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x = F (y)• reduction mapping               ,
y = f(x)• reconstruction mapping              ,
p(x,y)• joint probability density           ,

d• estimate intrinsic dimensionality
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BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
...

100
104
89
90
...
0
0
0

1

CCCCCCCCCCCCCCCCCCCCCCA

2 R1⇥784

1 000

High-dimensional dataset: Y 2 R1 000⇥784

Number of points:
Number of dimensions:

N = 1000
D = 784

Reduction space: d = 2
���3
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MNIST Handwritten digits
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MNIST Handwritten digits

visualized by ISOMAP
(Tenenbaum et al, 2000)



COIL-20 Rotational sequences
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Reduction space: d = 2
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visualized by Elastic Embedding
(Carreira-Perpiñán, 2010)

���6

COIL-20  
Rotational sequences



Other use of dimensionality reduction

• Preprocessing before other task e.g. classification or regression:	


‣ denoising,	


‣ decreasing the complexity.	



• Extracting latent structure of the data:	


‣ feature learning,	


‣ cluster information,	


‣ deep networks with autoencoders.

���7



Dimensionality reduction

Given high-dimensional data points                                    .	


1.Convert data points to a            affinity matrix    .          	


2. Find low-dimensional coordinates                                 , so 

that their similarity is as close as possible to    .

���8

YD⇥N = (y1, . . . ,yN )
N ⇥N A
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Classification of 
dimensionality reduction
• Linear methods	


‣ principal component 

analysis (PCA), 	


‣ classical multidimensional 

scaling (MDS).	


‣ etc.
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Affinity matrix

• For example, Gaussian affinities are given by:
wnm = exp(�1

2

k(yn � ym)/�k2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

• Property:	


- affinity matrix enforces locality 

of the data.

• Intuition: 	


‣ high weight to nearby points, 	


‣ low weight to far away points. 

wn·

Y

yn

���10

W 2 RN⇥N• Affinity matrix                     represents the similarities between 
points int he dataset. The higher the affinity value, the more 
similar are the points to each other. 



Nonlinear Embedding (NLE) methods

Many of well-known methods can be written in the form:

        is a repulsive term: 	


• often very nonlinear, 	


• minimal with points separated infinitely,	


• all interactions should be computed.

        is an attractive term: 	


• often quadratic, 	


• minimal with coincident points,	


• defined usually on the sparse affinity (not 

all interactions are computed).

Optimal embedding balances both forces.

E(X,�) = E+(X) + �E�(X) � � 0

E+(X)

E�(X)

�

� ☼
☼

�

� ☼
☼

���11



NLE: Examples

ESNE(X) =

NX

n,m=1

pnm kxn � xmk2 +
NX

n=1

log

NX

m 6=n

exp(�kxn � xmk2)

ELE(X) =
NX

n,m=1

wnm kxn � xmk2 s.t. translation and scale constraints

Es-SNE(X) =

NX

n,m=1

pnm kxn � xmk2 + log

NX

n,m=1

exp(�kxn � xmk2)

���12

EEE(X) =

NX

n,m=1

w+
nm kxn � xmk2 + �

NX

n,m=1

w�
nm exp(�kxn � xmk2)

Et-SNE(X) =

NX

n,m=1

pnm log(1 + kxn � xmk2) +
NX

n,m=1

(1 + kxn � xmk2)�1

• Laplacian Eigenmaps:

• Stochastic neighbor embedding:

• The Elastic Embedding:

• t-SNE:

• Symmetric stochastic neighbor embedding: (Cook et al, ‘07)

(Hinton and Roweis, ‘03)

(Belkin and Niyogi, ‘03)

(van der Maaten and Hinton '08)

(Carreira-Perpiñán, ‘10)
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NLE: Optimization

• Optimization:	


‣ compute the gradient	


!

‣ compute the direction. For 
example, gradient descent:	


!

‣ compute new iteration           
.        using a line search:                            	


!

‣ repeat till convergence.
• Other gradient-based optimization methods are applicable:      

L-BFGS, Conjugate Gradient, etc..
���13

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

XkGk = 4Xk(L
+ � �eL)
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Spectral direction

���14

Currently, the fastest optimization algorithm to train nonlinear 
embedding is spectral direction.

8 6 0 2 4 6 8

0

1

2

3

4

5

Bk = 4L⌦ Id⇥d

Bk = I

Bk = r2E(Xk)

1. Precompute the Cholesky 
factor of positive definite, 
constant Hessian approx. 	



!
2. For every iteration   :	


‣ find search direction using the 

solution to the linear system:	


!

‣ use line search to find a step 
size    for the next iteration 

(Vladymyrov and Carreira-Perpiñán, ’12)

k
B = 4L⌦ Id⇥d

⌘ Xk+1 = Xk + ⌘Pk

• However, spectral direction, as well as other gradient-based 
methods require gradient evaluation for every iteration.

• This method is much faster than gradient descent.

BkPk = �Gk



NLE: Gradient

���15

The gradient is given by 
where graph Laplacians are defined as:

eL = diag
⇣PN

n=1 ewnm

⌘
� fW

Weights         are constants and can be sparsified.	


Weights         depend on parameters     and should be 
recomputed for every point.

ewnm

wnm

X

;

For example, in elastic embedding algorithm:

S(xn) =
PN

m=1 e
�kxn�xmk2with Sx(x

n

) =
P

N

m=1 xm

e�kxn�xmk2;

L = diag
⇣PN

n=1 wnm

⌘
�W

G = 4X(L� �eL)

Computing             and           for every                      is            .

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)

S(xn)Sx(x
n

) n = 1, . . . , N O(N2)



Computational bottleneck of NLE

���16

• Solution: use approximate methods to compute these interactions!	


‣ tree-based methods;	


‣ fast multipole methods.

• The bottleneck of the algorithm consists in computing 
pairwise interaction between data points (N-body problem).

S(xn) =
NX

m=1

e�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e�kxn�xmk2
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• Build a tree around    

Tree-based methods

���17

• Complexity is usually  O(N logN)

• Query the nodes of the tree rather than individual points.       
Gains come from:
‣ pruning interaction between points 

that are too far away.
‣ approximating the interactions 

between points that are located at a 
similar distance.

• Problems:	


‣ do not scale well with dimensions of latent space,
‣ error bounds are usually 

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between      and others points:xn

X

xn
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• Complexity is usually                   .O(N logN)

• Query the nodes of the tree rather than individual points.       
Gains come from:
‣ pruning interaction between points 

that are too far away.
‣ approximating the interactions 

between points that are located at a 
similar distance.

• Problems:	


‣ do not scale well with dimensions of latent space,	


‣ error bounds are usually hard to derive.

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between      and others points:xn

X

xn



Barnes-Hut algorithm (Barnes and Hut '86)
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☺ Can be applicable to any kind of interaction (Euclidean 
distances, Gaussian distances, etc).	


☺ Single parameter to control the trade-off between speed and 
approximation error.	


☹ No clearly defined error bounds.

Were used in the context of nonlinear embedding algorithm in 
Maaten, ’13 and Yang et al., ’13.



Barnes-Hut: building a quad-tree

1. Make sure that the points are 
located in the box         .	


2. If there are more than two points 
in the cell, compute its centroid and 
split it.

Complexity:

���19

[0, 1]d

O(N logN)
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Barnes-Hut: querying a quad-tree

- distance from the query 
point to the centroid
- side length of the current cell,

Approximate the interaction with 
all points in the cell if

l

D
< ✓

���20

D
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where    is a user parameter, that controls the approximation:✓
• smaller    gives more accurate prediction, 	


• larger    gives better speedup.   

✓
✓
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Fast multipole methods
Properties:	


☺ Time complexity          .	


☺ Well defined error bounds.	


☹ Expansion for each new kernel needs to be derived 
separately.  The performance may vary.	


☹ Computational cost grows exponentially with number of 
dimensions.
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Extensions: 	


• Fast Gauss Transform: deals exclusively with Gaussian kernel.	


!

• Different expansions (Taylor, Hermite, interpolation, SVD, etc.)	


• Were first used in the context of NLE by de Freitas et al., ’06, 

but their description was limited to one experiment. 

O(N)

(Greengard and Strain, ’91; Yang et al, ’03; )
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Approximate the interactions of the form:

The idea is to do a series expansion of the kernel    , such that 
the sum decouples over      and      :

Q(xn) =
NX

m=1

qmK(k(xn � xm)/�k2)

K
xn xm

Fast multipole methods (Greengard and Rokhlin '87)

            we used multi-index notation ↵ � 0 ) ↵1, . . . ,↵d � 0

K(k(xn � xm)/�k2) =
X

↵�0

f↵ (xn) g↵ (xm)



Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	


2. Grid the box into smaller boxes (either 

uniformly or based on density),	


3. A lot of points in a cell     do a series 

expansion around the center of the box.	


4. Ignore interactions between distant boxes.	


5. Compute the interaction:	



• few points in the box     exactly,	


• a lot of points     use center of mass.

Algorithm:

(Greengard and Strain, ’91)
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)

)
)

Parameters of the approximation:
•    number of terms in the expansion, 
•      number of points in the box for the expansion to occur,
•    size of the grid,
•     number of boxes to which we compute the interaction.

p
M0

K
r
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Application of N-Body to NLE
•We can approximate the following interaction with N-Body 

methods
S(xn) =

NX

m=1

K(||xn � xm||2) Sx(x
n

) =
NX

m=1

x

m

K(||x
n

� x

m

||2)

•The objective function and the gradient of EE:

• Objective function and the gradient of other NLE methods can 
be defined analogously. 
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• Given          and            , each term is can be computed in          .S(xn) Sx(x
n

) O(N)

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)
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NLE: Optimization (revisited)

• Optimization:	


‣ compute the gradient	


!

‣ compute the direction   	


!

‣ compute new iteration           
.        using a line search:                            	


!

‣ repeat till convergence.
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• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)
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Xk

• Approximation the error with the model                        .	


•    is a model parameter and represents the accuracy of the 

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error                           .Xk+1 = Xk + ✏k
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exact Gk
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E

xx

E

x

E

hE(X+ ✏)� E(X)i = 1

2
�2 tr

�r2E(X)
�
+O(�4)

Negative curvature                            Positive curvature                           No curvature                            

Mean of the absolute error:

X X X

E(X)

E(X)
E(X)

We have qualitative predictions:	


1. Adding noise will be beneficial only where the mean curvature 

.         .         is negative	


2. When the mean curvature is positive, the lower the accuracy 

the worse the optimization;	


3.           will vary widely at the beginning of the optimization and 

become approximately constant and equal to                      .	

1
2�

2 tr
�
r2E(X)

��E(X)

1
n tr

�
r2E(X)

�

Model the effect of the approximate gradient
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Under this model, we can suggest to increase the accuracy 
parameter as we proceed with iterations.
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NLE: Optimization (revisited)

• for a sequence of non-decreasing parameters                        	


‣ compute the approximate gradient      using accuracy    .	


‣ compute the direction (e.g. with grad. descent                  ).  	


‣ compute new iteration          using fixed step	


!

• convergence is guaranteed.

���30

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Xk+1

Xk+1 = Xk + ⌘0Pk

p = p0, . . . , p1
Ĝk pl

Pk = �Ĝk

⌘0



Accuracy of the approximation 
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Compare different ways to change the accuracy of the 
approximation: 	


• fixed large,	


• fixed small,	


• changing from small to large,	


• changing from large to small.



Fast out-of-sample mapping
• Given a new point             , we solve the original problem 

over          and          , subject to keeping the embedding    
fixed:
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y 2 RD

(Xx) (Yy) X

E0(x,y,�) = E+(x,y) + �E�(x,y) � � 0

F (y) = argmin
x

E0(x,y)
f(x) = argminy E0(x,y)

• Project new high-d point   :	


• Reconstruct new low-d point   :
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Fast out-of-sample mapping

• If we are given      new test points we can use fast out-of-
sample extension to project them all in parallel:

M

• If computed exactly, this would take           .	


• Using FMM, we can reduce this cost to               .  

E0
(

ˆ

X, ˆY) = 2

MX

m=1

NX

n=1

⇣
w(ˆym,yn) kˆxm � xnk2 + � exp

�
� kˆxm � xnk2

�⌘

O(MN)

O(M +N)



Experiments
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• All experiments were performed using Elastic Embedding, 
however the method generalizes over all NLE algorithms.	



• We mostly used L-BFGS for the optimization method, but the 
results are general over all optimization methods.	



• For the accuracy schedule, we change the accuracy 
logarithmically for the first 100 iterations:	


‣ from           to             for Barnes-Hut (BH) algorithm.	


‣ from          to            for Fast Multipole Methods (FMM).	



• For FMM, we fixed additional parameters of the 
approximation:	



!
• We experimented with standard 60000 MNIST digit dataset 

and inifiniteMNIST, where digits were generated using an elastic 
transformation of the original ones.

r = 1/2 M0 = 5 K = 4, , .

✓ = 2 ✓ = 0.1
p = 1 p = 10



Experiments: computational cost
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Experiments:           handwritten digits60 000
All methods show similar decrease in the objective function per 
iteration.
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Experiments:           handwritten digits60 000

The decrease is very different if considered per minute of runtime.
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Experiments:               handwritten digits1 000 000
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Experiments:               handwritten digits1 000 000
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Experiments: out-of-sample

Project            new digits into low-dimensional space using             
.              for training.

60 000

Runtime:     minutes.11

1 000 000



Conclusions
• Nonlinear dimensionality reduction give good results, but usually 

expensive to train.

> 106
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100� 1000⇥ 5� 7⇥

• Future work:	


‣ Analyze the convergence guarantees using finite set of accuracy 

parameters.	


‣ Extend FMM to other kernels (e.g. t-SNE).

• We analyze the effect of the approximate gradient by proposing 
simple noise model that suggests use of the schedule for the 
accuracy of the approximations. Experiments confirm this benefit of 
this schedule.

• We propose a new way to scale-up NLE algorithms to datasets 
with           using fast multipole methods, that beats exact 
methods by                      and Barnes-Hut method by            .
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