
Linear-time Training of
Nonlinear Low-Dimensional Embeddings

using
N-Body Approximation Algorithms

Max Vladymyrov
EECS, School of Engineering	

University of California, Merced	

EECS, UC Merced	

March 14, 2014

In collaboration with Miguel Á. Carreira-Perpiñán

Linear-time Training of
Nonlinear Low-Dimensional Embeddings

using
N-Body Approximation Algorithms

Max Vladymyrov
EECS, School of Engineering	

University of California, Merced	

EECS, UC Merced	

March 14, 2014

In collaboration with Miguel Á. Carreira-Perpiñán

Winner of	

2014 Student Poster Competition

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality .

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality

this talk

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

F (y)

f(x)

Dimensionality reduction
YD⇥N = (y1, . . . ,yN)

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

���2

Xd⇥N = (x1, . . . ,xN)• projection points ,
Given a high-dimensional dataset find

x = F (y)• reduction mapping ,
y = f(x)• reconstruction mapping ,
p(x,y)• joint probability density ,

d• estimate intrinsic dimensionality

this talk

Consider a dataset with handwritten digits :1 000

���3

2

MNIST Handwritten digits

Consider a dataset with handwritten digits :1 000

���3

2

MNIST Handwritten digits

{

{ 28
28

Consider a dataset with handwritten digits :1 000

���3

2

MNIST Handwritten digits

{

{ 28
28

Consider a dataset with handwritten digits :

0

BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
...

100
104
89
90
...
0
0
0

1

CCCCCCCCCCCCCCCCCCCCCCA

2 R1⇥784

1 000

���3

2

MNIST Handwritten digits

{

{ 28
28

Consider a dataset with handwritten digits :

0

BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
...

100
104
89
90
...
0
0
0

1

CCCCCCCCCCCCCCCCCCCCCCA

2 R1⇥784

1 000

High-dimensional dataset: Y 2 R1 000⇥784

Number of points:
Number of dimensions:

N = 1000
D = 784

Reduction space: d = 2
���3

2

MNIST Handwritten digits

���4

MNIST Handwritten digits

visualized by ISOMAP
(Tenenbaum et al, 2000)

COIL-20 Rotational sequences

{ {

128

128

R1⇥16 384

images per object:72

objects:10

High-dimensional dataset:
Number of points:
Number of dimensions:

Y 2 R720⇥16 384

N = 720
D = 16 384

Reduction space: d = 2
���5

COIL-20 Rotational sequences

{ {

128

128

R1⇥16 384

images per object:72

objects:10

High-dimensional dataset:
Number of points:
Number of dimensions:

Y 2 R720⇥16 384

N = 720
D = 16 384

Reduction space: d = 2
���5

visualized by Elastic Embedding
(Carreira-Perpiñán, 2010)

���6

COIL-20
Rotational sequences

Other use of dimensionality reduction

• Preprocessing before other task e.g. classification or regression:	

‣ denoising,	

‣ decreasing the complexity.	

• Extracting latent structure of the data:	

‣ feature learning,	

‣ cluster information,	

‣ deep networks with autoencoders.

���7

Dimensionality reduction

Given high-dimensional data points .	

1.Convert data points to a affinity matrix . 	

2. Find low-dimensional coordinates , so

that their similarity is as close as possible to .

���8

YD⇥N = (y1, . . . ,yN)
N ⇥N A

20 40 60 80 100

20

40

60

80

100

Xd⇥N = (x1, . . . ,xN)

Y A X
High-dimensional

input Affinity
Low-dimensional

output

A

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

���9

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

���9

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

• Spectral methods	

‣ Laplacian Eigenmaps,	

‣ ISOMAP, 	

‣ Locally Linear

Embedding (LLE),	

‣ etc.

���9

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

• Spectral methods	

‣ Laplacian Eigenmaps,	

‣ ISOMAP, 	

‣ Locally Linear

Embedding (LLE),	

‣ etc.

���9

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

• Spectral methods	

‣ Laplacian Eigenmaps,	

‣ ISOMAP, 	

‣ Locally Linear

Embedding (LLE),	

‣ etc.

• Nonlinear embedding
methods	

‣ Stochastic Neighbor Embedding,	

‣ t-SNE, 	

‣ The Elastic Embedding (EE),	

‣ etc.

���9

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

• Spectral methods	

‣ Laplacian Eigenmaps,	

‣ ISOMAP, 	

‣ Locally Linear

Embedding (LLE),	

‣ etc.

• Nonlinear embedding
methods	

‣ Stochastic Neighbor Embedding,	

‣ t-SNE, 	

‣ The Elastic Embedding (EE),	

‣ etc.

���9

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

• Spectral methods	

‣ Laplacian Eigenmaps,	

‣ ISOMAP, 	

‣ Locally Linear

Embedding (LLE),	

‣ etc.

• Nonlinear embedding
methods	

‣ Stochastic Neighbor Embedding,	

‣ t-SNE, 	

‣ The Elastic Embedding (EE),	

‣ etc.

���9

Embedding quality

Classification of
dimensionality reduction
• Linear methods	

‣ principal component

analysis (PCA), 	

‣ classical multidimensional

scaling (MDS).	

‣ etc.

• Spectral methods	

‣ Laplacian Eigenmaps,	

‣ ISOMAP, 	

‣ Locally Linear

Embedding (LLE),	

‣ etc.

• Nonlinear embedding
methods	

‣ Stochastic Neighbor Embedding,	

‣ t-SNE, 	

‣ The Elastic Embedding (EE),	

‣ etc.

Runtime ���9

Embedding quality

Affinity matrix

• For example, Gaussian affinities are given by:
wnm = exp(�1

2

k(yn � ym)/�k2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

• Property:	

- affinity matrix enforces locality

of the data.

• Intuition: 	

‣ high weight to nearby points, 	

‣ low weight to far away points.

wn·

Y

yn

���10

W 2 RN⇥N• Affinity matrix represents the similarities between
points int he dataset. The higher the affinity value, the more
similar are the points to each other.

Nonlinear Embedding (NLE) methods

Many of well-known methods can be written in the form:

 is a repulsive term: 	

• often very nonlinear, 	

• minimal with points separated infinitely,	

• all interactions should be computed.

 is an attractive term: 	

• often quadratic, 	

• minimal with coincident points,	

• defined usually on the sparse affinity (not

all interactions are computed).

Optimal embedding balances both forces.

E(X,�) = E+(X) + �E�(X) � � 0

E+(X)

E�(X)

�

� ☼
☼

�

� ☼
☼

���11

NLE: Examples

ESNE(X) =

NX

n,m=1

pnm kxn � xmk2 +
NX

n=1

log

NX

m 6=n

exp(�kxn � xmk2)

ELE(X) =
NX

n,m=1

wnm kxn � xmk2 s.t. translation and scale constraints

Es-SNE(X) =

NX

n,m=1

pnm kxn � xmk2 + log

NX

n,m=1

exp(�kxn � xmk2)

���12

EEE(X) =

NX

n,m=1

w+
nm kxn � xmk2 + �

NX

n,m=1

w�
nm exp(�kxn � xmk2)

Et-SNE(X) =

NX

n,m=1

pnm log(1 + kxn � xmk2) +
NX

n,m=1

(1 + kxn � xmk2)�1

• Laplacian Eigenmaps:

• Stochastic neighbor embedding:

• The Elastic Embedding:

• t-SNE:

• Symmetric stochastic neighbor embedding: (Cook et al, ‘07)

(Hinton and Roweis, ‘03)

(Belkin and Niyogi, ‘03)

(van der Maaten and Hinton '08)

(Carreira-Perpiñán, ‘10)

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction. For
example, gradient descent:	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.
• Other gradient-based optimization methods are applicable:

L-BFGS, Conjugate Gradient, etc..
���13

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

XkGk = 4Xk(L
+ � �eL)

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction. For
example, gradient descent:	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.
• Other gradient-based optimization methods are applicable:

L-BFGS, Conjugate Gradient, etc..
���13

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

XkGk = 4Xk(L
+ � �eL)

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction. For
example, gradient descent:	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.
• Other gradient-based optimization methods are applicable:

L-BFGS, Conjugate Gradient, etc..
���13

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

XkGk = 4Xk(L
+ � �eL)

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction. For
example, gradient descent:	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.
• Other gradient-based optimization methods are applicable:

L-BFGS, Conjugate Gradient, etc..
���13

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk+1

XkGk = 4Xk(L
+ � �eL)

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction. For
example, gradient descent:	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.
• Other gradient-based optimization methods are applicable:

L-BFGS, Conjugate Gradient, etc..
���13

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk+1

XkGk = 4Xk(L
+ � �eL)

Spectral direction

���14

Currently, the fastest optimization algorithm to train nonlinear
embedding is spectral direction.

8 6 0 2 4 6 8

0

1

2

3

4

5

Bk = 4L⌦ Id⇥d

Bk = I

Bk = r2E(Xk)

1. Precompute the Cholesky
factor of positive definite,
constant Hessian approx. 	

!
2. For every iteration :	

‣ find search direction using the

solution to the linear system:	

!

‣ use line search to find a step
size for the next iteration

(Vladymyrov and Carreira-Perpiñán, ’12)

k
B = 4L⌦ Id⇥d

⌘ Xk+1 = Xk + ⌘Pk

• However, spectral direction, as well as other gradient-based
methods require gradient evaluation for every iteration.

• This method is much faster than gradient descent.

BkPk = �Gk

NLE: Gradient

���15

The gradient is given by
where graph Laplacians are defined as:

eL = diag
⇣PN

n=1 ewnm

⌘
� fW

Weights are constants and can be sparsified.	

Weights depend on parameters and should be
recomputed for every point.

ewnm

wnm

X

;

For example, in elastic embedding algorithm:

S(xn) =
PN

m=1 e
�kxn�xmk2with Sx(x

n

) =
P

N

m=1 xm

e�kxn�xmk2;

L = diag
⇣PN

n=1 wnm

⌘
�W

G = 4X(L� �eL)

Computing and for every is .

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)

S(xn)Sx(x
n

) n = 1, . . . , N O(N2)

Computational bottleneck of NLE

���16

• Solution: use approximate methods to compute these interactions!	

‣ tree-based methods;	

‣ fast multipole methods.

• The bottleneck of the algorithm consists in computing
pairwise interaction between data points (N-body problem).

S(xn) =
NX

m=1

e�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e�kxn�xmk2

Computational bottleneck of NLE

���16

• Solution: use approximate methods to compute these interactions!	

‣ tree-based methods;	

‣ fast multipole methods.

• The bottleneck of the algorithm consists in computing
pairwise interaction between data points (N-body problem).

S(xn) =
NX

m=1

e�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e�kxn�xmk2

• Build a tree around

Tree-based methods

���17

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:	

‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

���17

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:	

‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

���17

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:	

‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

���17

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:	

‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

���17

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:	

‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

���17

• Complexity is usually .O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:	

‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

���17

• Complexity is usually .O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:	

‣ do not scale well with dimensions of latent space,	

‣ error bounds are usually hard to derive.

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

Barnes-Hut algorithm (Barnes and Hut '86)

���18

☺ Can be applicable to any kind of interaction (Euclidean
distances, Gaussian distances, etc).	

☺ Single parameter to control the trade-off between speed and
approximation error.	

☹ No clearly defined error bounds.

Were used in the context of nonlinear embedding algorithm in
Maaten, ’13 and Yang et al., ’13.

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .	

2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

���19

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .	

2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

���19

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .	

2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

���19

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .	

2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

���19

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .	

2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

���19

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .	

2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

���19

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .	

2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

���19

[0, 1]d

O(N logN)

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓

{D
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓

{ l

{D
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

���20

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction, 	

• larger gives better speedup.

✓
✓

Behavior with respect to

���21

10−2 10−1 100 101
10−10

10−5

100

th t
10−2 10−1 100 101

10−1

101

103

105

✓

Re
lat

ive
 e

rr
or

Ru
nt

im
e

sp
ee

du
p

Change in error and speedup with respect to exact. 	

Bigger : faster computation, but larger error.✓

✓

Fast multipole methods
Properties:	

☺ Time complexity .	

☺ Well defined error bounds.	

☹ Expansion for each new kernel needs to be derived
separately. The performance may vary.	

☹ Computational cost grows exponentially with number of
dimensions.

���22

Extensions: 	

• Fast Gauss Transform: deals exclusively with Gaussian kernel.	

!

• Different expansions (Taylor, Hermite, interpolation, SVD, etc.)	

• Were first used in the context of NLE by de Freitas et al., ’06,

but their description was limited to one experiment.

O(N)

(Greengard and Strain, ’91; Yang et al, ’03;)

���23

Approximate the interactions of the form:

The idea is to do a series expansion of the kernel , such that
the sum decouples over and :

Q(xn) =
NX

m=1

qmK(k(xn � xm)/�k2)

K
xn xm

Fast multipole methods (Greengard and Rokhlin '87)

 we used multi-index notation ↵ � 0) ↵1, . . . ,↵d � 0

K(k(xn � xm)/�k2) =
X

↵�0

f↵ (xn) g↵ (xm)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

use to control the accuracy

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.	

2. Grid the box into smaller boxes (either

uniformly or based on density),	

3. A lot of points in a cell do a series

expansion around the center of the box.	

4. Ignore interactions between distant boxes.	

5. Compute the interaction:	

• few points in the box exactly,	

• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

���24

)

)
)

Parameters of the approximation:
• number of terms in the expansion,
• number of points in the box for the expansion to occur,
• size of the grid,
• number of boxes to which we compute the interaction.

p
M0

K
r

use to control the accuracy

fixed}

Application of N-Body to NLE
•We can approximate the following interaction with N-Body

methods
S(xn) =

NX

m=1

K(||xn � xm||2) Sx(x
n

) =
NX

m=1

x

m

K(||x
n

� x

m

||2)

•The objective function and the gradient of EE:

• Objective function and the gradient of other NLE methods can
be defined analogously.

���25

• Given and , each term is can be computed in .S(xn) Sx(x
n

) O(N)

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

exact Gk

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

approximate
pwith accuracy

exact Gk Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

approximate
pwith accuracy

exact Gk Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

approximate
pwith accuracy

exact Gk Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

approximate

use fixed step0

pwith accuracy

exact Gk Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

approximate

use fixed step0

Xk+1

pwith accuracy

exact Gk Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

NLE: Optimization (revisited)

• Optimization:	

‣ compute the gradient	

!

‣ compute the direction 	

!

‣ compute new iteration
. using a line search: 	

!

‣ repeat till convergence.

���26

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Pk = �Gk

Xk+1

Xk+1 = Xk + ⌘Pk

Xk
Gk = 4Xk(L

+ � L�)

approximate

use fixed step0

Xk+1

pwith accuracy

exact Gk Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

���27

Xk

• Approximation the error with the model .	

• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

8 6 0 2 4 6 8

0

1

2

3

4

5

���27

Xk

• Approximation the error with the model .	

• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

exact Gk

8 6 0 2 4 6 8

0

1

2

3

4

5

���27

Xk

• Approximation the error with the model .	

• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

exact Gk

Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

���27

Xk

• Approximation the error with the model .	

• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

exact Gk

Ĝkapprox.

�

���28

E

xx

E

x

E

hE(X+ ✏)� E(X)i = 1

2
�2 tr

�r2E(X)
�
+O(�4)

Negative curvature Positive curvature No curvature

Mean of the absolute error:

X X X

E(X)

E(X)
E(X)

We have qualitative predictions:	

1. Adding noise will be beneficial only where the mean curvature

. . is negative	

2. When the mean curvature is positive, the lower the accuracy

the worse the optimization;	

3. will vary widely at the beginning of the optimization and

become approximately constant and equal to .	

1
2�

2 tr
�
r2E(X)

��E(X)

1
n tr

�
r2E(X)

�

Model the effect of the approximate gradient

���29

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

E
+
(X

)
+

�
E

�
(X

)

Positive curvature
(harm the approximation)

Negative curvature
(benefit from the approximation)

X

Model the effect of the approximate gradient

Under this model, we can suggest to increase the accuracy
parameter as we proceed with iterations.

���29

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

E
+
(X

)
+

�
E

�
(X

)

Positive curvature
(harm the approximation)

Negative curvature
(benefit from the approximation)

X

Model the effect of the approximate gradient

Under this model, we can suggest to increase the accuracy
parameter as we proceed with iterations.

NLE: Optimization (revisited)

• for a sequence of non-decreasing parameters 	

‣ compute the approximate gradient using accuracy .	

‣ compute the direction (e.g. with grad. descent). 	

‣ compute new iteration using fixed step	

!

• convergence is guaranteed.

���30

• Minimize objective function:
E(X,�) = E+(X) + �E�(X) � � 0

Xk+1

Xk+1 = Xk + ⌘0Pk

p = p0, . . . , p1
Ĝk pl

Pk = �Ĝk

⌘0

Accuracy of the approximation

���31

Compare different ways to change the accuracy of the
approximation: 	

• fixed large,	

• fixed small,	

• changing from small to large,	

• changing from large to small.

Fast out-of-sample mapping
• Given a new point , we solve the original problem

over and , subject to keeping the embedding
fixed:

���32

y 2 RD

(Xx) (Yy) X

E0(x,y,�) = E+(x,y) + �E�(x,y) � � 0

F (y) = argmin
x

E0(x,y)
f(x) = argminy E0(x,y)

• Project new high-d point :	

• Reconstruct new low-d point :

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

x

y

F (y)

f(x)

���33

Fast out-of-sample mapping

• If we are given new test points we can use fast out-of-
sample extension to project them all in parallel:

M

• If computed exactly, this would take .	

• Using FMM, we can reduce this cost to .

E0
(

ˆ

X, ˆY) = 2

MX

m=1

NX

n=1

⇣
w(ˆym,yn) kˆxm � xnk2 + � exp

�
� kˆxm � xnk2

�⌘

O(MN)

O(M +N)

Experiments

���34

• All experiments were performed using Elastic Embedding,
however the method generalizes over all NLE algorithms.	

• We mostly used L-BFGS for the optimization method, but the
results are general over all optimization methods.	

• For the accuracy schedule, we change the accuracy
logarithmically for the first 100 iterations:	

‣ from to for Barnes-Hut (BH) algorithm.	

‣ from to for Fast Multipole Methods (FMM).	

• For FMM, we fixed additional parameters of the
approximation:	

!
• We experimented with standard 60000 MNIST digit dataset

and inifiniteMNIST, where digits were generated using an elastic
transformation of the original ones.

r = 1/2 M0 = 5 K = 4, , .

✓ = 2 ✓ = 0.1
p = 1 p = 10

Experiments: computational cost

���35
103 104 105 106

10−3

101

105

N

ru
nt

im
e

exact1111111
FMM 2 terms
FMM 3 terms
FMM 4 terms

BH 2
BH 1
BH 5e−1

10−6

10−4

10−2

er
ro
r

Er
ro

r w
rt

 e
xa

ct
Ru

nt
im

e

Exact
FMM,
FMM,
FMM,

BH,
BH,
BH,

p = 2
p = 3
p = 4

✓ = 2
✓ = 1
✓ = 1/2

N

���36

Experiments: handwritten digits60 000
All methods show similar decrease in the objective function per
iteration.

���36

Experiments: handwritten digits60 000
All methods show similar decrease in the objective function per
iteration.

���37

Experiments: handwritten digits60 000

The decrease is very different if considered per minute of runtime.

���37

Experiments: handwritten digits60 000

The decrease is very different if considered per minute of runtime.

100 101
102 103

106

107
O

F

iterations

GD; FMM

GD; BH

FP; FMM

FP; BH

LBFGS; FMM

LBFGS; BH

1 2 3 4 5 6 7 8 9 10 11
runtime

Experiments: handwritten digits

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n

���38

Runtime

FM
M

 a
fte

r 3
 h

ou
rs

Ba
rn

es
-H

ut
 a

fte
r 3

 h
ou

rs

1 000 000

❶ ❶

➋ ➋

❶ ➋

���39

Experiments: handwritten digits1 000 000

���39

Experiments: handwritten digits1 000 000

���40

Experiments: out-of-sample

Project new digits into low-dimensional space using
. for training.

60 000

Runtime: minutes.11

1 000 000

Conclusions
• Nonlinear dimensionality reduction give good results, but usually

expensive to train.

> 106

���41

100� 1000⇥ 5� 7⇥

• Future work:	

‣ Analyze the convergence guarantees using finite set of accuracy

parameters.	

‣ Extend FMM to other kernels (e.g. t-SNE).

• We analyze the effect of the approximate gradient by proposing
simple noise model that suggests use of the schedule for the
accuracy of the approximations. Experiments confirm this benefit of
this schedule.

• We propose a new way to scale-up NLE algorithms to datasets
with using fast multipole methods, that beats exact
methods by and Barnes-Hut method by .

Conclusions
• Nonlinear dimensionality reduction give good results, but usually

expensive to train.

> 106

���41Thank you! Questions?

100� 1000⇥ 5� 7⇥

• Future work:	

‣ Analyze the convergence guarantees using finite set of accuracy

parameters.	

‣ Extend FMM to other kernels (e.g. t-SNE).

• We analyze the effect of the approximate gradient by proposing
simple noise model that suggests use of the schedule for the
accuracy of the approximations. Experiments confirm this benefit of
this schedule.

• We propose a new way to scale-up NLE algorithms to datasets
with using fast multipole methods, that beats exact
methods by and Barnes-Hut method by .

