors and their variances under the noise
model. AssumeE has derivatives up to order four that
are continuous and have finite expectations under the noise
model. Callg(x) = ∇E(x) and H(x) = ∇2E(x) the
gradient and Hessian at that point, respectively, andJH(x)
thed×d Jacobian matrix of the Hessian diagonal elements,
i.e., (JH(x))ij = ∂hii/∂xj = ∂3E(x)/∂x2

i ∂xj . Then,
the expected errors and their variances satisfy,∀x ∈ R

d:

µ∆ = 1
2ξ

2 tr (H(x)) +O(ξ4)

v∆(x) = ξ2 ‖g(x)‖2 + ξ4
(

1
2 ‖H(x)‖2F + 1TJH(x)g(x)

)

+O(ξ6)

µδ = µ∆/E(x) vδ = v∆/E(x)2.

If ‖H(x)‖2 ≤ M ∀x ∈ R
d for someM > 0, then∀x ∈ R

d

|µ∆| ≤ 1
2ξ

2dM .

The proof is given in the supplementary material. While
this noise model is probably too simple to make quanti-
tative predictions, it does give important qualitative pre-
dictions: (1) adding noise will be beneficial only where
the mean curvature1d tr

(
∇2E(x)

)
is negative; (2) when

the mean curvature is positive, the lower the accuracy the
worse the optimization; (3)µ∆/ tr

(
∇2E(x)

)
should take

an approximately constant value over iterates which is re-
lated to the accuracy level; and (4)∆E(x) will vary widely
at the beginning of the optimization and become approxi-
mately constant and equal to12ξ

2 tr (H(x)) near a mini-
mizer. This gives suggestions as to how to tune the accu-
racy (θ or p). Let us assume that the optimization algo-
rithm decreases the objective function, at least on average.
Thus, we expect that the early iterates will move through a
region that may have negative or positive mean curvature,
but eventually they will move through a region of positive
mean curvature, as they approach a minimizer. A higher

Linear-time Training of Nonlinear Low-Dimensional Embeddings

50 100 150 200

500

1000

1500
O

bj
ec

tiv
e

fu
nc

tio
n

1 2 3 4 5 6 7 8 9 10

p =
12345678910

Iterations
0 10 20 30 40

Runtime, s

p = 3
p = 10
p = 10 → 1
p = 1 → 10

0 100 200 300 400 500

p = 1
p = 2

p = ∞

Iterations

Approximate
Exact

Figure 3: Minimization of4 000 points from the Swissroll dataset using EE with gradient descent with different accuracy
parameters.Left two plots: the number of iterations is limited for200 iterations.Right plot: we run FGT forp = 1, . . . , 10
(blue lines) and run one exact step after each iteration of the FGT (black lines). Compare with the exact run (red line).

accuracy will be necessary in the later stages of the opti-
mization. As for the early stages, we can be more specific
by looking at the Hessian trace for some embedding mod-
els (see Vladymyrov and Carreira-Perpiñán, 2012 for the
exact formulas):

• EE: tr
(
∇2E(x)

)
= 4d tr (L), whereL is theN × N

graph Laplacian corresponding to the affinities in the
high-dimensional space andd is the dimension of the
low-dimensional space.

• s-SNE, t-SNE:tr
(
∇2E(x)

)
= 4d tr (L)− 16λ ‖XLq‖2F ,

whereLq is aN ×N graph Laplacian corresponding to
the affinities learned in the low-dimensional space.

For the graph Laplacian in the input space, we have
tr (L) =

∑N
n6=m wnm, which is a positive constant. Thus,

the mean curvature is always positive for EE, so we do not
expect the noise to help anywhere. For s-SNE and t-SNE,
the mean curvature can be negative if‖XLq‖2F is large
enough, but this will likely not happen if, as is commonly
done, one initializesX from small values. In summary,
it seems unlikely that the mean curvature will be nega-
tive during the optimization, and therefore the inexact steps
caused by the BH or FMM methods will reduce the objec-
tive less than exact steps on average. However, it is likely
that the mean curvature will become more positive as the
optimization progresses, which suggests starting with rela-
tively low accuracy and increasing it progressively. It still
may make sense to try to benefit from the noise whenever
the mean curvature does become negative. Since the Hes-
sian trace for s-SNE and t-SNE can be computed in linear
time in the number of parametersNd in the embeddingX,
one could detect when it is negative and use very low accu-
racy in the gradient evaluations.

Practically, there are two more reasons why it is benefi-
cial to start with low accuracy and increase it further on.
First, it is cheaper to compute the low-accuracy value, so
the runtime is smaller. Second, inexact gradient values
may increase the value of the objective function at some
iterations. Thus, using the accuracy as an inverse temper-
ature may give our algorithm the advantages of simulated

10
−6

10
−4

10
−2

E
rr

or
w

rt
ex

ac
t

10
3

10
4

10
5

10
6

10
−3

10
1

10
5

R
un

tim
e,

s

N

FGT,p = 2

FGT,p = 3

FGT,p = 4

BH, θ = 1/2

BH, θ = 1

BH, θ = 2Exact

Figure 4: Error with respect to the exact computation (top)
and runtime vs. the number of points (bottom).

annealing: a low accuracy in the beginning facilitates some
degree of wandering in parameter space, which may help to
identify good optima. As we proceed in the optimization,
the accuracy should be increased to reduce the wandering
behavior and eventually converge.

Theorem 3.1 tries to be as independent as possible of
the particular approximation method (FMM, BH, etc.) and
NLE (SNE, t-SNE, EE, etc.). The FGT bounds of Baxter
and Roussos (2002) and Wan and Karniadakis (2006) only
apply to Gaussian sums with the FGT method and arein-
dependent of the iteratex (they only depend on the number
of termsp, dimension of latent spaced and box widthr).
Hence, these FMM bounds can be coarse, and do not dis-
tinguish between early and late stages of the optimization,
so they do not help to design adaptive schedules for the ac-
curacy level.

Fig. 3 shows the effect of different settings of the accu-
racy. We run EE (withλ = 10−4) using gradient descent
with FMM approximation for4 000 points from the Swiss
roll dataset. We fixed the step size toη = 0.3. First, we
run the optimization for100 iterations only (left two plots)
and tried four different accuracy schedules: keep the accu-
racy atp = 3, at p = 10, or decrease it every10 itera-
tions fromp = 10 to p = 1, or increase it fromp = 1 to
p = 10, respectively. Increasing the accuracy gives almost

Max Vladymyrov, Miguel Á. Carreira-Perpi ñán

10
0

10
1

10
2

10
3

10
4

0.5

1

1.5

2

2.5

3

3.5

x 10
5

O
bj

ec
tiv

e
fu

nc
tio

n

Iterations

GD, FGT

GD, BH

GD, exact

FP, FGT

FP, BH

FP, exact

L-BFGS, FGT

L-BFGS, BH

L-BFGS, exact

10
0

10
1

10
2

10
3

Runtime, s

Figure 5: Speedup of the EE algorithm using BH and FGT for60 000 MNIST digits using gradient descent (GD), fixed
point iteration (FP) and L-BFGS. Learning curves as a function of the number of iterations (left) and runtime (right). The
optimization follows almost the same path for the exact method and both approximations, however BH and FGT are about
100× and400× faster respectively. Note the log plot in the X axis and the inset showing the BH and FGT curves.

the same decrease per iteration as the approximation with
p = 10 terms, however the runtime in the former case is
faster. Both using a crude approximation (p = 3) and de-
creasing the accuracy does not achieve the same decrease
in the objective function. Second, on the right plot, we
used the same dataset, but now run it10 times for500 iter-
ations with differentp = 1, . . . , 10 (blue lines on the plot).
After each approximate step we also evaluate the exact gra-
dient to see the difference between exact and approximate
steps (black dashed lines). First, as the gradient approxi-
mation improves, the objective function decrease is greater.
Second, the exact steps are always better than the approx-
imate ones, which agrees with theorem 3.1. Third, the er-
ror between the exact and the approximate step becomes
smaller as the approximation improves. Eventually, it be-
comes identical to the exact run of the method (red line).

4 Experiments

In all experiments, we reduce dimension tod = 2. First,
we show that the performance of the methods matches the
theoretical complexity. Fig. 4 shows the error and run-
time of the exact method compared to those of BH and
FGT as the number of points grows. We approximated the
S(xn) sum for uniformly distributedxn ∈ R

2. The the-
ory estimates that the logarithm of the runtimet should be
O(2 logN) for exact methods,O(logN + log logN) for
BH andO(logN) for FGT. Thus, in the log/log plot, the
exact method and FGT should appear linearly with slopes
2 and1 respectively and BH should appear almost linear.
Indeed, the slope of the exact method is2.02, the slope of
FMM is 0.89±0.08 (averaging over differentp values) and
the slope of BH is1.17±0.06 (averaging overθ), which as
expected is slightly bigger than linear.

We compared the performance of the exact algorithms to

FGT and BH for the EE algorithm (withλ = 10−4) using
gradient descent (GD), fixed point iteration (FP; Carreira-
Perpĩnán, 2010) and L-BFGS algorithms. For BH, we
used our own C++ implementation; for FGT, our code was
based on the implementation available atwww.cs.ubc.

ca/ ˜ awll/nbody_methods.html . We used fixed step
sizes in the line search:η = 0.1 for GD, η = 0.05 for
FP andη = 0.01 for L-BFGS. We tried several values and
chose the ones that gave greatest steady decrease of the ob-
jective function, without frequent increases in the objective
function. For the accuracy schedule, for BH we started with
θ = 2 and logarithmically decreased it toθ = 0.1 for the
first 100 iterations. For FGT, we started withp = 1 term
in the local expansion and logarithmically increased it to
p = 10 terms after the first100 iterations. We kept the last
approximation parameter fixed for subsequent iterations.

In the first experiment we used60 000 digits from the
MNIST handwritten dataset (fig. 5). We use a sparse affin-
ity graph with200 nearest neighbors for each point. We use
entropic affinities (Hinton and Roweis, 2003; Vladymyrov
and Carreira-Perpiñán, 2013) with a perplexity (effective
number of neighbors) of50, that is, Gaussian affinities
where the local bandwidth of each point is set so it de-
fines a distribution over its neighbors having an entropy of
log(50). If we consider the decrease per iteration disregard-
ing the runtime (left plot), the methods go down in groups
of three: one for GD, FP and L-BFGS respectively. This
means the decrease per iteration is almost the same for the
exact methods compared to the approximations, suggest-
ing that the optimization follows a similar path. However,
taking the runtime into account (right plot), we see a clear
separation of FGT (green) from BH (blue) and the exact
computation (red). Overall, BH is about100× faster and
FGT is about400× faster than the exact method. Note the

Linear-time Training of Nonlinear Low-Dimensional Embeddings

10
0

10
1

10
2 10

3

106

10
7

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n

Iterations

GD, FGT

GD, BH

FP, FGT

FP, BH

L-BFGS, FGT

L-BFGS, BH

1 2 3 4 5 6 7 8 9 10 11
Runtime, hours

FGT using L-BFGS after3 hours BH using L-BFGS after3 hours
E = 521 666, 221 iter. E = 1079 357, 32 iter. Out-of-sample using FGT, 11 min

0
1
2
3
4
5
6
7
8
9

Figure 6: Embeddings of1 020 000 digits from the infinite MNIST dataset using the elastic embedding algorithm with
FGT and BH, optimized with gradient descent (GD), fixed-point iteration (FP) and L-BFGS.Top: objective value change
with respect to the number of iterations and runtime.Bottom left two plots: embedding of FGT and BH with L-BFGS
after3 hours of optimization. The inset shows that, in addition to separating digits, the embedding has also learned their
orientation.Bottom right plot: out-of-sample projection of60 000 digits using the embedding of L-BFGS as a training set.

objective function values shown in the plot are not needed
in the optimization and are computed exactly offline.

Next, we used an infinite MNIST dataset (Loosli et al.,
2007) where960 000 handwritten digits were generated us-
ing elastic deformations to the original MNIST dataset. To-
gether with the original MNIST digits the dataset consists
of 1 020 000 points. For each digit the entropic affinities
were constructed from the set of neighbors of the original
digit and their deformations using perplexity10. We run
the optimization for11 hours using GD, FP and L-BFGS
for EE with FGT and BH approximations. Fig. 6 shows
the objective function decrease per iteration and per sec-
ond of runtime. Similarly to the previous experiment, BH
and FGT show similar decrease per iteration (right plot),
but FGT is much faster in terms of runtime (left plot). On
average, we observe FGT being 5–7 times faster than BH.
Below, we show the embedding of the digits after 3 hours
of L-BFGS optimization using FGT and BH. The former
looks much better than the latter, showing clearly the sepa-
ration between digits. We also tried the exact computation
on this dataset, but after8 hours of optimization the algo-
rithm only reached the second iteration.

We also generated60 000 test digits and used the FGT ap-
proximation of the out-of-sample mapping (7). We used

the result of L-BFGS after 3 hours of optimization as the
training data and initialized each test point to the training
point that is closest to it. We obtained the embedding of
the test points in just11 minutes and the embedding agrees
with the structure of the training dataset.

5 Conclusion

We have shown that fast multipole methods, specifically the
fast Gauss transform, are able to make the iterations of non-
linear embedding methods linear in the number of training
points, thus attacking the main computational bottleneck of
NLEs. This allows existing optimization methods to scale
up to large datasets. In our case, we can achieve reasonable
embeddings in hours for datasets of millions of points. We
have also shown the FGT to be considerably better than the
Barnes-Hut algorithm in this setting. Based on theoretical
and experimental considerations, we show that starting at
low accuracy and increasing it gradually further speeds up
the optimization.

We think there is much room to design better algorithms
that combine specific search directions, optimization tech-
niques andN -body methods with specific NLE models.
Another important direction for future research is to char-
acterize the convergence of NLE optimization with inexact
gradients obtained fromN -body methods.

Max Vladymyrov, Miguel Á. Carreira-Perpi ñán

References

J. Barnes and P. Hut. A hierarchicalO(N logN) force-
calculation algorithm. Nature, 324(6096):446–449,
Dec. 4 1986.

G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis.
Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice-Hall, 1999.

B. J. C. Baxter and G. Roussos. A new error estimate of
the fast Gauss transform.SIAM J. Sci. Comput., 24(1),
257–259 2002.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimen-
sionality reduction and data representation.Neural Com-
putation, 15(6):1373–1396, June 2003.

M. Á. Carreira-Perpĩnán. The elastic embedding algo-
rithm for dimensionality reduction. In J. Fürnkranz and
T. Joachims, editors,Proc. of the 27th Int. Conf. Ma-
chine Learning (ICML 2010), pages 167–174, Haifa, Is-
rael, June 21–25 2010.

M. Á. Carreira-Perpĩnán and Z. Lu. The Laplacian Eigen-
maps Latent Variable Model. In M. Meilă and X. Shen,
editors,Proc. of the 11th Int. Workshop on Artificial In-
telligence and Statistics (AISTATS 2007), pages 59–66,
San Juan, Puerto Rico, Mar. 21–24 2007.

N. de Freitas, Y. Wang, M. Mahdaviani, and D. Lang.
Fast Krylov methods forN -body learning. In Y. Weiss,
B. Scḧolkopf, and J. Platt, editors,Advances in Neu-
ral Information Processing Systems (NIPS), volume 18.
MIT Press, Cambridge, MA, 2006.

W. Fong and E. Darve. The black-box fast multipole
method. J. Comp. Phys., 228(23):8712–8725, Dec. 10
2009.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algo-
rithm for finding best matches in logarithmic expected
time. ACM Trans. Mathematical Software, 3(3):209–
226, 1977.

T. M. J. Fruchterman and E. M. Reingold. Graph draw-
ing by force-directed placement.Software: Practice and
Experience, 21(11):1129–1164, Nov. 1991.

A. G. Gray and A. W. Moore. ‘N -body’ problems in
statistical learning. In T. K. Leen, T. G. Dietterich,
and V. Tresp, editors,Advances in Neural Information
Processing Systems (NIPS), volume 13, pages 521–527.
MIT Press, Cambridge, MA, 2001.

L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations.J. Comp. Phys., 73(2):325–348, Dec. 1987.

L. Greengard and J. Strain. The fast Gauss transform.SIAM
J. Sci. Stat. Comput., 12(1):79–94, Jan. 1991.

G. Hinton and S. T. Roweis. Stochastic neighbor embed-
ding. In S. Becker, S. Thrun, and K. Obermayer, ed-
itors, Advances in Neural Information Processing Sys-
tems (NIPS), volume 15, pages 857–864. MIT Press,
Cambridge, MA, 2003.

Y. Hu. Efficient and high-quality force-directed graph
drawing.The Mathematica Journal, 10(1):37–71, 2005.

D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss
transforms. In Y. Weiss, B. Schölkopf, and J. Platt, ed-
itors, Advances in Neural Information Processing Sys-
tems (NIPS), volume 18, pages 747–754. MIT Press,
Cambridge, MA, 2006.

G. Loosli, S. Canu, and L. Bottou. Training invariant sup-
port vector machines using selective sampling. In L. Bot-
tou, O. Chapelle, D. DeCoste, and J. Weston, editors,
Large Scale Kernel Machines, Neural Information Pro-
cessing Series, pages 301–320. MIT Press, 2007.

A. Moore, J. Schneider, and K. Deng. Efficient locally
weighted polynomial regression predictions. In D. H.
Fisher, editor,Proc. of the 14th Int. Conf. Machine
Learning (ICML’97), pages 236–244, Nashville, TN,
July 6–12 1997.

A. Quigley and P. Eades. FADE: Graph drawing, cluster-
ing, and visual abstraction. In J. Marks, editor,Proc. 8th
Int. Symposium on Graph Drawing (GD 2000), pages
197–210, Colonial Williamsburg, VA, Sept. 20–23 2000.

V. C. Raykar and R. Duraiswami. Fast optimal bandwidth
selection for kernel density estimation. InProc. of the
2006 SIAM Int. Conf. Data Mining (SDM 2006), pages
524–528, Bethesda, MD, Apr. 20–22 2006.

V. C. Raykar and R. Duraiswami. The improved fast Gauss
transform with applications to machine learning. In
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, ed-
itors,Large Scale Kernel Machines, Neural Information
Processing Series, pages 175–202. MIT Press, 2007.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality
reduction by locally linear embedding.Science, 290
(5500):2323–2326, Dec. 22 2000.

J. K. Salmon and M. S. Warren. Skeletons from the
treecode closet.J. Comp. Phys., 111(1):136–155, Mar.
1994.

H. Samet. Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann, 2006.

Y. Shen, A. Y. Ng, and M. Seeger. Fast Gaussian process re-
gression using KD-trees. In Y. Weiss, B. Schölkopf, and
J. Platt, editors,Advances in Neural Information Pro-
cessing Systems (NIPS), volume 18, pages 1225–1232.
MIT Press, Cambridge, MA, 2006.

J. C. Spall.Introduction to Stochastic Search and Optimiza-
tion: Estimation, Simulation, and Control. John Wiley
& Sons, 2003.

J. Strain. The fast Gauss transform with variable scales.
SIAM J. Sci. Stat. Comput., 12(5):1131–1139, Sept.
1991.

L. J. P. van der Maaten. Barnes-Hut-SNE. InInt. Conf.
Learning Representations (ICLR 2013), Scottsdale, AZ,
May 2–4 2013.

Linear-time Training of Nonlinear Low-Dimensional Embeddings

L. J. P. van der Maaten and G. E. Hinton. Visualizing data
using t-SNE. J. Machine Learning Research, 9:2579–
2605, Nov. 2008.

M. Vladymyrov and M. Á. Carreira-Perpĩnán. Partial-
Hessian strategies for fast learning of nonlinear embed-
dings. In J. Langford and J. Pineau, editors,Proc. of the
29th Int. Conf. Machine Learning (ICML 2012), pages
345–352, Edinburgh, Scotland, June 26 – July 1 2012.

M. Vladymyrov and M.Á. Carreira-Perpĩnán. Entropic
affinities: Properties and efficient numerical computa-
tion. In S. Dasgupta and D. McAllester, editors,Proc.
of the 30th Int. Conf. Machine Learning (ICML 2013),
pages 477–485, Atlanta, GA, June 16–21 2013.

X. Wan and G. E. Karniadakis. A sharp error estimate for
the fast Gauss transform.J. Comp. Phys., 219(1):7–12,
Nov. 20 2006.

C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis.
Improved fast Gauss transform and efficient kernel den-
sity estimation. InProc. 9th Int. Conf. Computer Vision
(ICCV’03), pages 464–471, Nice, France, Oct. 14–17
2003.

Z. Yang, J. Peltonen, and S. Kaski. Scalable optimization
for neighbor embedding for visualization. In S. Das-
gupta and D. McAllester, editors,Proc. of the 30th Int.
Conf. Machine Learning (ICML 2013), pages 127–135,
Atlanta, GA, June 16–21 2013.

L. Ying, G. Biros, and D. Zorin. A kernel-independent
adaptive fast multipole algorithm in two and three di-
mensions. J. Comp. Phys., 196(2):591–626, May 20
2004.

