
Very Fast, Approximate Counterfactual Explanations for Decision Forests

Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada
Dept. Computer Science & Engineering, University of California, Merced

{mcarreira-perpinan, shada}@ucmerced.edu

Abstract

We consider finding a counterfactual explanation for a clas-
sification or regression forest, such as a random forest. This
requires solving an optimization problem to find the closest
input instance to a given instance for which the forest outputs
a desired value. Finding an exact solution has a cost that is
exponential on the number of leaves in the forest. We pro-
pose a simple but very effective approach: we constrain the
optimization to only those input space regions defined by the
forest that are populated by actual data points. The problem
reduces to a form of nearest-neighbor search using a certain
distance on a certain dataset. This has two advantages: first,
the solution can be found very quickly, scaling to large forests
and high-dimensional data, and enabling interactive use. Sec-
ond, the solution found is more likely to be realistic in that it
is guided towards high-density areas of input space.

1 Introduction
A counterfactual explanation (CE) seeks the minimum
change to an input instance that will result in a desired out-
come under a given predictive model. For example, “reduc-
ing your weight by 10 kg will reduce your risk of stroke
by 80%” (regression) or “you will be eligible for the loan
if you increase your annual salary by $10k” (classification).
CEs extend the use of a machine learning model beyond just
prediction to querying about potential scenarios. This is es-
pecially relevant in applications where interpretability or ex-
plainability is important, such as in financial, legal, human
resources, government or health models. It can also make it
possible to audit a model to find errors or bias, and to have
an objective measure of the importance of the input features.
CEs are also formally equivalent to adversarial attacks, but
the latter have a different motivation: they seek to trick a
model into making the wrong prediction by making imper-
ceptible changes to the input.

CEs can be naturally formulated as an optimization prob-
lem over the input instance of the form “minimize the dis-
tance to a source instance subject to the model predict-
ing a desired outcome”. Here, we consider as model an
ensemble of decision trees (a decision forest). We con-
sider both axis-aligned trees, which are widely used in
Random Forest (Breiman 2001), AdaBoost (Freund and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Schapire 1997) and Gradient Boosting (Friedman 2001),
but also oblique trees, which achieve state-of-the-art accu-
racy using fewer and shallower trees (Zharmagambetov and
Carreira-Perpiñán 2020; Gabidolla and Carreira-Perpiñán
2022; Carreira-Perpiñán, Gabidolla, and Zharmagambetov
2023). The optimization problem is difficult because forests
define a piecewise constant predictive function, so gradients
are not applicable. The number of constant-value regions
is exponential on the size of the forest (number of leaves
and number of trees), so exhaustive search approaches (even
making use of clever pruning and engineering heuristics)
will not be able to scale to real-world forests, for which the
number of leaves per tree and the number of trees each run
into hundreds or thousands.

We propose a simple but effective approach: to limit the
search to the set of regions containing actual (training) data
points. This makes the search extremely fast, producing a
good, feasible CE estimate in less than a second (for axis-
aligned forests) or a few seconds (for oblique forests) even
for the largest problems we experimented with. A secondary
advantage is that it tends to produce realistic CEs, since the
live regions can be seen as a nonparametric density estimate
built in the forest. In section 3 we study the geometry of the
forest predictive function and the number of nonempty and
live regions. In sections 4–5 we give our algorithm (LIRE)
and evaluate it in section 6.

2 Related Work
Much of the work about counterfactual explanations, par-
ticularly in the guise of adversarial attacks, has focused on
deep neural nets (Szegedy et al. 2014; Goodfellow, Shlens,
and Szegedy 2015). The optimization here is relatively easy
because gradients of the model are available (at least ap-
proximately, with ReLU activations). That said, with a heav-
ily nonlinear function such as a neural net, the optimization
problem may have multiple local minima, some of them not
even feasible (i.e., failing to produce the desired prediction).
This makes finding a good solution difficult. Some work is
agnostic to the model (Karimi et al. 2020; Guidotti et al.
2019; White and d’Avila Garcez 2020), requiring only func-
tion evaluations (and possibly constructing a mimic of the
model), but this restricts its performance severely in terms
of computational efficiency and quality or feasibility of the
result.

For decision trees, whether axis-aligned or oblique, the
problem can be solved exactly and efficiently (Carreira-
Perpiñán and Hada 2021a,b; Hada and Carreira-Perpiñán
2021) by finding an optimal CE within each leaf’s region
and picking the closest one. This scales nicely because an
individual tree, particularly an oblique tree, will rarely have
more than several hundred leaves. For a decision forest, the
problem is NP-hard. This was shown for a special case (a
binary classification axis-aligned tree with discrete features)
by reduction from a maximum coverage problem (Yang et al.
2006), and for a more general case by reduction from a
DNF-MAXSAT problem (Cui et al. 2015).

Some works use heuristics to solve the CE for forests. Lu-
cic et al. (2022) use a gradient-based algorithm that approx-
imates the splits of the decision trees with sigmoid func-
tions. Tolomei et al. (2017) propose an approximate algo-
rithm based on propagating the source instance down each
tree towards a leaf. As seen in our experiments, these ap-
proaches are slow for large forests and often fail to find a
feasible solution as the number of features or trees grows.

Several approaches (Cui et al. 2015; Kanamori et al. 2007;
Parmentier and Vidal 2021) are based on encoding, more
or less efficiently, the CE problem as a mixed-integer pro-
gram and then solving this using an existing solver (typically
based on branch-and-bound). This capitalizes on the sig-
nificant advances that highly-optimized commercial solvers
have incorporated in the last decades (which, unfortunately,
are not yet available to free or open-source solvers). This
is guaranteed to find the global optimum but only if the
solver terminates its essentially exhaustive search. Even with
highly efficient solvers, the optimistic claims in some of
these papers about scalability to large datasets and forests
do not hold up, as seen in our experiments.

Finally, several approaches (not necessarily for forests)
seek to generate CEs that are more plausible or realistic
(Russell 2019; Ustun, Spangher, and Liu 2019; Karimi et al.
2020; Kanamori et al. 2007; Mothilal, Sharma, and Tan
2020; Van Looveren and Klaise 2021; Parmentier and Vidal
2021). They do this by adding distances to a set of training
instances as a penalty to the cost function to encourage the
solution to be close to the training data.

3 Counterfactual Explanation Problem:
Definition, Geometry and Complexity

We define the counterfactual explanation (CE) problem as
the following optimization:

min
x∈RD

d(x,x) s.t. F (x) ∈ S. (1)

Here, x ∈ RD is the source instance (whose prediction un-
der F we wish to change), x ∈ RD is the solution instance,
and d(·, ·) is a distance in input (feature) space, which mea-
sures the cost of changing each feature. We will focus pri-
marily on the `22 or `1 distances; weighted distances can be
handled by appropriately rescaling the features. F is the
predictive function of the model (a decision forest in our
case), which maps an input instance x to either a value in
{1, . . . ,K} for multiclass classification, or to a real value
for regression (we can also include classification here if the

ENUMERATING ALL NONEMPTY REGIONS

input forest F with T trees
I1 ← all-ones vector of dimension L1

for t = 2, . . . , T
It ← all-zeros sparse array of L1 × · · · × Lt

for each (l1, . . . , lt−1) with It−1(l1, . . . , lt−1) = 1
for lt = 1, . . . , Lt

if region(l1, . . . , lt−1) ∩ region(lt) 6= ∅ then
It(l1, . . . , lt−1, lt)← 1

remove It−1 from memory
return IT

ENUMERATING ALL LIVE REGIONS

input forest F with T trees, dataset XD×N

I, Y ← all-zeros sparse array of L1 × · · · × LT

for n = 1, . . . , N
for t = 1, . . . , T
lt ← leaf reached by xn in tree t

if I(l1, . . . , lT) = 0 then
I(l1, . . . , lT)← 1
Y (l1, . . . , lT)← F (l1, . . . , lT)

return I and Y , both sorted by Y value

Figure 1: Pseudocode for finding all nonempty regions (top)
and all live regions (bottom), valid for both axis-aligned
and oblique trees. We omit the construction of the arrays
A, B and R (needed in fig. 4). Top: region(l1, . . . , lt) ≡
∩ti=1region(li) and region(li) is the input space region of
leaf li in tree i (defined by the intersection of the decision
node hyperplanes along the path from the root to leaf li).
F (l1, . . . , lT) means the forest output for region(l1, . . . , lt).

forest output is a class probability). Finally, S is a set of tar-
get predictions, i.e., we want x’s prediction to be a value in
S. For example, for classification S can be a specific class
(or a subset of classes) in {1, . . . ,K}; for regression, S can
be an interval (e.g. F (x) ≥ 7) or a set of intervals. We may
also have constraints on x.

A decision forest is an ensemble of decision trees. We
consider two types of trees: axis-aligned, where each de-
cision node i has the form “xd(i) ≥ θi” for some feature
d(i) ∈ {1, . . . , D} and bias θi ∈ R; and oblique trees,
where each decision node has the form “wT

i x ≥ wi0” for
some weight vector wi ∈ RD and bias wi0 ∈ R. In both
cases, each leaf of a tree outputs a constant value (class label
in {1, . . . ,K} or value in R). A forest of T trees computes
its prediction F (x) by finding the leaf lt that x reaches in
each tree t ∈ {1, . . . , T} and applying a function to the leaf
outputs (usually the majority vote for discrete labels or the
average for real values). The forest is trained on a dataset
using an algorithm to learn individual trees (such as CART,
C4.5 or any of its variations) and an ensemble mechanism
(bagging and random feature subsets in Random Forests,
reweighted training set in AdaBoost, residual error fitting in
Gradient Boosting, etc.) (Hastie, Tibshirani, and Friedman
2009). Although the vast majority of work on forests uses
axis-aligned trees, here we also consider forests of oblique
trees. These can be learned with any ensemble mecha-
nism using as base learner the Tree Alternating Optimiza-
tion (TAO) algorithm (Carreira-Perpiñán and Tavallali 2018;

2 4 6 8 10 12 14

10
2

10
3

10
4

10
5

10
6

trees

#
re
g
io
n
s

ound

5 10 15
10

0

10
20

10
40

10
60

trees

U
p
p
er

b
o
u
n
d

Breast cancer
Spambase
Letter
MNIST
Adult

2 4 6 8 10 12 14

10
2

10
3

10
4

10
5

trees

#
re
g
io
n
s

5 10 15
10

0

10
10

10
20

10
30

10
40

trees

U
p
p
er

b
o
u
n
d

Breast cancer
Spambase
Letter
MNIST

Figure 2: Growth of the number of regions of a forest as a function of the number of trees T , for different datasets, for axis-
aligned trees (left 2 panels) and oblique trees (right 2 panels). Within each pair of panels, on the left panel we plot the number of
nonempty regions (solid lines) and live regions (dashed lines); on the right panel, the upper bounds for the number of nonempty
regions. All regions are capped to a maximum of 5 · 106 (axis-aligned) and 106 (oblique). The axis-aligned forests use fully-
grown trees with an average depth of 8.9, 33.5, 27.6, 35.1 and 48.9, for Breast cancer, Spambase, Letter, MNIST and Adult,
respectively. The oblique forests have a fixed depth of 8.

x

x∗

x′

Figure 3: Illustration of the LIRE idea. We show the regions
defined by a simulated forest of T = 3 trees of depth ∆ = 2,
colored accordingly to the class label they predict. The live
regions are those containing at least one data point. For the
source instance x, the optimal counterfactual explanation is
x∗ (searching over all regions) and the approximate one with
LIRE is x′ (searching only over the live regions).

Carreira-Perpiñán 2022; Zharmagambetov et al. 2021), and
have been recently shown to outperform axis-aligned forests
in accuracy while resulting in forests having fewer and shal-
lower trees (Carreira-Perpiñán and Zharmagambetov 2020;
Zharmagambetov and Carreira-Perpiñán 2020; Gabidolla
and Carreira-Perpiñán 2022; Gabidolla, Zharmagambetov,
and Carreira-Perpiñán 2022; Carreira-Perpiñán, Gabidolla,
and Zharmagambetov 2023). This is important here because,
as shown later, oblique forests need to search far fewer re-
gions. That said, the details of how a forest was constructed
are irrelevant here. All we need is to be able to apply the for-
est to an input to compute two things: which leaf it reaches
in each tree, and the forest output.

Geometry of the forest predictive function F A single
tree with L leaves partitions RD into L regions, since an
input x reaches exactly one leaf, and each region outputs
a constant value. For an axis-aligned tree, each region is a
box and can be put in the form a ≤ x ≤ b elementwise,
where a,b ∈ RD contain the lower and upper bounds (in-
cluding ±∞), respectively; this can be obtained from the
(feature,bias) pairs in the decision nodes in the path from the
root to the leaf. For an oblique tree, each region is a convex

SEARCH FOR CLOSEST LIVE REGION
(AXIS-ALIGNED TREES)

input AD×M , BD×M , x ∈ RD

δ ←∞
for n = 1, . . . ,M
α← dbox(x,

(
an
bn

)
)

if α < δ then
i← n
δ ← α

x∗ ← arg minx d(x,x) s.t. ai ≤ x ≤ bi

= median(ai,bi,x)
return i, x∗, d(x∗,x)

SEARCH FOR CLOSEST LIVE REGION
(OBLIQUE TREES)

input forest of T trees, RT×M

δ ←∞
for n = 1, . . . ,M
α← minx d(x,x) s.t. constraints for R(·, n)
if α < δ then
i← n
δ ← α

x∗ ← arg minx d(x,x) s.t. constraints for R(·, i)
return i, x∗, d(x∗,x)

Figure 4: Pseudocode for the search for the closest live
region to a source instance x for axis-aligned (top) and
oblique trees (bottom). We assume there are M target
regions which have been preselected into the lower/up-
per bound arrays A and B (for axis-aligned trees) or
the array R (for oblique trees). R(t, n) contains the in-
dex of the leaf in tree t that participates in region n and
R(·, n) stands for {R(1, n), . . . , R(T, n)}. dbox(x,

(
ai

bi

)
) =

d(x,median(ai,bi,x)) represents the distance-to-a-box.

polytope bounded by the hyperplanes at the decision nodes
in the root-leaf path.

A forest with T trees (where tree t has Lt leaves) parti-
tions RD into at most L1L2 · · ·LT regions (LT if each tree
has L leaves), since an input x reaches exactly one leaf in
each tree. We can encode each region as a tuple (l1, . . . , lT)
indicating the leaf reached in each tree. Hence, each region is
the intersection of exactly T leaf regions, and it is a box for
axis-aligned trees and a convex polytope for oblique trees.

Breast cancer Spambase Letter Adult

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

trees

all regions
LIRE
dataset pointsA

v
g
.
d
is
ta
n
ce

2 4 6 8 10
0

0.05

0.1

0.15

0.2

trees

all regions
LIRE
dataset points

A
v
g
.
d
is
ta
n
ce

2 4 6 8 10
0

0.1

0.2

0.3

0.4

trees

all regions
LIRE
dataset pointsA

v
g
.
d
is
ta
n
ce

2 4 6 8 10
0

1

2

3

4

5

6

trees

all regions
LIRE
dataset points

A
v
g
.
d
is
ta
n
ce

2 4 6 8 10

10
-2

10
0

10
2

trees

all regions
LIRE
dataset points

A
v
g
.
ru
n
ti
m
e
(i
n
se
c)

2 4 6 8 10

10
-2

10
0

trees

all regions
LIRE
dataset pointsA

v
g
.
ru
n
ti
m
e
(i
n
se
c)

2 4 6 8 10

10
-2

10
0

trees

all regions
LIRE
dataset points

A
v
g
.
ru
n
ti
m
e
(i
n
se
c)

2 4 6 8 10
10

-2

10
0

trees

all regions
LIRE
dataset points

A
v
g
.
ru
n
ti
m
e
(i
n
se
c)

Breast cancer Spambase Letter MNIST

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

trees

all regions
LIRE
dataset points

A
v
g
.
d
is
ta
n
ce

5 10 15
0

0.1

0.2

0.3

trees

all regions
LIRE
dataset points

A
v
g
.
d
is
ta
n
ce

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

trees

all regions
LIRE
dataset points

A
v
g
.
d
is
ta
n
ce

2 4 6 8 10 12 14
0

2

4

6

trees

all regions
LIRE
dataset points

A
v
g
.
d
is
ta
n
ce

5 10 15

10
-2

10
0

trees

all regions
LIRE
dataset points

A
v
g
.
ru
n
ti
m
e
(i
n
se
c)

5 10 15

10
-2

10
0

trees

all regions
LIRE
dataset points

A
v
g
.
ru
n
ti
m
e
(i
n
se
c)

5 10 15

10
-2

10
0

trees

all regions
LIRE
dataset points

A
v
g
.
ru
n
ti
m
e
(i
n
se
c)

5 10 15

10
-2

10
0

trees

all regions
LIRE
dataset points

A
v
g
.
ru
n
ti
m
e
(i
n
se
c)

Figure 5: Performance of three types of search: on all nonempty regions, on the live regions (LIRE) and on the dataset points,
as a function of the number of trees T , for different datasets, for axis-aligned trees (top 2 rows) and oblique trees (bottom 2
rows). We show the `2 distance of the CE found (‖x∗ − x‖2) and the runtime (seconds) to solve the CE problem. The curves
are the average for 5 source instances.

In each region, the forest output is constant, so the forest
predictive function F is piecewise constant. Although many
tuples (l1, . . . , lT) result in empty intersections, the number
of (nonempty) regions is still exponential in general.

Number of regions in F in practice The fact that F is
piecewise constant means that problem (1) can be solved ex-
actly by enumerating all regions that satisfy the constraint
F (x) ∈ S, finding the CE in each region1, and return-
ing the one with lowest distance to x. This was the ap-
proach in (Carreira-Perpiñán and Hada 2021a; Hada and
Carreira-Perpiñán 2021) for single tree models, where it

1This requires minimizing d(x,x) over the region. As shown
in (Carreira-Perpiñán and Hada 2021a), for axis-aligned trees, this
is a box, and the exact solution is given, separately along each di-
mension, by the median of 3 numbers: the lower and upper bound
of the box, and xd. For oblique trees, the region is a polytope, and
the exact solution results from solving a quadratic program (QP)
for the `2 distance and a linear program (LP) for the `1 distance.

works very well because the number of leaves is always
relatively small. But, how many nonempty regions can we
expect with a forest, and how far is that from the upper
bound LT ? It is difficult to answer this in general for prac-
tical forests, which are the result of a complex optimization
algorithm, so we estimate this empirically. We can enumer-
ate all nonempty regions with the constructive algorithm of
fig. 1 (top). This proceeds sequentially to construct a sparse
t-way tensor It, where It(l1, . . . , lt) = 1 if tuple (l1, . . . , lt)
defines a nonempty intersection and 0 otherwise. It is con-
structed by intersecting every nonempty region in It−1 with
every leaf in tree t. Its correctness relies on the fact that
if It−1(l1, . . . , lt−1) = 0 then It(l1, . . . , lt−1, lt) = 0 for
any leaf lt. The final tensor IT has L1 · · ·LT entries, but
only those for which IT = 1 are nonempty. The num-
ber of regions in It grows monotonically with t because,
if It−1(l1, . . . , lt−1) = 1 then It(l1, . . . , lt) = 1 for at least
one leaf lt in tree t (since the leaves of each tree form a par-
tition of the input space).

Fig. 2 shows the results for Random Forests (Breiman
2001) on several small datasets, for which it is computa-
tionally feasible to count the regions. The actual number of
regions depends in a complex way on the dataset (size and
dimensionality) and type of forest. For axis-aligned forests,
the number of nonempty regions, while far smaller than the
upper bound, does grow exponentially quickly and exceeds
a million for just a handful of trees. For oblique forests,
the growth is significantly slower but still exponential. This
shows than an exhaustive search, even with clever speedups,
will be intractable unless the forest is impractically small.

4 An Approximation: Search Only over the
“Live” Regions

Instead of considering all regions, we restrict the search to
only those regions containing at least one actual data point
(from the training, validation and test datasets used to train
the forest). We call these live regions, and call the procedure
LIRE (for LIve REgion search). LIRE results in an approx-
imate but fast search and, intuitively, retrieves realistic CEs,
as described next. Fig. 3 illustrates the idea. Let the dataset
have N points and the number of live regions be M ≤ N .

Faster computation The number of regions reduces from
exponential to at most N , so the search is far faster and
also has a very predictable runtime (unlike, for example, ap-
proaches based on mixed-integer programming, which have
a wildly variable runtime). The number of live regions M is
at most N because multiple points may belong to the same
region (this is particularly so with oblique forests). A second
reduction in the number of regions to search is due to the
constraint F (x) ∈ S (for example, we may need to search
only on regions of one target class).

Fig. 2 shows the number of live regions. The growth be-
havior is very different from that of the nonempty regions,
because it is upper bounded by N . For axis-aligned forests,
the number of live regions reaches N with just a handful
of trees, so we can expect about N regions with any practi-
cal forest (with nearly every region containing just one in-
stance). For oblique forests, it takes well over 10 trees to
approach N regions, so practical oblique forests (which do
not require as many trees as axis-aligned forests) may have
quite less than N regions, particularly with large datasets.

As expected, the resulting runtime of LIRE is very small
(see experiments). For axis-aligned trees it takes less than
1 second in even our largest experiments; in this case,
the search reduces to a special type of nearest-neighbor
search, efficiently implementable using arrays and vector-
ization (see later). For oblique trees, each region requires
solving a small QP or LP (having T∆ constraints on aver-
age, where ∆ is the average leaf depth). Although this is
more costly, the number of regions in an oblique forest is
far smaller. In our experiments this takes at most a couple of
minutes.

Approximate solution The CE found by searching only
on the live regions is suboptimal: it has a larger distance than
the exact CE. We estimate this in our experiments by com-
paring with the exact CE (for small forests) and with other

existing algorithms for CEs.
It is instructive to consider also an even simpler approx-

imation to CEs: to ignore entirely the forest regions, and
search directly in a dataset of instances (say, the training set),
but labeled per the forest (not the ground truth). While this
is very fast, it is never better than LIRE, because the live
regions contain the data instances. In fact, as shown in our
experiments, this approach produces CEs with quite a larger
distance than LIRE.

Realistic solution A difficult problem with counterfactual
explanations with any type of model (not just forests) is that
it is difficult to constrain the search space in problem (1)
to find realistic instances. Although the input space is de-
fined to be RD, most real-world data live in a manifold or
subset of it. Some domain knowledge can be incorporated
through simple constraints (e.g. a grayscale pixel should be
in [0,1]), but this is insufficient to capture the subset of real-
istic instances. Intuitively, this requires estimating the den-
sity distribution of the data, a very hard problem in high di-
mensions, and then constraining problem (1) to that. We can
see LIRE in this light as imposing a constraint based on a
nonparametric, adaptive kernel density estimate: each live
region (a box or polytope) sits on one point and has con-
stant density; all other regions have zero density. The ker-
nel is adaptive, rather than having a given form and band-
width. This density estimate comes for free with the forest
and blends conveniently into the optimization. This makes it
more likely that a CE found by searching on the live regions
will be more realistic than searching anywhere in the space.

In summary, LIRE can be seen either as an approximate
solution to searching CEs in the entire space, or as an exact
solution of a CE subject to lying in high density regions,
using a nonparametric density estimate. Either way, LIRE is
extremely fast and scales to forests with practical sizes.

5 Efficient Implementation of the Live
Region Search

Constructing the set of live regions (offline) Obviously,
we do not need to build the sparse tensor IT and test every
nonempty region. All we have to do is feed each input in-
stance to the forest and determine which leaf it reaches in
each tree. The resulting region is live. See the pseudocode
in fig. 1 (bottom). This is done offline and has a complexity
of O(NT∆) where ∆ is the average depth of a tree. The
result is a list of M ≤ N regions, each encoded by a leaf
tuple (l1, . . . , lT). For axis-aligned trees, each forest region
is a box and can be compactly represented by two vectors
an,bn ∈ RD with an ≤ bn elementwise, containing the
lower and upper bounds along each dimension (or ±∞ if
unbounded). For oblique trees, each region is defined by the
intersection of all the constraints (hyperplanes) along one
root-leaf path in each tree; computationally, it is better not
to construct this list explicitly, instead reconstructing it on
the fly during the live region search.

Sorting or indexing the set of live regions (offline) Of
all M live regions, we need only search in those that sat-
isfy the constraint F (x) ∈ S, which are usually far less

Dataset LIRE dataset Feature Tweak OCEAN
(N,D,K) regions time (s) `2 time (s) `2 time (s) `2 feasible time (s) `2
(T,∆, L) `1 `1 `1 `1

breast cancer
(559,9,2)

(100,9.11,51.94)
337 2×10−4 1.00±0.95 1×10−4 1.17±1.08 8.6±1.4 1.25±0.82 100% 2.1±1.0 0.48±0.32
337 2×10−4 1.00±0.51 1×10−4 1.25±0.56 8.4±1.6 1.04±0.16 100% 4.6±2.1 0.45±0.15

climate
(432,18,2)

(100,8.73,48.74)
432 6×10−4 1.00±0.68 2×10−4 1.23±0.54 6.6±1.1 1.04±0.98 100% 3.3±2.9 0.47±0.45
432 6×10−4 1.00±0.65 2×10−4 2.67±0.29 7.2±1.8 1.14±0.95 100% 4.1±3.7 0.38±0.28

spambase
(3.6k,57,2)

(100,31.75,596.38)
3211 6×10−3 1.00±0.90 2×10−4 1.09±0.90 89.6±13.2 0.54±0.36 100% 75.5±82.7 0.09±0.04
3211 6×10−3 1.00±0.63 2×10−4 1.15±0.65 91.2±14.6 0.37±0.29 100% timeout

yeast
(1162,8,10)

(100,23.59, 734.16)
1162 3×10−4 1.00±0.78 2×10−4 1.27±1.15 15.9±8.5 1.12±1.03 66.7% timeout
1162 3×10−4 1.00±0.76 2×10−4 1.33±0.96 14.8±8.1 1.15±0.57 66.7% timeout

letter
(16k,16,26)

(100,27.91,4201.04)
14532 9×10−4 1.00±0.26 6×10−5 1.32±0.97 58.2±18.5 1.09±0.82 100% timeout
14532 9×10−4 1.00±0.61 6×10−5 1.96±0.68 61.1±18.9 1.42±0.37 100% timeout

MNIST
(55k,784,10)

(100,34.11, 9369.3)
55000 2×10−1 1.00±0.73 4×10−2 1.41±0.89 147.8±48.5 – 0% timeout
55000 2×10−1 1.00±0.44 4×10−2 1.88±0.58 151.8±51.4 – 0% timeout

MiniBooNE
(104051,50,2)

(100,34.53, 9615.48)
103692 2×10−1 1.00±0.80 1×10−2 1.17±0.87 timeout timeout
103692 2×10−1 1.00±0.32 1×10−2 1.42±0.38 timeout timeout

Swarm
(18647,2400,2)

(100,31.6, 1463.46)
8607 8×10−1 1.00±0.66 4×10−1 11.21±4.44 timeout timeout
8607 8×10−1 1.00±0.41 4×10−1 27.00±6.31 timeout timeout

Swarm
(18647,2400,2)

(1000,31.3, 1468.42)
12901 1.3 1.00±0.70 4×10−1 5.31±2.10 timeout timeout
12901 1.3 1.00±0.53 4×10−1 18.59±4.34 timeout timeout

Table 1: Comparison of different CE algorithms: LIRE, search on dataset points, Feature Tweak (Tolomei et al. 2017) and
OCEAN (Parmentier and Vidal 2021), for different datasets and Random Forests, for axis-aligned trees, and optimizing the `2
(above) and `1 (below) distance. We show the resulting distance ‖x∗ − x‖2 or ‖x∗ − x‖1 and the runtime in seconds (average
± stdev over 10 source instances). All distances are normalized so that LIRE has unit distance. For LIRE we give the number
of live regions and for Feature Tweak the percentage of times the CE found is feasible i.e., it is predicted to be the desired class
(all other algorithms are always feasible). For each dataset we give its size, dimensionality and number of classes (N,D,K);
for each forest we give its number of trees and average tree depth and number of leaves (T,∆, L). “timeout” means runtime
over 500 s. The best (smallest) distance is in boldface.

Dataset (N,D,K) (T,∆, L) LIRE dataset
regions time (s) `2 time (s) `2

breast cancer (559,9,2) (30,2.3,5.8) 60 0.07 1.00±0.52 0.001 1.23±0.95
spambase (3.6k,57,2) (30,2.6,7.8) 214 0.36 1.00±0.71 0.011 2.57±2.42

letter (16k,16,26) (30, 8.0,289.2) 13238 2.63 1.00±0.70 0.004 1.21±0.83
MNIST (55k,784,10) (30, 8.0,148.6) 50711 151.97 1.00±0.83 0.040 3.03±1.81

Table 2: Like table 1 but using a Random Forest of oblique trees (trained with TAO (Carreira-Perpiñán and Tavallali 2018;
Carreira-Perpiñán 2022)).

than M ; this greatly accelerates the search. For example, in
K-class classification, if our target is a specific class, we
need only search M

K regions (assuming uniform class pop-
ulations). Determining the range of target regions to search
can be done by a binary search in O(logM) time if we pre-
sort the M regions by their value of F ; this is useful in re-
gression. In K-class classification, we can pre-index the M
regions into K groups (one per class) and determine the tar-
get in constant time. This supports complex targets such as
F (x) ∈ {1, 3, 7} or [2, 5]∪[7,∞). Then, the actual search in
the range of target regions is done sequentially as described
next.

Searching in each target live region Axes-aligned trees.
This can be implemented in a way that is very efficient in
time and memory through arrays and vectorization, without

any need for the tree structures. Firstly (Carreira-Perpiñán
and Hada 2021a), for any distance that is separable over
dimensions (e.g. `1, `22, possibly weighted), the solution to
“x∗ = arg minx d(x,x) s.t. a ≤ x ≤ b” (where a, b are
the lower and upper bounds of a particular box) can be given
in closed form as x∗ = median(a,b,x) elementwise. (That
is, for each dimension, x∗ is a if x ≤ a, b if x ≥ b and x
otherwise.) However, it is more efficient to compute directly
the distance-to-a-box dbox(x,

(
a
b

)
) ≡ d(x∗,x). For the `22

and `1 distances this is:

‖x∗ − x‖22 = 1T (max(a− x,0) + max(x− b,0))2,

‖x∗ − x‖1 = 1T (max(a− x,0) + max(x− b,0))

where max(·, ·) applies elementwise. This holds by noting
that, for each dimension d = 1, . . . , D, |x∗d − xd| = ad−xd
if ad − xd ≥ 0, xd − bd if xd − bd ≥ 0, and 0 oth-

erwise. To preserve memory locality, this can be vector-
ized over the entire array of AD×N = (a1, . . . ,aN) and
BD×N = (b1, . . . ,bN) to find the box n with the smallest
distance to x.2 This shows that, in effect, the problem re-
duces to a form of nearest-neighbor search, where we have
a search set of N multidimensional points

(
an

bn

)
∈ R2D

(each representing a box), a query x ∈ RD, and a distance
dbox(x,

(
an

bn

)
) given by the distance-to-a-box. Fig. 4 (top)

gives the pseudocode.
Oblique trees. In this case we cannot vectorize using ar-

rays because each region (l1, . . . , lT) has an irregular (poly-
tope) shape, given by the constraints for each leaf lt, t =
1, . . . , T (which, in turn, are the constraints in the root-leaf
path to lt in tree t). So we have to loop through each region,
solve its QP or LP, and return the one with minimum dis-
tance; see pseudocode in fig. 4 (bottom). As noted earlier,
the advantage with oblique trees is that they use few, shal-
lower trees, so the number of regions is much smaller.

Further accelerating the search The exhaustive search
over all live regions is very fast. For example, sequentially
searching M = 106 points in D = 100 dimensions takes
less than a second on a laptop. However, for very large data
sets (say, a billion points), this will be too slow. One way
to speed this up while finding the exact solution is by paral-
lelizing the search, which can be done trivially over subsets
of regions. Another one is by using a search tree, decorated
at each node with bounding boxes, to prune sets of regions
that are guaranteed not to be optimal. If we allow the search
to be inexact, a simple approach is to use live regions for a
random sample of data points. It should also be possible to
adapt fast techniques to find approximate nearest neighbors
in high dimensions. Note that LIRE is an anytime algorithm
in that we can stop at any time and return a feasible solution.

Computational complexity As noted earlier, determining
the range of regions we need to search (say, the regions with
a desired target class) takes negligible time: a logarithmic
binary search if the list of regions has been sorted by forest
output, or a constant-time lookup if it has been indexed. The
cost is dominated by the exhaustive search over the range of
regions. For axis-aligned trees, this is O(MD) with M re-
gions and D features, with a small constant factor due to the
distance-to-a-box computation. For oblique trees, we have
to solve M QPs (`22) or LPs (`1). Each has D variables and
T∆ constraints on average (assuming an average leaf depth
∆). In both cases, the search can be trivially parallelized.

6 Experiments
In this section, we used Random Forests (where each tree
is grown in full, i.e., not pruned), with individual trees
trained by CART (Breiman et al. 1984) if axis-aligned and
by TAO (Carreira-Perpiñán and Tavallali 2018; Carreira-
Perpiñán 2022) if oblique. All runtimes were obtained in a
single core (without parallel processing). Carreira-Perpiñán
and Hada (2023) give details about the experiments, as well
as more results (e.g. with AdaBoost forests, Realistic CEs,

2For ex., in Matlab for `22: [d,n] = min(sum((max(bsxfun

(@minus,A,x),0)+max(bsxfun(@minus,x,B),0)).ˆ2,2));.

and the training and test error of the forests we trained).
Here, we comment on the main results.

LIRE as an approximate CE In order to estimate how
good an approximation LIRE is to the exact solution, we do
an exhaustive search on all the nonempty regions in small
problems for which the latter is computationally feasible.
Fig. 5 shows that the approximation (in terms of the dis-
tance to the source instance) is quite good, though it de-
grades as the number of trees increases—since the num-
ber of nonempty regions continues to increase exponentially
while the number of live regions is capped at N . The ap-
proximation is quite better for oblique forests than for axis-
aligned ones, in agreement with the fact that the number
of regions grows more slowly for oblique forests. Impor-
tantly, note than LIRE is far better than searching directly on
the dataset instances. This, and its very fast runtime, makes
LIRE highly practical in order to get a fast, relatively accu-
rate estimate of the optimal CE.

LIRE vs other algorithms Table 1 compares LIRE with
searching on the dataset instances, Feature Tweak (Tolomei
et al. 2017) and OCEAN (Parmentier and Vidal 2021).
We use several classification datasets of different size, di-
mensionality and type, and axis-aligned forests (Random
Forests) of different size. Unlike previous works on forest
CEs, we consider quite larger, high-dimensional datasets and
forests—having up to 1 000 trees, with thousands of leaves
per tree. This is important because, to achieve competitive
performance in practice, the number of trees may need to
be quite large. For small problems, OCEAN (which does
an exhaustive search) finds the best solution, but its run-
time quickly shoots up and becomes intractable for most
cases (see detailed comments in Carreira-Perpiñán and Hada
(2023)). LIRE is extremely fast even for large problems,
comparable to searching on the dataset instances, but finding
better CEs. Also, it is guaranteed to find a feasible solution,
i.e., producing the desired prediction.

Table 2, for oblique trees on some classification datasets,
compares LIRE only with the dataset search, since no other
algorithm is applicable. Again, LIRE finds better CEs and
is reasonably fast, although for large problems its runtime
grows from seconds to minutes.

7 Conclusion
Decision forests define a piecewise constant function with
an exponential number of regions in feature space, so search-
ing for a counterfactual explanation exhaustively is imprac-
tical unless the forest is very small (in number of trees and
of leaves). However, if we restrict the search to only those
regions containing at least an actual data point (“live” re-
gions), then the search becomes not only practical but very
fast, even suitable for interactive use in some cases. This
can also be seen as a realistic formulation of counterfac-
tual explanations where the solution is constrained to lie in
high-density regions of feature space, and the live regions
act as a nonparametric density estimate. We are working on
scaling the search to even larger forests and datasets using
pruning heuristics and approximate nearest-neighbor search
techniques.

References
Breiman, L. 2001. Random Forests. Machine Learning,
45(1): 5–32.
Breiman, L. J.; Friedman, J. H.; Olshen, R. A.; and Stone,
C. J. 1984. Classification and Regression Trees. Belmont,
Calif.: Wadsworth.
Carreira-Perpiñán, M. Á. 2022. The Tree Alternating Opti-
mization (TAO) Algorithm: A New Way To Learn Decision
Trees and Tree-Based Models. ArXiv.
Carreira-Perpiñán, M. Á.; Gabidolla, M.; and Zharmagam-
betov, A. 2023. Towards Better Decision Forests: Forest Al-
ternating Optimization. In Proc. of the 2023 IEEE Com-
puter Society Conf. Computer Vision and Pattern Recogni-
tion (CVPR’23). Vancouver, Canada.
Carreira-Perpiñán, M. Á.; and Hada, S. S. 2021a. Coun-
terfactual Explanations for Oblique Decision Trees: Exact,
Efficient Algorithms. In Proc. of the 35th AAAI Conference
on Artificial Intelligence (AAAI 2021), 6903–6911. Online.
Carreira-Perpiñán, M. Á.; and Hada, S. S. 2021b. Coun-
terfactual Explanations for Oblique Decision Trees: Exact,
Efficient Algorithms. ArXiv:2103.01096.

Carreira-Perpiñán, M. Á.; and Hada, S. S. 2023. Very
Fast, Approximate Counterfactual Explanations for Deci-
sion Forests. ArXiv:2303.02883.
Carreira-Perpiñán, M. Á.; and Tavallali, P. 2018. Alter-
nating Optimization of Decision Trees, with Application to
Learning Sparse Oblique Trees. In Bengio, S.; Wallach, H.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett,
R., eds., Advances in Neural Information Processing Sys-
tems (NEURIPS), volume 31, 1211–1221. MIT Press, Cam-
bridge, MA.

Carreira-Perpiñán, M. Á.; and Zharmagambetov, A. 2020.
Ensembles of Bagged TAO Trees Consistently Improve over
Random Forests, AdaBoost and Gradient Boosting. In Proc.
of the 2020 ACM-IMS Foundations of Data Science Confer-
ence (FODS 2020), 35–46. Seattle, WA.
Cui, Z.; Chen, W.; He, Y.; and Chen, Y. 2015. Optimal Ac-
tion Extraction for Random Forests and Boosted Trees. In
Proc. of the 21st ACM SIGKDD Int. Conf. Knowledge Dis-
covery and Data Mining (SIGKDD 2015), 179–188. Sydney,
Australia.
Freund, Y.; and Schapire, R. 1997. A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting. J. Computer and System Sciences, 55(1): 119–
139.
Friedman, J. H. 2001. Greedy Function Approximation:
A Gradient Boosting Machine. Annals of Statistics, 29(5):
1189–1232.
Gabidolla, M.; and Carreira-Perpiñán, M. Á. 2022. Push-
ing the Envelope of Gradient Boosting Forests via Globally-
Optimized Oblique Trees. In Proc. of the 2022 IEEE Com-
puter Society Conf. Computer Vision and Pattern Recogni-
tion (CVPR’22), 285–294. New Orleans, LA.
Gabidolla, M.; Zharmagambetov, A.; and Carreira-Perpiñán,
M. Á. 2022. Improved Multiclass AdaBoost Using Sparse

Oblique Decision Trees. In Int. J. Conf. Neural Networks
(IJCNN’22). Padua, Italy.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In Proc. of the
3rd Int. Conf. Learning Representations (ICLR 2015). San
Diego, CA.
Guidotti, R.; Monreale, A.; Giannotti, F.; Pedreschi, D.;
Ruggieri, S.; and Turini, F. 2019. Factual and Counterfactual
Explanations for Black Box Decision Making. IEEE Access,
34(6): 14–23.
Hada, S. S.; and Carreira-Perpiñán, M. Á. 2021. Exploring
Counterfactual Explanations for Classification and Regres-
sion trees. In ECML PKDD 3rd Int. Workshop and Tuto-
rial on eXplainable Knowledge Discovery in Data Mining
(XKDD 2021), 489–504.
Hastie, T. J.; Tibshirani, R. J.; and Friedman, J. H. 2009.
The Elements of Statistical Learning—Data Mining, Infer-
ence and Prediction. Springer Series in Statistics. Springer-
Verlag, second edition.
Kanamori, K.; Takagi, T.; Kobayashi, K.; and Arimura, H.
2007. DACE: Distribution-Aware Counterfactual Explana-
tion by Mixed-Integer Linear Optimization. In Proc. of
the 20th Int. Joint Conf. Artificial Intelligence (IJCAI’07),
2855–2862. Hyderabad, India.
Karimi, A.-H.; Barthe, G.; Balle, B.; and Valera, I. 2020.
Model-Agnostic Counterfactual Explanations for Conse-
quential Decisions. In Proc. of the 23rd Int. Conf. Artificial
Intelligence and Statistics (AISTATS 2020), 895–905. On-
line.
Lucic, A.; Oosterhuis, H.; Haned, H.; and de Rijke, M. 2022.
FOCUS: Flexible Optimizable Counterfactual Explanations
for Tree Ensembles. In Proc. of the 36th AAAI Conference
on Artificial Intelligence (AAAI 2022), 5313–5322. Online.
Mothilal, R. K.; Sharma, A.; and Tan, C. 2020. Explaining
Machine Learning Classifiers through Diverse Counterfac-
tual Explanations. In Proc. ACM Conf. Fairness, Account-
ability, and Transparency (FAT 2020), 607–617.
Parmentier, A.; and Vidal, T. 2021. Optimal Counterfac-
tual Explanations in Tree Ensembles. In Meila, M.; and
Zhang, T., eds., Proc. of the 38th Int. Conf. Machine Learn-
ing (ICML 2021), 8422–8431. Online.
Russell, C. 2019. Efficient Search for Diverse Coherent Ex-
planations. In Proc. ACM Conf. Fairness, Accountability,
and Transparency (FAT 2019), 20–28. Atlanta, GA.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing Prop-
erties of Neural Networks. In Proc. of the 2nd Int. Conf.
Learning Representations (ICLR 2014). Banff, Canada.
Tolomei, G.; Silvestri, F.; Haines, A.; and Lalmas, M. 2017.
Interpretable Predictions of Tree-based Ensembles via Ac-
tionable Feature Tweaking. In Proc. of the 23rd ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining
(SIGKDD 2017), 465–474. Halifax, Nova Scotia.
Ustun, B.; Spangher, A.; and Liu, Y. 2019. Actionable Re-
course in Linear Classification. In Proc. ACM Conf. Fair-
ness, Accountability, and Transparency (FAT 2019), 10–19.
Atlanta, GA.

Van Looveren, A.; and Klaise, J. 2021. Interpretable Coun-
terfactual Explanations Guided by Prototypes. In Oliver,
N.; Pérez-Cruz, F.; Kramer, S.; Read, J.; and Lozano, J. A.,
eds., Proc. of the 32nd European Conf. Machine Learning
(ECML–21). Bilbao, Spain.
White, A.; and d’Avila Garcez, A. 2020. Measurable Coun-
terfactual Local Explanations for Any Classifier. In Gia-
como, G. D.; Catala, A.; Dilkina, B.; Milano, M.; Barro, S.;
Bugarı́n, A.; and Lang, J., eds., Proc. 24th European Conf.
Artificial Intelligence (ECAI 2020), 2529–2535.
Yang, Q.; Yin, J.; Ling, C. X.; and Pan, R. 2006. Extracting
Actionable Knowledge from Decision Trees. IEEE Trans.
Knowledge and Data Engineering, 18(1): 43–56.
Zharmagambetov, A.; and Carreira-Perpiñán, M. Á. 2020.
Smaller, More Accurate Regression Forests Using Tree Al-
ternating Optimization. In Daumé III, H.; and Singh, A.,
eds., Proc. of the 37th Int. Conf. Machine Learning (ICML
2020), 11398–11408. Online.
Zharmagambetov, A.; Hada, S. S.; Gabidolla, M.; and
Carreira-Perpiñán, M. Á. 2021. Non-Greedy Algorithms for
Decision Tree Optimization: An Experimental Comparison.
In Int. J. Conf. Neural Networks (IJCNN’21). Virtual event.

