Distributed Optimization
of Deeply Nested Systems

I,

e

Miguel A. Carreira-Perpifian and Weiran Wang
Electrical Engineering and Computer Science

University of California, Merced

http://eecs.ucmerced.edu

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu

Nested (hierarchical) systems: examples

Common in computer vision, speech processing, machine learning. ..
% Object recognition pipeline:

pixels — SIFT/HoG — Spg;gegg;ng — pooling — classifier — object category

% Phone classification pipeline:
waveform — MFCC/PLP — classifier — phoneme label

% Preprocessing for regression/classification:
image pixels — PCA/LDA — classifier — output/label

% Deep net: x— {o(wl'x+a;)} — {o(w]{o(w;x+a;)})+bj} ==y
X Yy

p. 1

Nested systems

Mathematically, they construct a (deeply) nested, parametric mapping
from inputs to outputs:

f(X, W) = fK+1(. .. fg(fl(X; W1>, WQ) c .. ;WK—H)

< Each layer (processing stage) has its own trainable parameters
< Each layer performs some (nonlinear, nondifferentiable) processing
on its input, extracting ever more sophisticated features from it

(ex.: pixels — edges — parts — - - -)

% Nearly always ; difficult to train.
The composition of functions is nonconvex in general.

% The ideal performance is when the parameters at all layers are
jointly optimised towards the overall goal (e.g. classification error).
This work is about how to do this easily and efficiently.

p.2

Training nested systems: backpropagated gradient

< Apply the chain rule, layer by layer, to obtain a gradient wrt all the
parameters.

Ex.: 52 (8(F(-)) = &' (F(), 35 (8F () = &' (F() F'(-).
Then feed to nonlinear optimiser.
Gradient descent, CG, L-BFGS, Levenberg-Marquardt, Newton, etc.

% Disadvantages:
4+ requires differentiable layers
4+ the gradient is cumbersome to compute, code and debug
4 requires nonlinear optimisation

4 vanishing gradients =- ill-conditioning = slow progress even
with second-order methods

4+ difficult to parallelise.

p. 3

Training nested systems: layerwise, “filter”

% Fix each layer sequentially from the input to the output.
Fast and easy, but suboptimal.

% Sometimes used to initialise the parameters and refine the model
with backpropagation (“fine tuning”).

Examples:

% Pretraining approaches for deep nets, RBF networks, etc.
(Hinton & Salakhutdinov 2006, Bengio et al. 2007)

< Filter (vs wrapper) approach: consider a nested mapping g(F(x))
(e.g. F reduces dimension, g classifies):

1. First train F (the “filter”), e.g. with PCA on the input data {x., }.
2. Then, fit a classifier g with inputs {F(x,)} and labels {y,}.

F can be seen as a fixed “preprocessing” or “feature extraction” stage. But it may not be the best

possible preprocessing for classification.

Wrapper approach: optimise F and g jointly to minimise the
classification error. More difficult, less frequently done.

Training nested systems: model selection

Finally, we also have to select the best architecture:

<+ Number of units or basis functions in each layer of a deep net;
number of filterbanks in a speech front-end processing; etc.

< Requires a combinatorial search, training models for each
hyperparameter choice and picking the best

according to a model selection criterion, cross-validation, etc.

% In practice, this is approximated using expert know-how:
+ Train only a few models, pick the best from there.
4+ Fix the parameters of some layers irrespective of the rest of the
pipeline.

Very costly in runtime, in effort and expertise required, and leads to
suboptimal solutions.

p.5

The method of auxiliary coordinates (MAC)

R/
) X g

/
0’0

A general strategy to train all parameters of a nested system.
Not an algorithm but a meta-algorithm (like EM).

Enjoys the benefits of layerwise training (fast, easy steps that reuse

existing algorithms for shallow systems) but with optimality
guarantees.

Embarrassingly parallel iterations.

Basic idea:

1. Turn the nested problem into a constrained optimisation problem
by introducing new parameters to be optimised over (the
auxiliary coordinates).

2. Optimise the constrained problem with a penalty method.
3. Optimise the penalised objective function with alternating
optimisation.

Result: alternate “layerwise training” steps with “coordination”
steps.

p. 6

The nested objective function

Consider for simplicity:
< a single hidden layer: x — F(x) — g(F(x))
< aleast-squares regression for inputs {x,}*_, and outputs {y, }\;:

1’1’11I1 Enes’[ed Z HY’I’L)) H2

F, g have their own parameters (weights).
We want to find a local minimum of Epesteqd-

p.7

The MAC-constrained problem

Transform the problem into a constrained one in an augmented space:

min F(F, g, 7 Z v, —g(z,)
st.z,=F(x,) n=1,... N.

< For each data point, we turn the subexpression F(x,) into an
equality constraint associated with a new parameter z,, (the
auxiliary coordinates).

Thus, a constrained problem with N equality constraints and new parameters Z = (z1, ..., ZN).
< We optimise over (F,g) and Z jointly.
< Equivalent to the nested problem.

p.8

The MAC quadratic-penalty function

We solve the constrained problem with the quadratic-penalty method:
we minimise the following while driving the penalty parameter ;1 — oo:

min Eo(F, g, Z; Z\Iyn g(z.)|I° + 5 Zi — Pl

constramts as
quadratic penalties

We can also use the augmented Lagrangian method (ADMM) instead:

N
min B (F. 8,2 Aig) = 5 3 Iy = (an) | +ZAT — F(xn)) + & ann—F(xn)n

n=1

l\DI»—\

For simplicity, we focus on the quadratic-penalty method.

p.9

What have we achieved?

< Net effect: unfold the nested objective into shallow additive terms
connected by the auxiliary coordinates:

Enested Z HYn))H2 —
M 2
L (F g, Z ZHYn g)H2+§ZH _F(Xn)H
n=1

< All terms equally scaled, but uncoupled.

Vanishing gradients less problematic.
Derivatives required are simpler: no backpropagated gradients, sometimes no gradients at all.

< Optimising FEnesteq fOlloOws a convoluted trajectory in (F', g) space.

< Optimising Fg can take shortcuts by jumping across Z space.
This corresponds to letting the layers mismatch during the optimisation.

p. 10

Alternating optimisation of the MAC/QP objective

1] —

. 9 . 9

min 5 3"l ~ FOo)l* min s 3y — g
n=1 n=1

% Layerwise training: each layer is trained independently (not sequentially):
4+ FitF to {(Xn, Zn) ;7;[:1 (gradient needed: F’(+)).
4+ Fit g to {(Zn, yn) 7];[:1 (gradient needed: g’ (-)).

This looks like a filter approach with intermediate “features” {z, }2_,.

< Usually simple fit, even convex.

< Can be done by using existing algorithms for shallow models
linear, logistic regression, SVM, RBF network, k-means, decision tree, etc.

Does not require backpropagated gradients.

p. 11

\

Alternating optimisation of the MAC/QP objective (cont.

y

.1 v
min © Iy, — 8@ + 2 7~ Fx)[? n=1,...,N

 The auxiliary coordinates are trained independently for each point.
N small problems (of size |z|) instead of one large problem (of size N |z|).

< They “coordinate” the layers.
% The Z step has the form of a proximal operator.

ming f(z) + % ||z — ul|’

The solution has a geometric flavour (“projection”).
% Often closed-form (depending on the model).

p. 12

Alternating optimisation of the MAC/QP objective (cont.

MAC/QP is a “coordination-minimisation” (CM) algorithm:
% M step: minimise (train) layers
% C step: coordinate layers.

The coordination step is crucial: it ensures we converge to a minimum
of the nested function (which layerwise training by itself does not do).

p. 13

MAC in general

MAC applies very generally:
o K |ayerS: f(X, W) = fK_|_1(. .. fz(fl(X; Wl), Wg) .. ;WK_|_1).
% Various loss functions, full/sparse layer connectivity, constraints. . .

% The resulting optimisation algorithm depends on:
4+ the type of layers f;, used

linear, logistic regression, SVM, RBF network, decision tree...

4+ how/where we introduce the auxiliary coordinates
at no/some/all layers; before/after the nonlinearity; can redefine Z during the optimisation

4+ how we optimise each step
choice of method; inexact steps, warm start, caching factorisations, stochastic updates. ..

Convergence guarantee: under mild assumptions, MAC/QP defines a
continuous path (W*(u), Z*(1)) that converges to a local minimum of
the constrained problem and thus to a local minimum of the nested

problem.
In practice, we follow this path loosely.

p. 14

MAC in general: the design pattern

How to train your system using auxiliary coordinates:
1. Write your nested objective function Enestea(W).

2. ldentify subexpressions and turn them into auxiliary coordinates
with equality constraints.

3. Apply quadratic penalty or augmented Lagrangian method.
4. Do alternating optimisation:
< W step: reuse a single-layer training algorithm, typically
% 7 step: needs to be solved specially for your problem

proximal operator; for many important cases closed-form or simple to optimise.

Similar to deriving an EM algorithm: define your probability model, write the log-likelihood
objective function, identify hidden variables, write the complete-data log-likelihood, obtain E and M steps,
solve them.

p. 15

USPS handwritten digits, 256—-300—100—20—-100—-300—-256 autoencoder (K = 5 logistic layers), auxiliary
coordinates at each hidden layer, random initial weights. W and Z steps use Gauss-Newton.

SGD (e =20 epochs)

@ _ | CG (e =100 its.)

\ MAC (.

~——— Parallel MAC
© ‘i\ MAC (minibatches)

Parallel MAC (minibatches)

0.5 1 .
runtime (hours)

Another example: low-dimensional SVM

W. Wang and M. A. Carreira-Perpifian: “The role of dimensionality reduction in classification”, AAAI 2014.

“Wrapper” approach to learn a nonlinear classifier y = g(F(x)) where F
IS @ nonlinear mapping that reduces dimension and g a linear SVM.:

N
(] 1 2
AR(F —
mlg R(F) + ; Wl + C’ngzl .

F.g
st {y(WIF(x,) +0) > 1§, & >0} .

MAC/QP results in the following iteration:

% W step: train, in parallel and reusing existing algorithms:
4+ A nonlinear regression F on {(x,,,z,)}

n=1-"

4+ Alinear SVM classifier g on {(z,,y.)}"_,.

% 7 step: comes out in closed form; for each data pointn =1,..., N,
setz, = F(Xn) + VY W for a certain v, € R.

p. 17

Model selection “on the fly”

% Model selection criteria (AIC, BIC, MDL, etc.) separate over layers:
E(W) = Epested(W) + C(W) = nested-error + model-cost
C(W) total # parameters = |[W| + -+ + |Wg]|

% Traditionally, a grid search (with M values per layer) means testing
an exponential number M* of models.

< In MAC, the cost C(W) separates over layers in the W step, so
each layer can do model selection independently of the others,

testing a polynomial number M K of models.
This still provably minimises the overall objective E(W).

R/
0’0

Instead of a criterion, we can do cross-validation in each layer.

In practice, no need to do model selection at each W step.
The algorithm usually settles in a region of good architectures early during the optimisation, with

R/
0‘0

small and infrequent changes thereatfter.

MAC searches over the parameter space of the architecture and over
the space of architectures itself, in polynomial time, iteratively.

p. 18

COIL object images, 1024—M;—2—M>—1024 autoencoder (K = 3 hidden layers), AIC model selection over
(M1, Ms) in {150, ...,1368} (50 values = 502 possible models).

(1368, 1368)

\“ﬂ | | |
- ~—__(1050,150)

AN |
22 (700, 150)
5| (1368,150) |

oo
o

/

o
o

N
o

20

40 60
Iteration

Distributed optimisation with MAC

MAC/QP is embarrassingly parallel:
< W step:
4+ all layers separate (K + 1 independent subproblems)

4+ often, all units within each layer separate =
one independent subproblem for each unit’s input weight vector

4+ the model selection steps also separate (test each model independently)
% 7 step: all points separate (/N independent subproblems).
Enormous potential for parallel implementation:

< Unlike other machine learning or optimisation algorithms, where
subproblems are not independent (e.g. SGD).

< Suitable for large-scale data. [~ Stmoia doo

— RBF auto. (learn arch.)

Shared-memory multiprocessor model,
Matlab Parallel Processing Toolbox:

10

6 8
number of processors

Conclusion: the method of auxiliary coordinates (MAC)

% Jointly optimises a nested function over all its parameters.

% Restructures the nested problem into a sequence of iterations with
iIndependent subproblems; a coordination-minimisation algorithm:
4+ M step: minimise (train) layers
4+ C step: coordinate layers

% Advantages:

4 easy to develop, reuses existing algorithms for shallow models
4 convergent

4+ embarrassingly parallel

4+ can work with nondifferentiable or discrete layers

4 can do model selection “on the fly”.

< Widely applicable in machine learning, computer vision, speech,
NLP, etc.

Work partially supported by NSF CAREER award 11S—0754089 and a Google Faculty Research Award.

p. 21

	Nested (hierarchical)
systems: examples
	Nested systems
	Training nested systems: backpropagated gradient
	Training nested systems: layerwise, ``filter''
	Training nested systems: model selection
	The method of auxiliary coordinates (MAC)
	The nested objective function
	The MAC-constrained problem
	The MAC quadratic-penalty function
	What have we achieved?
	Alternating optimisation of the MAC/QP objective
	Alternating optimisation of the MAC/QP objective (cont.)
	Alternating optimisation of the MAC/QP objective (cont.)
	MAC in general
	MAC in general: the design pattern
	Experiment: deep sigmoidal autoencoder
	Another example: low-dimensional SVM
	Model selection ``on the fly''
	Experiment: RBF autoencoder (model selection)
	Distributed optimisation with MAC
	Conclusion: the method of auxiliary coordinates (MAC)

