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Abstract

We consider the problem of learning soft assignments of
N items to K categories given two sources of informa-
tion: an item-category similarity matrix, which encour-
ages items to be assigned to categories they are similar
to (and to not be assigned to categories they are dis-
similar to), and an item-item similarity matrix, which
encourages similar items to have similar assignments.
We propose a simple quadratic programming model that
captures this intuition. We give necessary conditions for
its solution to be unique, define an out-of-sample map-
ping, and derive a simple, effective training algorithm
based on the alternating direction method of multipliers.
The model predicts reasonable assignments from even a
few similarity values, and can be seen as a generaliza-
tion of semisupervised learning. It is particularly use-
ful when items naturally belong to multiple categories,
as for example when annotating documents with key-
words or pictures with tags, with partially tagged items,
or when the categories have complex interrelations (e.g.
hierarchical) that are unknown.

1 Introduction

A major success in machine learning in recent years has
been the development of semisupervised learning (SSL)
(Chapelle, Schölkopf, and Zien 2006), where we are given
labels for only a few of the training points. Many SSL ap-
proaches rely on a neighborhood graph constructed on the
training data (labeled and unlabeled), typically weighted
with similarity values. The Laplacian of this graph is used
to construct a quadratic nonnegative function that measures
the agreement of possible labelings with the graph struc-
ture, and minimizing it given the existing labels has the ef-
fect of propagating them over the graph. Laplacian-based
formulations are conceptually simple, computationally ef-
ficient (since the Laplacian is usually sparse), have a solid
foundation in graph theory and linear algebra (Chung 1997;
Doyle and Snell 1984), and most importantly work very well
in practice. The graph Laplacian has been widely exploited
in machine learning, computer vision and graphics, and
other areas: as mentioned, in semisupervised learning, man-
ifold regularization and graph priors (Zhu, Ghahramani, and
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Lafferty 2003; Belkin, Niyogi, and Sindhwani 2006; Zhou
et al. 2004) for regression, classification and applications
such as supervised image segmentation (Grady 2006), where
one solves a Laplacian-based linear system; in spectral
clustering (Shi and Malik 2000), possibly with constraints
(Lu and Carreira-Perpiñán 2008), and spectral dimension-
ality reduction (Belkin and Niyogi 2003), where one uses
eigenvectors of the Laplacian; or in clustering, manifold
denoising and surface smoothing (Carreira-Perpiñán 2006;
Wang and Carreira-Perpiñán 2010; Taubin 1995), where one
iterates products of the data with the Laplacian.

We concern ourselves with assignment problems in a
semisupervised learning setting, where we haveN items and
K categories and we want to find soft assignments of items
to categories given some information. This information of-
ten takes the form of partial tags or annotations, e.g. for
pictures in websites such as Flickr, blog entries, etc. Let us
consider a specific example where the items are documents
(e.g. papers submitted to this conference) and the categories
are keywords. Any given paper will likely be associated to a
larger or smaller extent with many keywords, but most au-
thors will tag their papers with only a few of them, usually
the most distinctive (although, as we know, there may be
other reasons). Thus, few papers will be tagged as “computer
science” or “machine learning” because those keywords are
perceived as redundant given, say, “semisupervised learn-
ing”. However, considered in a larger context (e.g. to include
biology papers), such keywords would be valuable. Besides,
categories may have various correlations that are unknown
to us but that affect the assignments. For example, a hierar-
chical structure implies that “machine learning” belongs to
“computer science” (although it does to “applied maths” to
some extent as well). In general, we consider categories as
sets having various intersection, inclusion and exclusion re-
lations. Finally, it is sometimes practical to tag an item as
not associated with a certain category, e.g. “this paper is not
about regression” or “this patient does not have fever”, par-
ticularly if this helps to make it distinctive. In summary, in
this type of applications, it is impractical for an item to be
fully labeled over all categories, but it is natural for it to be
associated or disassociated with a few categories. This can
be coded with item-category similarity values that are pos-
itive or negative, respectively, with the magnitude indicat-
ing the degree of association, and zero meaning indifference



or ignorance. We call this source of partial supervisory in-
formation, which is specific for each item irrespectively of
other items, the wisdom of the expert.
We also consider another practical source of information.

Usually it is easy to construct a similarity of a given item
to other items, at least its nearest neighbors. For example,
with documents or images, this could be based on a bag-
of-words representation. We would expect similar items to
have similar assignment vectors, and this can be captured
with an item-item similarity matrix and its graph Laplacian.
We call this source of information, which is about an item in
the context of other items, the wisdom of the crowd.

In this paper, we propose a simple model that com-
bines both types of information as a quadratic program.
We give some properties of the solution, define an out-of-
sample mapping, derive a training algorithm, and illustrate
the model with document and image data. Proofs and deriva-
tions are in (Carreira-Perpiñán and Wang 2014).

2 The Laplacian Assignment (LASS) Model

We consider the following assignment problem. We have N
items and K categories, and we want to determine soft as-
signments znk of each item n to each category k, where
znk ∈ [0, 1] and

∑K

k=1 znk = 1 for each n = 1, . . . , N .
We are given two similarity matrices, suitably defined, and
typically sparse: an item-item similarity matrixW, which is
an N × N matrix of affinities wnm ≥ 0 between each pair
of items n andm; and an item-category similarity matrixG,
which is an N × K matrix of affinities gnk ∈ R between
each pair of item n and category k (negative affinities, i.e.,
dissimilarities, are allowed in G). We want to assign items
to categories optimally as follows:

minZ λ tr
(

ZTLZ
)

− tr
(

GTZ
)

(1a)

s.t. Z1K = 1N , Z ≥ 0 (1b)

where λ > 0, 1K is a vector of K ones, and L is the
N × N graph Laplacian matrix, obtained as L = D −W,
where D = diag (

∑N

n=1 wnm) is the degree matrix of the
weighted graph defined by W. The problem is a quadratic
program (QP) over anN×K matrix Z = (z1, . . . , zK), i.e.,
NK variables1 altogether, where zk, the kth column of Z,
contains the assignments of each item to category k. We will
call problems of the type (1) Laplacian assignment problems
(LASS). Minimizing objective (1a) encourages items to be
assigned to categories with which they have high similarity
(the linear term in G), while encouraging similar items to
have similar assignments (the Laplacian term in L), since
tr
(

ZTLZ
)

= 1
2

∑N

n,m=1 wnm ‖zn − zm‖
2
where zn is the

nth row of Z, i.e., the assignments for item n. Although we
could absorb λ inside G, we will find it more convenient to
fix the scale of each similarity gnk to, say, the interval [−1, 1]
(where±1mean maximum (dis)similarity and 0 ignorance),
and then let λ control the strength of the Laplacian term.

1We will use a boldface vector zn or to mean the nth row of
Z (as a column vector), and a boldface vector zk to mean the kth
column of Z (likewise for gn or gk). The context and the index
(n or k) will determine which is the case. This mild notation abuse
will simplify the explanations.

Particular cases We can determine the solution(s) for the
extreme values of λ. (1) If λ = 0, then the LASS problem is
a linear program and separates over each item n = 1, . . . , N .
The solution is znk = δ(k − kmax(n)) where kmax(n) =
argmax{gnk, k = 1, . . . ,K}, i.e., each item is assigned to
its most similar category. This tells us what the linear term
can do by itself. (2) If λ = ∞ or G = 0, then the LASS
problem is a QP with an infinite number of solutions of the
form zn = zm for each n,m = 1, . . . , N , i.e., all items have
the same assignments. This tells us what the Laplacian term
can do by itself. With intermediate λ > 0, more interesting
solutions appear (particularly when the similarity matrices
are sparse), where the item-category similarities are propa-
gated to all points through the item-item similarities.
We can also show: (1) An item for which no similarity to

any category is given (i.e., no expert information) receives as
assignment the average of its neighbors. This corresponds to
the SSL prediction. (2) A category for which no item has a
positive similarity receives no assignments.

Existence and unicity of the solution The LASS problem
is a convex QP, so general results of convex optimization
tell us that all minima are global minima. However, since
the Hessian of the objective function is positive semidefinite,
there can be multiple minima. Theorem 2.1 characterizes the
solutions, and its corollary gives a sufficient condition for
the minimum to be unique.

Theorem 2.1. Assume the graph Laplacian L corresponds
to a connected graph and let Z∗ ∈ R

N×K be a solution
(minimizer) of the LASS problem (1). Then, any other solu-
tion has the form Z∗ + 1NpT where p ∈ R

K satisfies the
conditions:

pT1K = 0, pT (GT1N ) = 0, Z∗ + 1NpT ≥ 0. (2)

In particular, for each k = 1, . . . ,K for which ∃n ∈
{1, . . . , N}: z∗nk = 0, then pk ≥ 0.

Corollary 2.2. Under the assumptions of th. 2.1, if
maxk (minn (z

∗

nk)) = 0 then the solution Z∗ is unique.

Note the following. If the graph Laplacian L corresponds
to a graph with multiple connected components, then the
LASS problem separates into a problem for each compo-
nent, and theorem 2 holds in each component. Computa-
tionally, it is also more efficient to solve each problem sepa-
rately. The set (2) of solutions to a LASS problem is a con-
vex polytope. The condition of corollary 2.2 means that each
category has at least one item with a zero assignment to it. In
practice, we can expect this condition to hold, and therefore
the solution to be unique, if the categories are sufficiently
distinctive and λ is small enough. Experimentally, we have
not found nonunique solutions. Practically, one can always
make the solution unique by replacing L with L + ǫIN
where ǫ > 0 is a small value, since this makes the objec-
tive strongly convex. (This has the equivalent meaning of
adding a penalty ǫ‖Z‖

2
F to it, which has the effect of biasing

the assignment vector zn of each item towards the simplex
barycenter, i.e., uniform assignments.) However, as noted,
nonunique solutions appear to be very rare with practical
data, so this does not seem necessary.



3 Simple, Efficient Algorithm to Solve the QP

It is possible to solve problem (1) in different ways, but one
must be careful in designing an effective algorithm because
the number of variables and the number of constraints grows
proportionally to the number of data points, and can then be
very large. We describe here one algorithm that is very sim-
ple, has guaranteed convergence without line searches, and
takes advantage of the structure of the problem and the spar-
sity of L. It is based on the alternating direction method of
multipliers (ADMM) (Boyd et al. 2011). The basic idea is to
introduce new variables Y that replace the inequalities with
an indicator function, construct the augmented Lagrangian
(using a penalty parameter ρ > 0) and cyclically update the
primal variables Z, the auxiliary variables Y, and the La-
grange multipliers for the constraints (ν and U). The suc-
cess of this crucially relies on being able to compute effi-
ciently the update of Z, which involves a large linear sys-
tem of NK equations. We capitalize on the sparsity struc-
ture of the problem by applying a direct linear solver using
the Schur’s complement and caching the Cholesky factoriza-
tion of L. Solving our system can be shown to be equivalent
to solving K systems of N equations where the coefficient
matrix is the same for each system and besides is constant
and sparse, equal to 2λL + ρI. In turn, these linear systems
may be solved efficiently in one of the two following ways:
(1) preferably, by caching the Cholesky factorization of this
matrix (using a good permutation to reduce fill-in), if it does
not add so much fill that it can be stored; or (2) by using
an iterative linear solver such as conjugate gradients, initial-
ized with a warm start, preconditioned, and exiting it before
convergence, so as to carry out faster, inexact Z-updates. In
either case, the resulting step over Z becomes linear inNK.

The final algorithm is as follows. The input are the affinity
matrices GN×K and WN×N , from which we construct the
graph Laplacian LN×N . We then choose ρ > 0 and set

h = − 1
K
G1K + ρ

K
1N RRT = 2λL+ ρI.

The Cholesky factor R is used to solve linear system (3b).
We then iterate, in order, eqs. (3a)–(3d) until convergence:

ν ← ρ
K
(Y −U)1K − h (3a)

Z← (2λL+ ρI)−1(ρ(Y −U) +G− ν1T
K) (3b)

Y ← (Z+U)+ (3c)

U← U+ Z−Y (3d)

where ZN×K are the primal variables, YN×K the auxil-
iary variables,UN×K the Lagrange multiplier estimates for
Y, and νN×1 the Lagrange multipliers for the equality con-
straints. The solution for the linear system in the Z-update
may be obtained by using two triangular backsolves if us-
ing the Cholesky factor of 2λL + ρI, or using an iterative
method such as conjugate gradients if the Cholesky factor
is not available. Convergence of this ADMM iteration to the
global minimum of problem (1) in value and to a feasible
point is guaranteed for any ρ > 0 (Boyd et al. 2011).

Theorem 3.1. At each iterate in updates (3), Z1K = 1N

and U ≤ 0. Upon convergence of algorithm (3), Z is a so-
lution with Lagrange multipliers π = −ν and M = −ρU.

In practice, the algorithm is stopped before convergence,
and Z, π = −ν andM = −ρU are estimates for a solution
and its Lagrange multipliers, respectively. The estimate Z
may not be feasible, in particular the values znk need not
be in [0, 1], since this is only guaranteed upon convergence.
If needed, a feasible point may be obtained by projecting
each row of Z onto the simplex (see section 4). We initialize
Y = U = 0. We stop when

∥

∥Z(τ+1) − Z(τ)
∥

∥

1
falls below

a set tolerance (e.g. 10−5).
Each step in (3) is O(NK) except for the linear system

solution in (3b). If L is sparse, using the Cholesky factor
makes this step O(NK) as well, and adds a one-time setup
cost of computing the Cholesky factor (which is also lin-
ear in N with sufficiently sparse matrices). Thus, each it-
eration of the algorithm is cheap. In practice, for good val-
ues of ρ, the algorithm quickly approaches the solution in
the first iterations and then converges slowly, as is known
with ADMM algorithms in general. However, since each it-
eration is so cheap, we can run a large number of them if
high accuracy is needed. As a sample runtime, for a problem
with N = 10 000 items and K = 10 categories (i.e., Z has
105 parameters) and using a 100-nearest-neighbor graph, the
Cholesky factorization takes 0.5 s and each iteration takes
0.15 s in a PC. We discuss how to set the penalty parameter
ρ in (Carreira-Perpiñán and Wang 2014).

4 Out-of-sample Mapping
Having trained the system, that is, having found the opti-
mal assignments Z for the training set items, we are given a
new, test item x (for example, a new point x ∈ R

D), along
with its item-item and item-category similaritiesw = (wn),
n = 1, . . . , N and g = (gk), k = 1, . . . ,K, respec-
tively, and we wish to find its assignment z(x) to each cat-
egory. Following (Carreira-Perpiñán and Lu 2007), this can
be achieved by solving a problem of the form (1) with a
dataset consisting of the original training set augmented with
x, but keeping Z fixed to the values obtained during train-
ing. Hence, the only free parameter is the assignment vector
z for the new point x. After dropping constant terms, the
optimization problem (1) reduces to the following quadratic
program over K variables:

minz ‖z− (z̄+ γg)‖
2

s.t. zT1K = 1, z ≥ 0 (4)

γ = 1
2λ(1T

N
w)

z̄ = Z
T
w

1T

N
w

=
∑N

n=1
wn∑

N

n′=1
w

n′

zn

where z̄ is a weighted average of the training points’ assign-
ments, and so z̄ + γg is itself an average between this and
the item-category affinities. Thus, the solution is the Eu-
clidean projection Π(z̄ + γg) of the K-dimensional vec-
tor z̄ + γg onto the probability simplex. This can be effi-
ciently computed, in a finite number of steps, with a sim-
ple O(K logK) algorithm (Duchi et al. 2008; Wang and
Carreira-Perpiñán 2013). Computationally, assuming w is
sparse, the most expensive step is finding the neighbors to
construct w. With large N , one should use some form of
hashing (Shakhnarovich, Indyk, and Darrell 2006) to re-
trieve approximate neighbors quickly.
As a function of λ, the out-of-sample mapping takes the

following extreme values. If λ = 0 or w = 0, zk =



δ(k − kmax) where kmax = argmax{gk, k = 1, . . . ,K},
i.e., the item is assigned to its most similar similar category
(or any mixture thereof in case of ties). If λ =∞ or g = 0,
z = z̄, independently of g. This is the SSL out-of-sample
mapping. In between these, the out-of-sample mapping as a
function of λ is a piecewise linear path in the simplex, which
represents the tradeoff between the crowd (w) and expert (g)
wisdoms. This path is quite different from the simple aver-
age of z̄ and g (which need not even be feasible), and may
produce exact 0s or 1s for some entries.
The out-of-sample mapping offers an extra degree of flex-

ibility to the user, who has the prerogative to set λ to favor
more or less the expert vs the crowd opinion, or to explore
the entire λ ∈ [0,∞) continuum. The user can also explore
what-if scenarios by changing g, given the vector w (e.g.
how would the assignment vector look like if we think that
test item x belongs to category k but not to category k′?).

Note that the out-of-sample mapping is nonlinear and
nonparametric, and it maps an input x (given its affinity in-
formation) onto a valid assignment vector in the probability
simplex. Hence, LASS can also be considered as learning
nonparametric conditional distributions over the categories,
given partial supervision.

5 Related Work
In semisupervised learning (SSL) with a Laplacian penalty
(Zhu, Ghahramani, and Lafferty 2003), the basic idea is that
we are given an affinity matrix W and corresponding graph
Laplacian L = D−W onN items, and the labels for a sub-
set of the items. Then, the labels for the remaining, unlabeled
items are such that they minimize the Laplacian penalty, or
equivalently they are the smoothest function on the graph
that satisfies the given labels (“harmonic” function). Call Zu

ofNu×K andZl ofNl×K the matrices of labels for the un-
labeled and labeled items, respectively, whereN = Nl+Nu,
and ZT = (ZT

u ZT
l ). To obtain Zu we minimize tr

(

ZTLZ
)

over Zu, with fixed Zl:

min
Zu

tr
(

ZTLZ
)

= min
Zu

tr
(

(

Zu

Zl

)T
(

Lu Lul

L
T

ul
Ll

)

(

Zu

Zl

)

)

= minZu
tr
(

ZT
uLuZu + 2ZT

l L
T
ulZu

)

+ constant

⇒ Zu = −L−1
u LulZl = L−1

u WulZl. (5)

Thus, computationally the solution involves a sparse linear
system of Nu × Nu. An out-of-sample mapping for a new
test item x with affinity vector w wrt the the training set
can be derived by SSL again, taking Zl of N × K as all
the trained labels (given and predicted) and Zu = zT as
the free label. This gives a closed-form expression z(x) =
∑N

n=1
wn∑

N

n′=1
w

n′

zn which is the average of the labels of

x’s neighbors, making clear the smoothing behavior of the
Laplacian. SSL with a Laplacian penalty is very effective
in problems where there are very few labeled items, i.e.,
Nu ≫ Nl, but the graph structure is highly predictive of
each item’s labels. Essentially, the given labels are propa-
gated throughout the graph.
In the special case where the given labels are valid assign-

ments (nonnegative with unit sum), the labels predicted by
SSL will also be valid assignments, and we need not subject

the problem explicitly to simplex constraints, which simpli-
fies it computationally. This occurs in the standard semisu-
pervised classification setting where each item belongs to
only one category and we use the zn vectors to implement
a 1-of-K coding (e.g. as used for supervised clustering in
(Grady 2006)). However, in general SSL does not produce
valid assignments, e.g. if the given labels are not valid as-
signments, or in other widely used variations of SSL, such as
using class mass normalization (Zhu, Ghahramani, and Laf-
ferty 2003), or using the normalized graph Laplacian instead
of the unnormalized one, or using label penalties (Zhou et
al. 2004). In the latter case (also similar to the “dongle”
variation of SSL; (Zhu, Ghahramani, and Lafferty 2003)),
one minimizes the Laplacian penalty plus a term equal to
the squared distance of the labeled points (considered free
parameters as well) to the labels Zl provided. Thus, this
penalizes the labeled points from deviating from their in-
tended labels, rather than forcing them to equal them. This
was extended by (Subramanya and Bilmes 2011) (replac-
ing squared losses with Kullback-Leibler divergences and
adding an additional entropy term) to learning probability
distributions, i.e., where the labels Zl are entire distributions
over the K classes, with each item-class probability speci-
fied exactly. All these approaches rely on the following: they
use provided, specific label values Zl as targets to be (ide-
ally) met by the parameters.

Relation with LASS LASS and SSL are similar in that (1)
L plays the same role, i.e., to propagate label information
in a smooth way according to the item-item graph; and (2)
both rely on some given data to learn Z: the similarity ma-
trix G in LASS and the given labels Zl in SSL. LASS and
SSL differ as follows. (1) The use of the simplex constraints,
necessary to ensure valid assignments, which also means all
the assignment values in LASS are interdependent, unlike in
the classical SSL, where the prediction for each category can
be solved independently. (2) A fundamental difference is in
the supervision provided. If in LASS we were given actual
labels Zl for some of the items, we would simply use them
just as in SSL, and the LASS problem with Zl having given
assignments would be:

minZu
λ tr

(

ZT
uLuZu + 2ZT

l L
T
ulZu

)

− tr
(

GT
uZu

)

s.t. Zu1K = 1Nu
, Zu ≥ 0.

However, theG term provides soft, partial “labels”, and this
information differs from (hard) labels Zl. Indeed, when the
label to be learned for each item is an assignment vector, the
concept of “labeling” breaks down, for two reasons. First, if
the number of categories K is not very small and an item
n has nonzero assignments to multiple categories, in prac-
tice it is hard for a user to have to give a value (or tag) for
every single relevant category. Giving partial information is
much easier, by simply setting gnk = 1 for the most rele-
vant categories, possibly setting gnk = −1 for a few cate-
gories, and setting gnk = 0 for the rest (we stick to ±1 and
0 similarities for simplicity). Second, because the assign-
ment values are constrained to be in the simplex, we cannot
give actual values for individual entries (unless we give the



entire assignment vector). For example, setting an entry to
1 implicitly forces the other entries to 0. In summary, the
semantics of the item-category similarities in LASS is that,
where nonzero, they encourage the corresponding assign-
ment towards relatively high or low values (for positive and
negative similarities, respectively), and where zero, they re-
flect ignorance and are non-committing, something which is
close to a user’s intuition, but generally difficult to achieve
by setting assignment values directly.
Not being able to commit to specific assignment values,

especially where gnk = 0, also implies that it is not possible
to transform meaningfully a given item-category sparse sim-
ilarity matrix G into an assignment vector. Given a sparse
matrix G, if we insist in setting full assignments for each
item n having a nonzero vector gn (so we can use these with
SSL), perhaps the best one can do is to follow this labeling
procedure: for each k, set znk = 1, ǫ or 0 if gnk = 1, 0 or
−1, respectively, and normalize zn (where 1 ≫ ǫ ≥ 0 is
a smoothing user parameter). This forces a zero assignment
for each negative-similarity category, and distributes the unit
assignment mass over the remaining categories. Obviously,
this likely forces many znk to wrong values and, as we show
in the experiments, works poorly.
The difference between SSL and LASS is clearly seen in

the out-of-sample mapping. In SSL, the information pro-
vided for a test item is just the vector w of similarities to
other items, and the SSL out-of-sample mapping coincides
with z̄ in the LASS out-of-sample mapping, i.e., the aver-
age of its neighbors’ assignments. With LASS, in addition
to w we also give the vector g of similarities to categories.
If g = 0, the predictions of LASS and SSL coincide. Oth-
erwise, LASS trades off both w and g. This is particularly
important whenw is not very informative, e.g. if it has many
nonzero entries of similar magnitude, or all entries are very
small (an outlying or “new” item).

6 Experiments
We test LASS in: (1) a single-label task (digit recognition),
where using assignment vectors is not strictly necessary, but
LASS still achieves the best classification performance. (2)
Document categorization and image tagging, where learning
assignment vectors and using partial labels is necessary.

Digit recognition We test LASS in a classification task
where each data point has only one valid label. We randomly
sample 10 000 MNIST digit images (http://yann.
lecun.com/exdb/mnist) and compute the 10-nearest-
neighbor graph with similarities based on the Euclidean dis-
tance between images. We then randomly select Nl images
from each of the 0–9 categories and give them the correct
label. We compare with a nearest neighbor classifier (NN),
one-vs-all kernel support vector machine (KSVM) using
RBF kernel of width σ = 5 and hinge loss penalty param-
eter C selected from {10−3, 10−2, 10−1, 1, 101, 102, 103}
and SSL (Zhu, Ghahramani, and Lafferty 2003; Grady 2006)
using 1-out-of-10 coding for the labeled points. We also in-
clude two variants of SSL: SSL1 (Zhu, Ghahramani, and
Lafferty 2003) normalizes the assignments from SSL so that
the prior distribution of the different classes is respected.

SSL2 uses the normalized graph Laplacian instead of the un-
normalized one in SSL (Zhou et al. 2004). SSL1 and SSL2
improve over SSL but neither of them produce valid assign-
ments (they do not lie on the probability simplex). For LASS
and SSL/1/2 we assign each point to the category with the
highest prediction value. We let all algorithms use their re-
spective optimal parameters (e.g. λ in LASS is determined
by a grid search).

Fig. 1(left) shows the classification error over 20 different
labeled/unlabeled partitions of the dataset as a function of
Nl (errorbars not shown to avoid clutter). The accuracy of
all algorithms improves as the number of labeled points in-
crease, particularly for NN and KSVM, which are template
matchers. But when only few points are labeled, the methods
that make use of Laplacian smoothing significantly outper-
form them. LASS (runtime: 40 s) consistently achieves the
best accuracy while producing valid assignments.

Document categorization We want to predict assign-
ments of documents to topics, where each document may
belong to multiple topics, in the 20-newsgroups dataset
of the UCI KDD Archive (N = 11 269 documents). We
manually add 7 new topics (comp.sys, rec.sport, computer,
recreation, politics, science and religion) based on the hi-
erarchical structure and perceived similarity of groups (e.g.
comp.sys.ibm.pc.hardware / comp.sys.mac.hardware). This
yields K = 27 topics and each document can belong to 1 to
3 topics. To construct feature vectors, we remove words that
occur in 5 or fewer documents, and then extract the TFIDF
(term frequency × inverse document frequency) feature of
the documents. We generate the G similarity matrix by ran-
domly selecting Nl documents from each of the 27 topics,
and giving each document one +1 label (the topic it is se-
lected from) and five−1 labels (topics it does not belong to).
For SSL, we turn this into assignment labels as described in
section 5, and select the smoothing parameter ǫ optimally
from {0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2}.

To evaluate the performance, we select for each test doc-
ument the T topics to which it has highest predicted assign-
ments (where T ∈ {1, 2, 3} is the actual number of topics
this document belongs to), consider them as predicted label
set, and compare them with ground truth labels. We con-
sider it as an error if the predicted label set and the ground
truth set differ. NN classification does not apply here be-
cause no document is fully labeled. We can apply one-vs-all
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Figure 1: Classification error (%) vs number of labeled
points for each class on MNIST (left) and 20-newsgroups
(right) datasets.
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Figure 2: Results on ESP game dataset. Top: precision and
recall vs number of positive affinities nl, at a fixed annota-
tion length 5, averaged over 20 runs. Bottom: sample pre-
dictions of LASS on test images when nl = 5. We show
the highest predictions (Pred., in assignment order) up to
the number of tags in the ground truth (GT, unordered), with
mismatches in boldface.

linear SVM (hinge loss penalty parameter C selected from
{10−3, 10−2, 10−1, 1, 101, 102, 103}) because we do have
training points for each topic. Fig. 1(right) shows the mean
classification error over 20 random labeled/unlabeled parti-
tions of the dataset as a function of Nl. The accuracy of all
algorithms again improves when Nl increases. LASS out-
performs all other algorithms at nearly all Nl values, and,
unlike them, always produces valid assignments.

Image tagging This task fully benefits from the ability of
LASS to handle partial labels, and predict full assignment
vectors. In the problem of image tagging, each image can
typically be tagged with multiple categories of a large num-
ber of possible categories. However, a user will usually tag
only a few of the relevant categories for it (e.g. out of lazi-
ness) and will miss tagging other categories that would be
relevant too. The task given a test image is to predict an as-
signment vector, i.e., to fill in “soft tags”, for all categories.
When there are many possible categories, trying to fill in the
missing assignments for the partially labeled samples (so we
can use SSL to propagate them to the unlabeled samples) is
pointless. In contrast, LASS does not require these missing
assignments, by conveniently providing zero affinities.

We demonstrate LASS on a subset of the ESP game (von
Ahn and Dabbish 2004) images used by (Guillaumin et al.
2009). We select the images in the training set that are tagged

with at least 6 categories (words), resulting in 6 100 images
with a total of 267 non-empty categories, with 7.2 categories
per image on average. We use the same image feature sets
as (Guillaumin et al. 2009) to compute distances between
images and build a 10-nearest neighbor graph. We give par-
tial information for 4 600 images and provide item-category
affinities for each image in the following way: we give pos-
itive affinity (+1) for a random subset of size nl from the
categories it is tagged with, and give negative affinities (−1)
randomly for 5 out of the 20 most frequent categories it is
not tagged with. Providing negative affinities in this way
stops the algorithm from concentrating most of the proba-
bility mass on the most frequent categories. The other 1 500
images are completely unlabeled and used for testing. SSL
fills in missing assignments of the partially labeled samples
as described in the document categorization task. Parameters
are selected based on grid search for each algorithm.
We evaluate the performance of different algorithms us-

ing the precision, recall and F–1 score (averaged over sam-
ple images) on the test samples while fixing the annotation
length at 5, i.e., each image is tagged with the 5 categories
of highest assignment. (Although LASS admits tags as sim-
ilarity values at test time, we do not use them here.) We vary
the number of positive tags nl from 1 to 6. Fig. 2 shows the
results for SSL and LASS over 20 runs (each with a different
random selection of test set and partial affinities). We could
not run one-versus-all SVMs because there are no negative
samples for most categories. In SSL2, the highest prediction
values are nearly always the most frequent categories. We
see that LASS greatly improves over SSL, especially when
smaller numbers of positive affinities are given.

7 Conclusion
We have proposed a simple quadratic programming model
for learning assignments of items to categories that com-
bines two complementary and possibly conflicting sources
of information: the crowd wisdom and the expert wisdom. It
is particularly attractive when fully labeling an item is im-
practical, or when categories have a complex structure and
items can genuinely belong to multiple categories to differ-
ent extents. It provides a different way to incorporate super-
vision to that of traditional semisupervised learning, which
is ill-suited for this setting because the similarity informa-
tion cannot be faithfully transformed into assignment labels.

We expect LASS to apply to problems beyond semisu-
pervised learning, such as clustering, and in social network
applications, with image, sound or text data that is partially
tagged. It can also be extended to handle tensor data or have
additional terms in its objective, for example to represent
relations between categories with a category-category simi-
larity matrix, or even to use negative similarities in the item-
item graph. A further application of LASS is to learn proba-
bility distributions that are conditional on partial supervisory
information, since, in effect, the out-of-sample mapping is a
nonparametric mapping from the affinity information to a
distribution over categories. Another research direction is to
accelerate the convergence of the training algorithm, partic-
ularly with large datasets with many categories, where we
may expect each row of Z to be sparse.
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