
The role of dimensionality reduction

in classification

¦

Weiran Wang and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science

University of California, Merced

http://eecs.ucmerced.edu

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu

Low-dimensional classifiers

We consider constructing a nonlinear classifier by first reducing
dimension nonlinearly and then classifying linearly.

Three questions we ask in this paper:

¶ How to train a nonlinear classifier of the form

y = g(F(x))







g: linear SVM, g(z) = w
T
z+ b

F: nonlinear dimensionality reduction
RBF, deep net, GP. . .

optimizing jointly over g and F?

· What is the role of the nonlinear dimensionality reduction F in the
resulting classifier?

¸ How good and fast is the resulting nonlinear, low-dimensional
classifier?

p. 1

¶ Learning low-dim features for a linear SVM

Consider binary classification throughout (see the multiclass case in the paper).

Objective function over the parameters of g and F given a dataset

{(xn, yn)}
N
n=1

of (inputs,labels):

min
F,g,ξ

λR(F) +
1

2
‖w‖2 + C

N
∑

n=1

ξn

s.t. yn(w
T
F(xn) + b) ≥ 1− ξn, ξn ≥ 0, n = 1, . . . , N.

v If F = identity then y = g(F(x)) = w
T
x+ b is a linear SVM and the

problem is a convex quadratic program, easy to solve.

v If F is nonlinear then y = g(F(x)) = w
T
F(x) + b is a nonlinear

classifier and the problem is nonconvex, difficult to solve.

p. 2

¶ Learning low-dim features for a linear SVM (cont.)

v Simple but suboptimal approach often used in practice (“filter”
approach):

1. First reduce dimension of the inputs ignoring the classifier. This
requires optimizing a proxy objective function over F only.
unsupervised, e.g. PCA; supervised, e.g. LDA

2. Then fix F and train g: fit a linear SVM with inputs {F(xn)} and

labels {yn}.

The features are not optimal for the linear SVM classifier.
They are still helpful to remove out-of-manifold noise and speed up the classifier.

v We want a “wrapper” approach, i.e., optimize the overall
classification error jointly over the features F and classifier g.

v We apply the method of auxiliary coordinates (MAC) for nested
systems
Carreira-Perpinan & Wang, AISTATS, 2014

p. 3

¶ Solution with auxiliary coordinates (MAC)

The problem is “nested” because of g(F(·)) in the constraints:

min
F,g,ξ

λR(F) +
1

2
‖w‖2 + C

N
∑

n=1

ξn

s.t. yn(w
T
F(xn) + b) ≥ 1− ξn, ξn ≥ 0, n = 1, . . . , N.

Break the nesting by introducing an auxiliary coordinate zn per point:

min
F,g,ξ,Z

λR(F) +
1

2
‖w‖2 + C

N
∑

n=1

ξn

s.t. yn(w
T
zn + b) ≥ 1− ξn, ξn ≥ 0, zn = F(xn), n = 1, . . . , N.

The auxiliary coordinates correspond to the low-dim projections but are
separate parameters.

p. 4

¶ Solution with auxiliary coordinates (MAC) (cont.)

Solve this constrained problem with a quadratic-penalty method:
optimize for fixed penalty parameter µ > 0 and drive µ → ∞:

min
F,g,ξ,Z

λR(F) +
1

2
‖w‖2 + C

N
∑

n=1

ξn +
µ

2

N
∑

n=1

‖zn − F(xn)‖
2

s.t. yn(w
T
zn + b) ≥ 1− ξn, ξn ≥ 0, n = 1, . . . , N.

Alternating optimization of the penalty function for fixed µ:

v g step: fit a linear SVM to {(zn, yn)}
N
n=1

A classifier using as inputs the auxiliary coordinates.

v F step: fit a nonlinear mapping F to {(xn, zn)}
N
n=1















in parallel

}

in parallel

A regressor using as outputs the auxiliary coordinates.

v Z step: set zn = F(xn) + γnynw, n = 1, . . . , N
A closed-form update for each point’s auxiliary coordinate zn.

p. 5

¶ MAC algorithm: solution of the Z step

The Z step decouples into N independent problems, each a quadratic
program on L parameters (L = dimension of latent space):

min
zn,ξn

‖zn − F(xn)‖
2 +

2C

µ
ξn

s.t. yn(w
T
zn + b) ≥ 1− ξn, ξn ≥ 0, zn ∈ R

L

with closed-form solution zn = F(xn) + γnynw, where γn takes one of

three possible values. Cost: O(L).

0 z

ξn

λ1 = 0

zopt = F(xn)

0 z

0 < λ1 < c

zopt
F(xn)

0 z

λ1 = c
zopt

F(xn)

p. 6

¶ MAC algorithm: advantages

In summary, all the algorithm does is repeatedly fit a regressor and a
linear SVM, and update each point’s coordinates. It is like iterating a
“filter” but correcting the coordinates so we converge to a true optimum.

v No complicated gradients obtained from the chain rule.

v Instead, it reuses algorithms:

F classifier g: linear SVM

F regressor F: RBF, deep net, GP. . .

v Parallel:

F classifier, regressor trained in parallel
multiclass case: K SVMs trained in parallel (one per class)

F N coordinates updated in parallel.

v Converges to a local optimum as µ → ∞.

v Fast iterations if using standard optimization techniques
warm starts, caching matrix factorizations, inexact steps, etc.

v Large progress in first few iterations. + +
p. 7

· Role of nonlinear dimension reduction in the linSVM

The linear SVM g is less flexible than the nonlinear mapping F, so,
intuitively, F will do most of the work:

v Ideal case: collapse classes onto maximally linearly
separable centroids
corners of a simplex, if using L ≥ K − 1 dimensions

v In practice: the amount of collapse depends on how
flexible F is (number of parameters, regularization).

This is very different from what PCA/LDA dimension reduction does.
The optimal dimension reduction for linear classification destroys all
manifold structure. It only cares about facilitating linear separability.

p. 8

· Role of dimension reduction: experiments

We reduce dimension with radial basis function networks (RBFs):

F(x) =
M
∑

m=1

αmφm(x) each BF φm is a Gaussian.

Configuration of the low-dim projections as a function of the number of
basis functions M : the more flexible F is (larger M), the more the
classes collapse and separate.

F linear M = 4 M = 10 M = 20 M = 40 M = 100 M = 200 M = 2000

+

p. 9

· Role of dimension reduction: experiments (cont.)

Relation between the dimension L and the number of classes K: the
classification accuracy improves drastically as L increases from 1 and
stabilizes at L ≈ K − 1, by which time the training samples are perfectly
separated and the classes form point-like clusters approximately lying
on the vertices of a simplex.

data L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10

K
=

2
K

=
4

K
=

6

v This gives a recipe to choose L: starting from L = K − 1, increase
L until the classification error does not improve.

v Initialize the latent projections Z to the corners of a simplex.
p. 10

¸ How good/fast is the nonlinear low-dim classifier?

Consider dimension reduction with a radial basis function mapping

F(x) =
M
∑

m=1

αmφm(x) each BF φm is e.g. a Gaussian.

Then the nonlinear low-dim classifier has the form of a nonlinear SVM:

y =
M
∑

m=1

vmφm(x) + b

v We have direct control on the classifier complexity through the
number of basis functions M
unlike in an SVM, where the number of support vectors M is often very large.

v We can trade off classification error vs runtime:

F Training: linear on sample size N and number of BFs M .

F Testing: linear on number of BFs M .

v Error comparable to an SVM’s, but with far fewer basis functions.

In general, using the same MAC algorithm, we can use other forms for
F (e.g. a neural net) and need not reduce dimension.

p. 11

¸ How good/fast is the nonlinear low-dim classifier?

10k MNIST handwritten digit images
of 28 × 28 = 784 dimensions with
K = 10 classes (one-versus-all).

A low-dim SVM (L = K dimensions)
does as well as a kernel SVM but
using 5.5 times fewer support vec-
tors. The low-dim SVM is also faster
to train and parallelizes trivially.

Method
Test
error # BFs

Nearest Neighbor 5.34 10 000

Linear SVM 9.20 –

Gaussian SVM 2.93 13 827

low-dim SVM 2.99 2 500

LDA (9) + Gaussian SVM 10.67 8 740

PCA (5) + Gaussian SVM 24.31 13 638

PCA (10) + Gaussian SVM 7.44 5 894

PCA (40) + Gaussian SVM 2.58 12 549

PCA (40) + low-dim SVM 2.60 2 500

classification error wrt L low-dim space (2D PCA) parallel processing speedup

5 10 15 20 25 30
0

10

20

30

40

50

60

70

L

e
rr

o
r

ra
te

(%
)

2 4 6 8 10 12

2

4

6

8

s
p
e
e
d
u
p

processors

p. 12

Conclusions

¶ Learning optimal nonlinear low-dim features for a linear SVM is a
nonconvex problem, but it can be solved easily and efficiently with
the method of auxiliary coordinates.
The algorithm is very intuitive: repeatedly fit a regressor and a
linear SVM, and update each point’s coordinates.
It is like iterating a “filter” but correcting the coordinates so we converge to a true optimum.

· It shows that classes collapse and maximally separate in latent
space, so the optimal dimensionality reduction for linear
classification destroys the manifold structure.
This justifies filter approaches that maximize class separability and minimize intra-class scatter, but

also obviates them—just train features and classifier jointly.

¸ The resulting classifier is competitive with nonlinear SVMs but
faster to train and at test time.
Matlab code: http://eecs.ucmerced.edu.

Future work: what is the interplay of dimensionality reduction with a
nonlinear classifier?

p. 13

Formulation for the multiclass problem

v With K classes, we can use the one-versus-all scheme and have
K SVMs, each of which classifies whether a point belongs to one
class or not.

v The objective function is the sum of that of K SVMs.

v In the Z step, we solve for each point a quadratic program on L+K
variables and 2K constraints:

min
z,{ξk}K

k=1

‖z− F(x)‖2 +
K
∑

k=1

Ckξk

s.t. yk((wk)Tz+ bk) ≥ 1− ξk, ξk ≥ 0, k = 1, . . . , K.

This has no closed-form solution, so we solve it numerically.

p. 14

Document binary classification

Results on the PC/MAC subset of 20 newsgroups.

methods % error (std)

nearest neighbor 19.16 (0.74)

linear SVM 13.5 (0.72)

PCA (L = 2) 42.10 (1.22)

LDA (L = 1) 14.21 (1.63)

LMNN (L = 2) 15.91 (1.65)

low-dim SVM (L = 1) 13.12 (0.67)

low-dim SVM (L = 2) 12.94 (0.82)

low-dim SVM (L = 20) 12.76 (0.81)

PCA LDA

PC
MAC

LMNN low-dim SVM

p. 15

MNIST odd/even classification

errors of different algorithms wrt dataset size

12 5 10 20 30 40 50

10
1

size

e
rr

o
r

NN

LSVM

GSVM

KPCA

KLDA

Ours

LDA+GSVM

PCA+GSVM

PCA+Ours

KPCA

odd
even

low-dim SVM

p. 16

	Low-dimensional classifiers
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {182}}} Learning low-dim features for a linear SVM
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {182}}} Learning low-dim features for a linear SVM (cont.)
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {182}}} Solution with auxiliary coordinates (MAC)
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {182}}} Solution with auxiliary coordinates (MAC)
(cont.)
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {182}}} MAC algorithm: solution of the Z step
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {182}}} MAC algorithm: advantages
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {183}}} Role of nonlinear dimension reduction in the linSVM
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {183}}} Role of dimension reduction: experiments
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {183}}} Role of dimension reduction: experiments (cont.)
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {184}}} How good/fast is the nonlinear low-dim classifier?
	{
aisebox {-0.3ex}[0pt][0pt]{Large goldenrod ding {184}}} How good/fast is the nonlinear low-dim classifier?
	Conclusions
	Formulation for the multiclass problem
	Document binary classification
	MNIST odd/even classification

