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Dimensionality reduction

Given a high-dimensional dataset Y pxn = (¥1,---,¥n~) find

Original dataset Y, D = 3
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Dimensionality reduction

Given a high-dimensional dataset Y pxn = (¥1,---,¥n~) find
. projection points Xgxn = (X1,...,XN),

. reduction mapping x = F(y)

Original dataset Y, D = 3

Low-dimensional embedding X, d = 2
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Dimensionality reduction

Given a high-dimensional dataset Y pxn = (¥1,---,¥n~) find
- projection points Xgxn = (X1,...,XN)
. reduction mapping x = F(y)
. reconstruction mapping ¥ = f(x),

Original dataset Y, D = 3

Low-dimensional embedding X, d = 2
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Dimensionality red

uction

Given a high-dimensional dataset Y pxn = (¥1,---,¥n~) find

. projection points Xgxn = (X1, ..
. reduction mapping x = F(y)

. reconstruction mapping ¥ = f(x),
- joint probability density p(x,y)

Original dataset Y, D = 3

’7XN);

Low-dimensional embedding X, d = 2
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Dimensionality reduction

Given a high-dimensional dataset Y pxn = (¥1, - -
- projection points Xgxn = (X1,...,XN)
reduction mapping x = F(y),
reconstruction mapping ¥ = f(x),
joint probability density p(x,y)
estimate intrinsic dimensionality d.

Original dataset Y, D = 3

., yN) find

Low-dimensional embedding X, d = 2
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Dimensionality reduction

Given a high-dimensional dataset Y pxn = (¥1,---,¥n~) find
. projection points Xgxn = (X1,.--,XN) this talk

Original dataset Y, D = 3 Low-dimensional embedding X, d = 2
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Dimensionality reduction

Given a high-dimensional dataset Y pxn = (¥1,---,¥n~) find

+ projection points Xgxn = (X1 -+ XN ), W « this talk

) redUCtlon mapplng X = F(Y)! Qrrnnnnnnnnnnannnn® T
. reconstruction mapping ¥y = F(X), e

Original dataset Y, D = 3 Low-dimensional embedding X, d = 2
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MNIST Handwritten digits

Consider a dataset with 1 000 handwritten digits 2 :

2820 2QARR2A22222L9242 A
L A2

A
2A2L2RA2L2A2LAIAAL -

o
L
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MNIST Handwritten digits

Consider a dataset with 1 000 handwritten digits 2 :

2820 2QARR2A22222L9242 A
L A2

AT 2L
2A2L2RA2LI2A2LALAAL A2 XL

L0
ish-dimensional dataset: Y ¢ R1000x784
Number of points: N = 1000
Number of dimensions: D = 734

Reduction space: 7 :




MNIST Handwrltten digits

Bottom loop articulation

Top arch articulation
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COIL-20 Rotational sequences

10 objects:

2R =sfper object:

E 22 - PR
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igh-dimensional dataset: Y e R720x 16384
Number of points: N = 720

Nlumber of dimensions: D = 16 384
Reduction space: a2
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visualized by Elastic Embedding
(Carreira-Perpifian, 2010)




Other use of dimensionality reduction

* Preprocessing before other task e.g. classification or regression:
» denoising,
» decreasing the complexity.
» Extracting latent structure of the data:
» feature learning,
» cluster information,
» deep networks with autoencoders.




Dimensionality reduction

Given high-dimensional data points Ypxn = (Y1,--.,YN).

|.Convert data points to a NV x N affinity matrix A.

2. Find low-dimensional coordinates Xgx v = (X1,...,XnN), SO
that their similarrty 1s as close as possible to A .

High-dimensional Low-dimensional
input’Y output X




Classification of
dimensionality reduction

* Linear methods
» principal component
analysis (PCA),
» classical multidimensional
scaling (MDS).
> Eler
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Classification of

dimensionality reduction

 Linear methods » Spectral methods * Nonlinear embedding
» principal component » Laplacian Eigenmaps, methods
anal>{5|s (PCA>; . > SIOMAR » Stochastic Neighbor Embedding,
» classical multidimensional |  ocally Linear RN l=

scaling (MDS).
> (S
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Classification of
dimensionality reduction

* LInear methods » Spectral methods * Nonlinear embedding
» principal component » Laplacian Eigenmaps, methods
anal>{5|s (PC’AQ; . » ISOMAR » Stochastic Neighbor Embedding,
» classical multidimensional | ocally Linear SEENE
ling (MDS). - - Tty
e embedding (LLE). -, The Elastic Embedding (EE)
YHETC, » etc.

Runtime




Affinity matrix

+ Affinity matrix W € RY*Y represents the similarities between
points Int he dataset. The higher the affinity value, the more
similar are the points to each other.

* Inturtion:
» high weight to nearby points,
» low weight to far away points. |
wn.O.G- Q
* Property: 041 GERAL
- affinity matrix enforces locality o2 \
of the data. Sa e X o

Y
* For example, Gaussian affinities are given by:

Wam = exp(—5 (¥ = ym) /o]



Nonlinear Embedding (NLE) methods

Many of well-known methods can be written In the form:
EXN=E"T(X)+XE-(X) X> O

ET(X)is an attractive term: / *
» often quadratic,
* minimal with coincident points, / 4{:%/7
» defined usually on the sparse affinity (not
all interactions are computed).

\ 3
;ﬁ}

E~(X)is a repulsive term: \;}1
» often very nonlinear, -
* minimal with points separated infinitely, 3:}\
- all Interactions should be computed. e

g ® M

g \4



NLE: Examples

» Laplacian Eigenmaps: (Belkin and Niyogi, 03)
N

Frg(X) = Z Wrm || Xn — XmH2 s.t. translation and scale constraints
n,m=1

» Stochastic neighbor embedding: <Hinton and Roweis, 03)

Esnp(X Z Prm || Xn — Xmu B Z log Z eXp | hts Xm” )

s — 1 m=#n

Symmetmc stochashc neighbor embeddmg (Cook et al, 07)

Es sne(X Z Prm || Xn _XmH + log Z exp(— || xn _XmH )

n,m=1 ==

e t-SNIE: (van der Maaten and Hinton '08)
N

N
Eesne(X) = Y Pamlog(l+|[xn —xm[®) + ) 1+ [Ixn — x5
S o—=" =i
* [he Elastic Embedding (Carreira-Perpifin, ‘IO)
Epp(X Z Wi [ Xn _XmH = 0 Z Wy, €XP(— || Xn, _XmH )

W — | n,m=1 19



NLE: Optimization

* Minimize objective function:
EX,\N=FE"(X)+AE"(X) A>0
» Optimization:
» compute the gradient
G = 4X, (LT — A\L)
» compute the direction. For
example, gradient descent:
P, = -Gy
» compute new Iteration
X411 Using a line search:
Xir1 = X + 1Py
» repeat till convergence.

» Other gradient-based optimization methods are applicable:
| -BFGS, Conjugate Gradient, etc..
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SpeCtral d | reCtl O vladymyrov and Carreira-Perpifian, ’12)

Currently, the fastest optimization algorithm to train nonlinear
embedding Is spectral direction.

|. Precompute the Cholesky
factor of positive definite,
constant Hessian approx.
B=4L &® 1.4
2.For every iteration k _
» find search direction using the
solution to the linear system: |
BiPi = —Gyg
» use line search to find a step
size ) for the next iteration Xx11 = X + nPyg

* This method Is much faster than gradient descent.

- However, spectral direction, as well as other gradient-based
methods require gradient evaluation for every iteration.



NLE: Gradient

The gradient is given by G = 4X (L — AL)
where graph Laplacians are defined as:

L = diag (25—1 wnm> — W L = diag (Z,ﬁf:l iEnm) ~ W
Weights wq,m are constants and can be sparsified.

Weights wn,m depend on parameters X and should be
recomputed for every point.

For example, In elastic embedding algorithm:
Bpp(X) = X et Wam [Xn = Xm|* + X5, S(xn)
Grp(X) = 4XL — 4\X diag (S(X)) + 4A5%(X)
S, ) = ZN—1 e IPn—xm % Gz(x ) = ZTZX : Xy e~ P —%m




Computational bottleneck of NLE

* The bottleneck of the algorithm consists in computing
palrwise Interaction between data points (N-body problem).

N . N :
S(Xn) p— Z e_HXn—Xm” SCB(XH) — Z Xme_”X”_me
m=1 m=1

» Solution: use approximate methods to compute these interactions!
» tree-based methods;
» fast multipole methods.
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Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
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* Build a tree around X.
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o compute the Interaction between X, and others points:
* Build a tree around X.

» Query the nodes of the tree rather than individual points.

Gains come from:

» pruning interaction between points
that are too far away.
» approximating the interactions
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Tree-based methods

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.

o compute the Interaction between X, and others points:
* Build a tree around X.

» Query the nodes of the tree rather than individual points.
Gains come from:

» pruning interaction between points

that are too far away. L

» approximating the interactions $
between points that are located at a O Xg,' o
similar distance. O

» Complexity is usually O(N log N).

* Problems:
» do not scale well with dimensions of latent space,
» error bounds are usually hard to derive.



BarneS‘H Ut alg()l’lth 11  (Barnes and Hut '86)

© Can be applicable to any kind of interaction (Euclidean
distances, Gaussian distances, etc).

© Single parameter to control the trade-off between speed and
approximation error.

© No clearly defined error bounds.

Were used In the context of nonlinear embedding algorithm in
Maaten, '| 3 and Yang et al,, '| 3.



Barnes-Hut: building a quad-tree

|. Make sure that the points are
located in the box [0, 1]¢

2. If there are more than two points
in the cell, compute its centroid and o _

split It. 0

O O

Complexity: O(N log N) E
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Barnes-Hut: building a quad-tree

|. Make sure that the points are
located in the box [0, 1]¢ ..

2. If there are more than two points
in the cell, compute 1ts centroid and
split It.

Complexity: O(N log N)




Barnes-Hut: queryin

D - distance from the query
point to the centroid

[ - side length of the current

Approximate the interaction with

all points in the cell It

[
— =
D<

where 6 Is a user parameter, t
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Barnes-Hut: querying a quad-tree
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Behavior with respect to 6

Change In error and speedup with respect to exact.
Bigger 0: faster computation, but larger error.
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Fast multipole methods

Properties:
© Time complexity O(N).
© Well defined error bounds.

© Expansion for each new kernel needs to be derived
separately. The performance may vary.

© Computational cost grows exponentially with number of
dimensions.

Extensions:

* Fast Gauss Transform: deals exclusively with Gaussian kernel.
(Greengard and Strain, ‘9 1;Yang et al, '03;)

» Different expansions ( laylor, Hermite, interpolation, SVD, etc.)

B Sieiiilst Used In the context of NLE by de Freitas etialissict
but their description was limited to one experiment.
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Fast mu |tlp0|e methOdS (Greengard and Rokhlin '87)

Approximate the interactions of the form:

= gmK (| (n — xm) /0"

The idea Is to do a series expansion of the kernel K, such that
the sum decouples over X, and X,

K([|(tn — %m) /o) = > fou (%n) gor (%m)

a>0

we used multi-index notation ¢ > 0 = aq, ..., ag > 0

23



Fast Gauss TranSfOrm (Greengard and Strain, 91)

Algorithm: :
|. Normalize the dataset to lie in a unit box. &
2. Grid the box Into smaller boxes (erther
. . ° o
uniformly or based on density), o g .

3. A lot of points In a cell = do a series
expansion around the center of the box. ° e
4. lgnore interactions between distant boxes. ® e
5. Compute the interaction:
» few points In the box=> exactly, o
» a lot of points = use center of mass.

Parameters of the approximation:

* p number of terms In the expansion,

* My number of points in the box for the expansion to occur,
* 1 size of the grid,

« K' number of boxes to which we compute the interaction.
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FaSt GaUSS TranSfOrm (Greengard and Strain, '91)
Algorithm:

|. Normalize the dataset to lie in a unit box.
2. Grid the box Into smaller boxes (erther
uniformly or based on density),
3. A lot of points In a cell = do a series
expansion around the center of the box. ‘~“.
4. lenore Interactions between distant boxes| ®
5. Compute the interaction:
» few points In the box=> exactly,
» a lot of points = use center of mass.

Parameters of the approximation:

use to control the accurac
/ >/

* p number of terms In the expansion,
* My number of points in the box for the expansion to occur, "
e 1 size of the grid, > Tixed
« K' number of boxes to which we compute the interaction. |

i



Application of N-Body to NLE

* We can approximate the following interaction with N-Body
methods

B Kk x.Y) 5% me (I1%n = %m][*)

m=1

* [he objective function and the gradient of EE:

Epp(X) = Yo et Wam [Xn = Xm || * + A0, S(%n)
Gpr(X) = 4XL — 4X\X diag (S(X)) + 415%(X)

» Given S(x,,)and S%(x,,), each term is can be computed in O(

- Objective function and the gradient of other NLE methods can
be defined analogously.

)
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NLE: Optimization (revisited)
* Minimize objective function:
EX,\N=FE"(X)+AXE~(X) A>0

» Optimization:

» compute the gradient
G, = 4X, (LT —L7)
» compute the direction
P = -Gy
» compute new rteration

Xk+1UsINg a line search:
Xk+1 = Xg + nPy
» repeat till convergence.
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Model the effect of the approximate gradient

* For each iteration we incur the error Xg11 = X + €k

» Approximation the error with the model €x ~ N (O, o°T).
* 0 Is a model parameter and represents the accuracy of the
approximation.
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Model the effect of the approximate gradient

Mean of the absolute error: ,
(E(X 4 €) — BE(X)) = 502 tr (V2 E(X)) + O(c*)

Negative curvature Positive curvature No curvature

/

VWe have qualitative predictions:

|, Adding noise will be beneficial only where the mean curvature
2 tr (V2E(X)) IS negative

2. When the mean curvature is positive, the lower the accuracy
the worse the optimization;

3. AE(X)will vary widely at the beginning of the optimization and
become approximately constant and equal to 202 tr (V2E(X)) ..,




Model the effect of the approximate gradient

Under this model, we can suggest to Increase the accuracy
barameter as we proceed with iterations.

10 | | | | | | | | | "‘"‘T
-~ 1
I ~ N TR o > ‘s VRA
2N Negative curvature -
8y (benefit from the approxma’uon) i
Soe P e |
Q T - _:. -; ...... A ,' - .
— el Positive curvature Lo _
3 (harm thé approximation) N/
/< 5 — : ”.x” Y .
T |
>
N— 3 - ; 4 N -
—"_ v '~ v
= ol T am e _
e ~\ Y 4
’ T | 4 1N ’
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NLE: Optimization (revisited)

* Minimize objective function:

BiL ) —ET(X)+ ) \E (X 58

o fOr a sequence of non-decreasing parameters P = po, - - - , Poo

» comput

» COM
» COM

DUT

c
c

DI

the direction (e.g. wit

the approximate gradient (g using accuracy pj.

n grad. descent P = —Gy).

e new Iteration X, 1 using fixed step 1o

PSR — X

e convergence Is guaranteed.
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Accuracy of the approximation

Compare different ways to change the accuracy of the
approximation:

» fixed large,

* fixed small,

* changing from small to large,
* changing from large to small.

p:
10-0. 8 7 6 543 2 1

—
)
-
o

Objective function
o
S
S

S
O
=

50 100 150 2000 10 20 30 40
[terations Runtime, s
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Fast out-of-sample mapping

- Given a new pointy € R” we solve the original problem

over (X x)and (Y y), subject to keeping the embedding X
fixed:

E'(x,y,\) = E"(x,y) +AE" (x,y)  A>0
» Project new high-d point y: F(y) = argminy, F'(x,y)
» Reconstruct new low-d pointx:  f(x) = argmin, ' (x,y)

Original dataset Y, D = 3 Low-dimensional embedding X, d = 2
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Fast out-of-sample mapping

* |f we are given M new test points we can use fast out-of-
sample extension to project them all in parallel:

(K, 0) =2 5" 5 (0m3) Xl + Ao (= [ = )

m=1n=1

* It computed exactly, this would take O(M N).
» Using FMM, we can reduce this cost to O(M + N).

33



Experiments

» All experiments were performed using Elastic Embedding,
however the method generalizes over all NLE algorithms.
* We mostly used L-BFGS for the optimization method, but the
results are general over all optimization methods.
* For the accuracy schedule, we change the accuracy
logarithmically for the first 100 iterations:
» from 6 = 2 to 6 = 0.1 for Barnes-Hut (BH) algorithm.
» from p = 1to p = 10 for Fast Multipole Methods (FMM).

* For FMM, we fixed addrtional parameters of the

approximation:
2N, =5 K =14,

* We experimented with standard 60000 MINIST digit dataset
and inifiniteMINIST, where digits were generated using an elastic

transformation of the original ones.

£X%;



Experiments: computational cost
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Experiments: 60 000 handwritten digits

All methods show similar decrease In the objective function per

iteration.
Exact Barnes-Hut FMM
_ | | | | |
.% ——Exact
= S —— ——Barnes-Hut |
= FMM
g1
Q
Q2
e =
QO | | | | |
o0 100 150 200 250 300

Number of iterations
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Experiments: 60 000 handwritten digits

The decrease Is very different If considered per minute of runtime.
Exact Barnes-Hut FMM

o I I
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= Barnes-Hut |
= FMM
S
O
Q
o
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Runtime, min
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Experiments: 1 000 000 handwritten digits




Experiments: 1 000 000 handwritten digits




periments: out-of-sample

roject 60 000 new digits into low-dimensional space using
000 000 for training.

Runtime: 11 minutes.
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Conclusions

* Nonlinear dimensionality reduction give good results, but usually
expensive to train.

* We propose a new way to scale-up NLE algorithms to datasets
with > 10° using fast multipole methods, that beats exact
methods by 100 — 1000x and Barnes-Hut method by o — 7X.

* We analyze the effect of the approximate gradient by proposing
simple noise model that suggests use of the schedule for the

accuracy of the approximations. Experiments confirm this benefit ¢
this schedule.

e Future work:

» Analyze the convergence guarantees using finite set of accuracy
parameters.

i ncrEMIMi to other kernels (e.g. t-SINE).
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