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Abstract

Model compression is generally performed by using quantization, low-rank approximation or pruning,
for which various algorithms have been researched in recent years. One fundamental question is: what
types of compression work better for a given model? Or even better: can we improve by combining
compressions in a suitable way? We formulate this generally as a problem of optimizing the loss but
where the weights are constrained to equal an additive combination of separately compressed parts; and
we give an algorithm to learn the corresponding parts’ parameters. Experimentally with deep neural nets,
we observe that 1) we can find significantly better models in the error-compression space, indicating that
different compression types have complementary benefits, and 2) the best type of combination depends
exquisitely on the type of neural net. For example, we can compress ResNets and AlexNet using only
1 bit per weight without error degradation at the cost of adding a few floating point weights. However,
VGG nets can be better compressed by combining low-rank with a few floating point weights.

1 Introduction

In machine learning, model compression is the problem of taking a neural net or some other model, which
has been trained to perform (near)-optimal prediction in a given task and dataset, and transforming it into
a model that is smaller (in size, runtime, energy or other factors) while maintaining as good a prediction
performance as possible. This problem has recently become important and actively researched because of
the large size of state-of-the-art neural nets, trained on large-scale GPU clusters without constraints on
computational resources, but which cannot be directly deployed in IoT devices with much more limited
capabilities.

The last few years have seen much work on the topic, mostly focusing on specific forms of compression,
such as quantization, low-rank matrix approximation and weight pruning, as well as variations of these. These
papers typically propose a specific compression technique and a specific algorithm to compress a neural net
with it. The performance of these techniques individually varies considerably from case to case, depending
on the algorithm (some are better than others) but more importantly on the compression technique. This is
to be expected, because (just as happens with image or audio compression) some techniques achieve more
compression for certain types of signals.

A basic issue is the representation ability of the compression: given an optimal point in model space (the
weight parameters for a neural net), which manifold or subset of this space can be compressed exactly, and
is that subset likely to be close to the optimal model for a given machine learning task? For example, for
low-rank compression the subset contains all matrices of a given rank or less. Is that a good subset to model
weight matrices arising from, say, deep neural nets for object classification?
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Figure 1: Illustration of compression by additive combination W = W1+W2+W3. Black weights are real,
red weights are −1 and blue weights are +1.

One way to understand this question is to try many techniques in a given task and gain experience about
what works in which case. This is made difficult by the multiplicity of existing algorithms, the heuristics
often used to optimize the results experimentally (which are compounded by the engineering aspects involved
in training deep nets, to start with), and the lack at present of an apples-to-apples evaluation in the field of
model compression.

A second way to approach the question which partly sidesteps this problem is to use a common algorithm
that can handle any compression technique. While compressing a deep net in a large dataset will still involve
careful selection of optimization parameters (such as SGD learning rates), having a common algorithmic
framework should put different compression techniques in the same footing. Yet a third approach, which
we propose in this paper, is to combine several techniques (rather than try each in isolation) while jointly
optimizing over the parameters of each (codebook and assignments for quantization, component matrices for
low-rank, subset and value of nonzero weights for pruning, etc.).

There are multiple ways to define a combination of compression techniques. One that is simple to achieve
is by applying compression techniques sequentially, such as first pruning the weights, then quantizing the
remaining nonzero weights and finally encoding them with Huffman codes [13]. This is suboptimal in that
the global problem is solved greedily, one compression at a time. The way we propose here is very different:
an additive combination of compression techniques. For example, we may want to compress a given weight
matrix W as the sum (or linear combination) W = W1 + W2 + W3 of a low-rank matrix W1, a sparse
matrix W2 and a quantized matrix W3. This introduces several important advantages. First, it contains
as a particular case each technique in isolation (e.g., quantization by making W1 = 0 a zero-rank matrix
and W2 = 0 a matrix with no nonzeros). Second, and critically, it allows techniques to help each other
because of having complementary strengths. For example, pruning can be seen as adding a few elementwise
real-valued corrections to a quantized or low-rank weight matrix. This could result (and does in some cases)
in using fewer bits, lower rank and fewer nonzeros and a resulting higher compression ratio (in memory
or runtime). Third, the additive combination vastly enlarges the subset of parameter space that can be
compressed without loss compared to the individual compressions. This can be seen intuitively by noting
that a fixed vector times a scalar generates a 1D space, but the additive combination of two such vectors
generates a 2D space rather than two 1D spaces).

One more thing remains to make this possible: a formulation and corresponding algorithm of the com-
pression problem that can handle such additive combinations of arbitrary compression techniques. We rely

2



on the previously proposed “learning-compression (LC)” algorithm [8]. This explicitly defines the model
weights as a function (called decompression mapping) of low-dimensional compression parameters; for ex-
ample, the low-rank matrix above would be written as W1 = UVT . It then iteratively optimizes the loss
but constraining the weights to take the desired form (an additive combination in our case). This alternates
learning (L) steps that train a regularized loss over the original model weights with compression (C) steps
that compress the current weights, in our case according to the additive compression form.

Next, we review related work (section 2), describe our problem formulation (section 3) and corresponding
LC algorithm (section 4), and demonstrate the claimed advantages with deep neural nets (sections 5, 6). A
shorter version of this paper appears as [20].

2 Related work

2.1 General approaches

In the literature of model and particularly neural net compression, various approaches have been studied,
including most prominently weight quantization, weight pruning and low-rank matrix or tensor decomposi-
tions. There are other approaches as well, which can be potentially used in combination with. We briefly
discuss the individual techniques first. Quantization is a process of representing each weight with an item
from a codebook. This can be achieved through fixed codebook schemes, i.e., with predetermined codebook
values that are not learned (where only the assignments should be optimized). Examples of this compression
are binarization, ternarization, low-precision, fixed-point or other number representations [26, 35]. Quan-
tization can also be achieved through adaptive codebook schemes, where the codebook values are learned
together with the assignment variables, with algorithms based on soft quantization [1, 33] or hard quantiza-
tion [13]. Pruning is a process of removal of weights (unstructured) or filters and neurons (structured). It
can be achieved by salience ranking [13, 24] in one go or over multiple refinements, or by using sparsifying
norms [9, 49]. Low-rank approximation is a process of replacing weights with low-rank [19, 22, 41, 46] or
tensors-decomposed versions [32].

2.2 Usage of combinations

One of the most used combinations is to apply compressions sequentially, most notably first to prune weights
and then to quantize the remaining ones [11, 13, 13, 39, 47], which may possibly be further compressed via
lossless coding algorithms (e.g., Huffman coding). Additive combination of quantizations [3, 45, 53], where
weights are the sum of quantized values, as well as low-rank + sparse combination [2, 52] has been used to
compress neural networks. However, these methods rely on optimization algorithms highly specialized to a
problem, limiting its application to new combinations (e.g., quantization + low-rank).

3 Compression via an additive combination as constrained opti-

mization

Our basic formulation is that we define the weights as an additive combination of weights, where each term
in the sum is individually compressed in some way. Consider for simplicity the case of adding just two
compressions for a given matrix1. We then write a matrix of weights as W = ∆1(θ1) + ∆2(θ2), where
θi is the low-dimensional parameters of the ith compression and ∆i is the corresponding decompression
mapping. Formally, the ∆ maps a compressed representation of the weight matrix θ to the real-valued,
uncompressed weight matrix W. Its intent is to represent the space of matrices that can be compressed via
a constraint subject to which we optimize the loss of the model in the desired task (e.g., classification). That
is, a constraint W = ∆(θ) defines a feasible set of compressed models. For example:

• Low-rank: W = UVT with U and V of rank r, so θ = (U,V).

1The general case of multiple compressions, possibly applied separately to each layer of a net and not necessarily in matrix
form, follows in an obvious way. Throughout the paper we use W or w or w to notate matrix, vector or scalar weights as
appropriate (e.g., W is more appropriate for low-rank decomposition).
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• Pruning: w = θ s.t. ‖θ‖0 ≤ κ, so θ is the indices of its nonzeros and their values.

• Scalar quantization: w =
∑K

k=1 zkck with assignment variables z ∈ {0, 1}K, 1T z = 1 and codebook
C = {c1, . . . , cK} ⊂ R, so θ = (z, C).

• Binarization: w ∈ {−1,+1} or equivalently a scalar quantization with C = {−1,+1}.

Note how the mapping ∆(θ) and the low-dimensional parameters θ can take many forms (involving scalars,
matrices or other objects of continuous or discrete type) and include constraints on θ. Then, our problem
formulation takes the form of model compression as constrained optimization [8] and given as:

min
w

L(w) s.t. w = ∆1(θ1) +∆2(θ2). (1)

This expresses in a mathematical way our desire that 1) we want a model with minimum loss on the task
at hand (L(w) represents, say, the cross-entropy of the original deep net architecture on a training set); 2)
the model parameters w must take a special form that allows them to be compactly represented in terms of
low-dimensional parameters θ = (θ1, θ2); and 3) the latter takes the form of an additive combination (over
two compressions, in the example). Problem (1) has the advantage that it is amenable to modern techniques
of numerical optimization, as we show in section 4.

Although the expression “w = ∆1(θ1) + ∆2(θ2)” is an addition, it implicitly is a linear combination
because the coefficients can typically be absorbed inside each ∆i. For example, writing αUVT (for low-rank
compression) is the same as, say, U′VT with U′ = αU. In particular, any compression member may be
implicitly removed by becoming zero. Some additive combinations are redundant, such as having both W1

and W2 be of rank at most r (since rank (W1 +W2) ≤ 2r) or having each contain at most κ nonzeros (since
‖W1 +W2‖0 ≤ 2κ).

The additive combination formulation has some interesting consequences. First, an additive combination
of compression forms can be equivalently seen as a new, learned deep net architecture. For example (see fig. 1),
low-rank plus pruning can be seen as a layer with a linear bottleneck and some skip connections which are
learned (i.e., which connections to have and their weight value). It is possible that such architectures may be
of independent interest in deep learning beyond compression. Second, while pruning in isolation means (as
is usually understood) the removal of weights from the model, pruning in an additive combination means the
addition of a few elementwise real-valued corrections. This can potentially bring large benefits. As an extreme
case, consider binarizing both the multiplicative and additive (bias) weights in a deep net. It is known that
the model’s loss is far more sensitive to binarizing the biases, and indeed compression approaches generally
do not compress the biases (which also account for a small proportion of weights in total). In binarization
plus pruning, all weights are quantized but we learn which ones need a real-valued correction for an optimal
loss. Indeed, our algorithm is able to learn that the biases need such corrections more than other weights
(see corresponding experiment in appendix C.1.1).

3.1 Well known combinations

Our motivation is to combine generically existing compressions in the context of model compression. How-
ever, some of the combinations are well known and extensively studied. Particularly, low-rank + sparse
combination has been used in its own right in the fields of compressed sensing [7], matrix decomposition [55],
and image processing [6]. This combination enjoys certain theoretical guarantees [7, 10], yet it is unclear
whether similar results can be stated over more general additive combinations (e.g., with non-differentiable
scheme like quantization) or when applied to non-convex models as deep nets.

3.2 Hardware implementation

The goal of model compression is to implement in practice the compressed model based on the θ parameters,
not the original weights W. With an additive combination, the implementation is straightforward and
efficient by applying the individual compressions sequentially and cumulatively. For example, sayW = W1+
W2 is a weight matrix in a layer of a deep net and we want to compute the layer’s output activations σ(Wx)
for a given input vector of activations x (where σ(·) is a nonlinearity, such as a ReLU). By the properties of
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linearity, Wx = W1x+W2x, so we first compute y = W1x according to an efficient implementation of the
first compression, and then we accumulate y = y+W2x computed according to an efficient implementation
of the second compression. This is particularly beneficial because some compression techniques are less
hardware-friendly than others. For example, quantization is very efficient and cache-friendly, since it can
store the codebook in registers, access the individual weights with high memory locality, use mostly floating-
point additions (and nearly no multiplications), and process rows of W1 in parallel. However, pruning has a
complex, nonlocal pattern of nonzeros whose locations must be stored. Combining quantization plus pruning
not only can achieve higher compression ratios than either just quantization or just pruning, as seen in our
experiments; it can also reduce the number of bits per weight and (drastically) the number of nonzeros, thus
resulting in fewer memory accesses and hence lower runtime and energy consumption.

4 Optimization via a learning-compression algorithm

Although optimizing (1) may be done in different ways for specific forms of the loss L or the decompression
mapping constraint ∆, it is critical to be able to do this in as generic way as possible, so it applies to
any combination of forms of the compressions, loss and model. Following Carreira-Perpinan [8], we apply
a penalty method and then alternating optimization. We give the algorithm for the quadratic-penalty
method [31], but we implement the augmented Lagrangian one (which works in a similar way but with the
introduction of a Lagrange multiplier vector λ of the same dimension as w). We then optimize the following
while driving a penalty parameter µ → ∞:

Q(w, θ;µ) = L(w) +
µ

2
‖w −∆1(θ1)−∆2(θ2)‖

2
(2)

by using alternating optimization over w and θ. The step over w (“learning (L)” step) has the form of a
standard loss minimization but with a quadratic regularizer on w (since ∆1(θ1) + ∆2(θ2) is fixed), and
can be done using a standard algorithm to optimize the loss, e.g., SGD with deep nets. The step over θ

(“compression (C)” step) has the following form:

min
θ

‖w −∆(θ)‖2 ⇔ min
θ1,θ2

‖w −∆1(θ1)−∆2(θ2)‖
2
. (3)

In the original LC algorithm [8], this step (over just a single compression ∆(θ)) typically corresponds
to a well-known compression problem in signal processing and can be solved with existing algorithms. This
gives the LC algorithm a major advantage: in order to change the compression form, we simply call the
corresponding subroutine in this step (regardless of the form of the loss and model). For example, for low-
rank compression the solution is given by a truncated SVD, for pruning by thresholding the largest weights,
and for quantization by k-means. It is critical to preserve that advantage here so that we can handle in a
generic way an arbitrary additive combination of compressions. Fortunately, we can achieve this by applying
alternating optimization again but now to (3) over θ1 and θ2, as follows

2:

θ1 = argmin
θ

‖(w −∆2(θ2))−∆1(θ)‖
2

θ2 = argmin
θ

‖(w −∆1(θ1))−∆2(θ)‖
2

(4)

Each problem in (4) now does have the standard compression form of the original LC algorithm and can
again be solved by an existing algorithm to compress optimally according to ∆1 or ∆2. At the beginning of
each C step, we initialize θ from the previous C step’s result (see Alg. 1).

It is possible that a better algorithm exists for a specific form of additive combination compression (3). In
such case we can employ specialized version during the C step. But our proposed alternating optimization (4)
provides a generic, efficient solution as long as we have a good algorithm for each individual compression.

Convergence of the alternating steps (4) to a global optimum of (3) over (θ1, θ2) can be proven in some
cases, e.g., low-rank + sparse [55], but not in general, as one would expect since some of the compression

2This form of iterated “fitting” (here, compression) by a “model” (here, ∆1 or ∆2) of a “residual” (here, w − ∆2(θ2) or
w −∆1(θ1)) is called backfitting in statistics, and is widely used with additive models [14].
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Algorithm 1 Pseudocode (quadratic-penalty version)

input training data, neural net architecture with weights w

w← argmin
w
L(w) reference net

θ1,θ2 ← argmin
θ1,θ2

‖w −∆1(θ1)−∆2(θ2)‖
2

init

for µ = µ0 < µ1 < · · · <∞
w← argmin

w
L(w) + µ

2
‖w −∆1(θ1)−∆2(θ2)‖

2
L step

while alternation does not converge

θ1 ← argmin
θ1
‖(w −∆2(θ2))−∆1(θ1)‖

2







C step

θ2 ← argmin
θ2
‖(w −∆1(θ1))−∆2(θ2)‖

2

if ‖w −∆1(θ1)−∆2(θ2)‖ is small enough then exit the loop
return w, θ1,θ2

problems involve discrete and continuous variables and can be NP-hard (such as quantization with an
adaptive codebook). Convergence can be established quite generally for convex functions [4, 42]. For
nonconvex functions, convergence results are complex and more restrictive [38]. One simple case where
convergence occurs is if the objective in (3) (i.e., each ∆i) is continuously differentiable and it has a unique
minimizer over each θi [5, Proposition 2.7.1]. However, in certain cases the optimization can be solved
exactly without any alternation. We give a specific result next.

4.1 Exactly solvable C step

Solution of the C step (eq. 3) does not need to be an alternating optimization. Below we give an exact
algorithm for the additive combination of fixed codebook quantization (e.g., {−1,+1}, {−1, 0,+1}, etc.)
and sparse corrections.

Theorem 4.1 (Exactly solvable C step for combination of fixed codebook quantization + sparse corrections).
Given a fixed codebook C consider compression of the weights wi with an additive combinations of quantized
values qi ∈ C and sparse corrections si:

min
q,s

∑

i

(wi − (qi + si))
2 s.t. ‖s‖0 ≤ κ, (5)

Then the following provides one optimal solution (q∗, s∗): first set q∗i = closest(wi) in codebook for each i,
then solve for s: mins

∑

i (wi − q∗i − si))
2 s.t. ‖s‖0 ≤ κ.

Proof. Imagine we know the optimal set of nonzeros of the vector s, which we denote as N . Then, for the
elements not in N , the optimal solution is s∗i = 0 and q∗i = closest(wi). For the elements in N , we can find
their optimal solution by solving independently for each i:

min
qi,si

(wi − (qi + si))
2 s.t. qi ∈ C.

The solution is s∗i = wi − qi for arbitrary chosen qi ∈ C. Using this, we can rewrite the eq. 5 as
∑

i/∈N (wi − q∗i )
2.

This is minimized by taking as set N the κ largest in magnitude elements of wi − q∗i (indexed over i).
Hence, the final solution is: 1) Set the elements of N to be the κ largest in magnitude elements of wi − q∗i
(there may be multiple such sets, any one is valid). 2) For each i in N : set s∗i = wi − q∗i , and q∗i = any
element in C. For each i not in N : set s∗i = 0, q∗i = closest(wi) (there may be 2 closest values, any one is
valid). This contains multiple solutions. One particular one is as given in the theorem statement, where we
set q∗i = closest(wi) for every i, which is practically more desirable because it leads to a smaller ℓ1-norm of
s.

5 Experiments on CIFAR10

We evaluate the effectiveness of additively combining compressions on deep nets of different sizes on the
CIFAR10 (VGG16 and ResNets). We systematically study each combination of two or three compressions
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1bit Q + % P logL Etest(%) ρs ρ+ ρ×

R -0.80 8.35 1.00 1.00 1.00
Q + 1.0% P -0.84 9.16 22.67 0.97 30.74

R
es
N
et
2
0

Q + 2.0% P -0.92 8.92 19.44 0.96 19.74
Q + 3.0% P -0.93 8.31 17.08 0.94 15.80
Q + 5.0% P -0.99 8.26 13.84 0.92 11.54

R -0.82 7.14 1.00 1.00 1.00
Q + 1.0% P -1.03 7.57 22.81 0.97 30.52

R
es
N
et
3
2

Q + 2.0% P -1.07 7.61 19.54 0.96 19.85
Q + 3.0% P -1.10 7.29 17.14 0.94 15.80
Q + 5.0% P -1.14 7.09 13.84 0.92 11.56

R -0.81 6.58 1.00 1.00 1.00
Q + 0.5% P -1.08 6.77 25.04 0.98 49.79

R
es
N
et
5
6

Q + 1.0% P -1.13 6.73 22.87 0.97 32.04
Q + 2.0% P -1.17 6.70 19.55 0.96 20.46
Q + 3.0% P -1.18 6.23 17.11 0.94 15.98

R -0.77 6.02 1.00 1.00 1.00
Q + 0.5% P -1.16 6.20 25.03 0.99 55.63

R
es
N
et
1
1
0

Q + 1.0% P -1.20 5.80 22.80 0.98 35.94
Q + 2.0% P -1.23 5.66 19.47 0.96 27.27
Q + 3.0% P -1.25 5.58 17.04 0.95 17.84
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Figure 2: Q+P. Left : results of running 1-bit quantization with varying amounts of additive pruning (cor-
rections) on ResNets of different depth on CIFAR-10 (with reference nets denoted R). We report training
loss (logarithms are base 10), test error Etest (%), and ratios of storage ρs and floating point additions (ρ+)
and multiplications (ρ×). Boldfaced results are the best for each ResNet depth. Right : training loss (top)
and test error (bottom) as a function of the storage ratio. For each net, we give our algorithm’s compression
over several values of P, thus tracing a line in the error-compression space (reference nets: horizontal dashed
lines). We also report results from the literature as isolated markers with a citation: quantization Q, pruning
P, Huffman coding HC, and their sequential combination using arrows (e.g., Q→HC). Point “Q [45]” on the
left border is outside the plot (ρs < 12).

out of quantization, low-rank and pruning. We demonstrate that the additive combination improves over any
single compression contained in the combination (as expected), and is comparable or better than sequentially
engineered combinations such as first pruning some weights and then quantizing the rest. We sometimes
achieve models that not only compress the reference significantly but also reduce its error. Notably, this
happens with ResNet110 (using quantization plus either pruning or low-rank), even though our reference
ResNets were already well trained and achieved a lower test error than in the original paper [16].

We initialize our experiments from reasonably well-trained reference models. We train reference ResNets
of depth 20, 32, 56, and 110 following the procedure of the original paper [16] (although we achieve lower
errors). The models have 0.26M, 0.46M, 0.85M, and 1.7M parameters and test errors of 8.35%, 7.14%, 6.58%
and 6.02%, respectively. We adapt VGG16 [37] to the CIFAR10 dataset (see details in appendix C) and
train it using the same data augmentation as for ResNets. The reference VGG16 has 15.2M parameters and
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1bit Q + rank r logL Etest (%) ρs ρ+ ρ×

R -0.80 8.35 1.00 1.00 1.00
Q + rank 1 -0.77 9.71 20.71 0.96 21.45

R
e
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R -0.82 7.14 1.00 1.00 1.00
Q + rank 1 -0.99 7.90 20.94 0.97 21.89

R
e
sN

e
t3

2

Q + rank 2 -1.04 8.06 16.81 0.92 11.47
Q + rank 3 -1.10 7.52 14.04 0.89 7.77

R -0.81 6.58 1.00 1.00 1.00
Q + rank 1 -1.13 7.19 21.04 0.96 22.19

R
e
sN

e
t5

6

Q + rank 2 -1.19 6.51 16.91 0.92 11.61
Q + rank 3 -1.22 6.29 14.10 0.89 7.87

R -0.77 6.02 1.00 1.00 1.00
Q + rank 1 -1.19 5.98 21.11 0.96 22.38

R
e
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e
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1
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Q + rank 2 -1.24 5.93 16.96 0.92 11.70
Q + rank 3 -1.27 5.50 14.18 0.89 7.92
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Figure 3: Q+L. Left : results of running 1-bit quantization with addition of a low-rank matrix of different
rank on ResNets on CIFAR10. The organization is as for fig. 2. In the right-bottom plot we also show results
from the literature for single compressions (Q: quantization, L: low-rank). Points “L [46]” on the left border
are outside the plot (ρs < 12).
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Model Etest (%) ρs

R VGG16 6.45 1.00

rank 2 + 2% P 6.66 60.99

o
u
rs

rank 3 + 2% P 6.65 56.58

pruning [29] 6.66 ≈ 24.53
filter pruning [27] 6.60 5.55
quantization [34] 8.00 43.48

Table 1: L+P. Compressing VGG16 with low-rank and pruning using our algorithm (top) and by recent
works on structured and unstructured pruning. Metrics as in Fig. 2.

achieves a test error of 6.45%.
The optimization protocol of our algorithm is as follows throughout all experiments with minor changes

(see appendices C and D). To optimize the L step we use Nesterov’s accelerated gradient method [30] with
momentum of 0.9 on minibatches of size 128, with a decayed learning rate schedule of η0 ·a

m at themth epoch.
The initial learning rate η0 is one of {0.0007,0.007,0.01}, and the learning rate decay one of {0.94,0.98}. Each
L step is run for 20 epochs. Our LC algorithm (we use augmented Lagrangian version) runs for j steps where
j ≤ 50, and has a penalty parameter schedule µj = µ0 · 1.1j; we choose µ0 to be one of {5 · 10−4, 10−3}. The
solution of the C step requires alternating optimization over individual compressions, which we perform 30
times per each step.

We report the training loss and test error as measures of the model classification performance; and the
ratios of storage (memory occupied by the parameters) ρs, number of multiplications ρ× and number of
additions ρ+ as measures of model compression. Although the number of multiplications and additions is
about the same in a deep net’s inference pass, we report them separately because different compression
techniques (if efficiently implemented) can affect quite differently their costs. We store low-rank matrices
and sparse correction values using 16-bit precision floating point values. See our appendix B for precise
definitions and details of these metrics.

5.1 Q+P: quantization plus pruning

We compress ResNets with a combination of quantization plus pruning. Every layer is quantized separately
with a codebook of size 2 (1 bit). For pruning we employ the constrained ℓ0 formulation [9], which allows
us to specify a single number of nonzero weights κ for the entire net (κ is the “% P” value in fig. 2). The C
step of eq. (3) for this combination alternates between running k-means (for quantization) and a closed-form
solution based on thresholding (for pruning).

Fig. 2 shows our results; published results from the literature are at the bottom-right part, which shows
the error-compression space. We are able to achieve considerable compression ratios ρs of up to 20× without
any degradation in accuracy, and even higher ratios with minor degradation. These results beat single
quantization or pruning schemes reported in the literature for these models. The best 2-bit quantization
approaches for ResNets we know about [50, 56] have ρs ≈ 14× and lose up to 1% in test error comparing to
the reference; the best unstructured pruning [9, 29] achieves ρs ≈ 12× and loses 0.8%.

ResNet20 is the smallest and hardest to compress out of all ResNets. With 1-bit quantization plus 3%
pruning corrections we achieve an error of 8.26% with ρs = 13.84×. To the best of our knowledge, the highest
compression ratio of comparable accuracy using only quantization is 6.22× and has an error of 8.25% [45].
On ResNet110 with 1-bit quantization plus 3% corrections, we achieve 5.58% error while still compressing
17×.

Our results are comparable or better than published results where multiple compressions are applied
sequentially (Q→HC and P→Q→HC in fig. 2). For example, quantizing and then applying Huffman coding
to ResNet32 [1] achieves ρs = 20.15× with 7.9% error, while we achieve ρs = 22.81× with 7.57% error.
We re-emphasize that unlike the “prune then quantize” schemes, our additive combination is different: we
quantize all weights and apply a pointwise correction.
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Model top-1 MBs MFLOPs

Caffe-AlexNet [21] 42.70 243.5 724

AlexNet-QNN [43] 44.24 13.0 175
P→1Q [13] 42.78 6.9 724
P→2Q [11] 43.80 5.9 724
P→3Q [39] 42.10 4.8 724
P→4Q [47] 42.48 4.7 724
P→5Q [47] 43.40 3.1 724
filter pruning [28] 43.17 232.0 334

R Low-rank AlexNet (L1) 39.61 100.5 227
L1 → Q + P (0.25M) 39.67 3.7 227

o
u
rs

L1 → Q + P (0.50M) 39.25 4.3 227

R Low-rank AlexNet (L2) 39.93 69.8 185
L2 → Q + P (0.25M) 40.19 2.8 185

o
u
rs

L2 → Q + P (0.50M) 39.97 3.4 185

R Low-rank AlexNet (L3) 41.02 45.9 152
L3 → Q + P (0.25M) 41.27 2.1 152

o
u
rs

L3 → Q + P (0.50M) 40.88 2.7 152
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Inference time and speed-up using 1-bit Q + 0.25M P

Model time, ms speed-up

Caffe-AlexNet 23.27 1.00
L1 → Q + P 11.32 2.06
L2 → Q + P 8.75 2.66
L3 → Q + P 6.72 3.46

Figure 4: Q+P scheme is powerful enough to further compress already downsized models, here, it is used to
further compress the low-rank AlexNets [17]. In all our experiments reported here, we use 1-bit quantization
with varying amount of pruning. Left: We report top-1 validation error, size of the final model in MB when
saved to disk, and resulting FLOPs. P—pruning, Q— quantization, L—low-rank. Top right: same as the
table on the left, but in graphical form. Our compressed models are given as solid connected lines. Bottom
right: The delay (in milliseconds) and corresponding speed-ups of our compressed models on Jetson Nano
Edge GPU.

5.2 Q+L: quantization plus low-rank

We compress the ResNets with the additive combination of 1-bit quantized weights (as in section 5.1) and
rank-r matrices, where the rank is fixed and has the same value for all layers. The convoloutional layers are
parameterized by low-rank as in Wen et al. [41]. The solution of the C step (4) for this combination is an
alternation between k-means and truncated SVD.

Fig. 3 shows our results and at bottom-right of Fig. 3 we see that our additive combination (lines
traced by different values of the rank r in the error-compression space) consistently improve over individual
compression techniques reported in the literature (quantization or low-rank, shown by markers Q or L).
Notably, the low-rank approximation is not a popular choice for compression of ResNets: fig. 3 shows only
two markers, for the only two papers we know [41, 46]. Assuming storage with 16-bit precision on ResNet20,
Wen et al. [41] achieve 17.20× storage compression (with 9.57% error) and Xu et al. [46] respectively 5.39×
(with 9.5% error), while our combination of 1-bit quantization plus rank-2 achieves 16.62× (9.3% error).

5.3 L+P: low-rank plus pruning

We compress VGG16 trained on CIFAR10 using the additive combination of low-rank matrices and pruned
weights. The reference model has 15.2M parameters, uses 58.17 MB of storage and achieves 6.45% test
error. When compressing with L+P scheme of rank 2 and 3% point-wise corrections (Table 1), we achieve
a compression ratio of to 60.99× (0.95 MB storage), and the test error of 6.66%.
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6 Experiments on ImageNet

To demonstrate the power and complementary benefits of additive combinations, we proceed by applying the
Q+P combination to already downsized models trained on the ILSVRC2012 dataset. We obtain low-rank
AlexNets following the work of [17], and compress them further with Q+P scheme. The hyperparameters of
the experiments are almost identical to CIFAR10 experiments (sec. 5) with minor changes, see appendix D.

In Fig. 4 (left) we report our results: the achieved top-1 error, the size in megabytes when a compressed
model is saved to disk (we use the sparse index compression procedure of Han et al. [13]), and floating point
operations required to perform the forward pass through a network. Additionally, we include prominent
results from the literature to put our models in perspective. Our Q+P models achieve significant compression
of AlexNet: we get 117× compression (2.075MB) without degradation in accuracy and 87× compression with
more than 2% improvement in the top-1 accuracy when compared to the Caffe-AlexNet. Recently, Yang et
al. [47] (essentially using our Learning-Compression framework) reported 118× and 205× compression on
AlexNet with none to small reduction of accuracy. However, as can be found by inspecting the code of Yang
et al. [47], these numbers are artificially inflated in that they do not account for the storage of the element
indices (for a sparse matrix), for the storage of the codebook, and use a fractional number of bits per element
instead of rounding it up to an integer. If these are taken into account, the actual compression ratios become
much smaller (52× and 79×), with models of sizes 4.7MB and 3.1MB respectively (see left of Fig. 4). Our
models outperform those and other results not only in terms of size, but also in terms of inference speed.
We provide the runtime evaluation (when processing a single image) of our compressed models on a small
edge device (NVIDIA’s Jetson Nano) on the right bottom of Fig. 4.

7 Conclusion

We have argued for and experimentally demonstrated the benefits of applying multiple compressions as
an additive combination. We achieve this via a general, intuitive formulation of the optimization problem
via constraints characterizing the additive combination, and an algorithm that can handle any choice of
compression combination as long as each individual compression can be solved on its own. In this context,
pruning takes the meaning of adding a few elementwise corrections where they are needed most. This can
not only complement existing compressions such as quantization or low-rank, but also be an interesting way
to learn skip connections in deep net architectures. With deep neural nets, we observe that we can find
significantly better models in the error-compression space, indicating that different compression types have
complementary benefits, and that the best type of combination depends exquisitely on the type of neural net.
The resulting compressed nets may also make better use of the available hardware. Our codes and models
are available at https://github.com/UCMerced-ML/LC-model-compression as part of LC Toolkit [18].

Our work opens up possibly new and interesting mathematical problems regarding the best approximation
of a matrix by X, such as when X is the sum of a quantized matrix and a sparse matrix. Also, we do not
claim that additive combination is the only or the best way to combine compressions, and future work may
explore other ways.

Acknowledgments We thank NVIDIA Corporation for multiple GPU donations.
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Appendices

This appendix contains the following material: a) the pseudocode for augmented Lagrangian version of
our algorithm (page 12) b) description of how we define the reduction ratios of storage, additions, and
multiplications (page 12) c) description and results of the experiment compressing biases (page 14) d) full
details of all reported experiments with extended tables and figures for the CIFAR10 (page 14) and ImageNet
(page 23) datasets with description of Jetson Nano measurements (page 24)

A Pseudocode using augmented Lagrangian

In the main paper, we gave pseudocode for our algorithm using Quadratic Penalty formulation, here we give
the pseudocode using the augmented Lagrangian version when there are two additive combinations.

input: training data, neural net architecture with weights w

w← argmin
w
L(w) reference net

θ1,θ2 ← argmin
θ1,θ2

‖w −∆1(θ1)−∆2(θ2)‖
2

init as in C step

λ← 0 Lagrange multipliers

for µ = µ0 < µ1 < · · · <∞
w ← argmin

w
L(w) + µ

2

∥

∥

∥
w −∆1(θ1)−∆2(θ2)−

1

µ
λ

∥

∥

∥

2

L step

while alternation does not converge

θ1 ← argmin
θ1

∥

∥

∥

(

w −∆2(θ2)−
1

µ
λ

)

−∆1(θ1)
∥

∥

∥

2



















C step

θ2 ← argmin
θ2

∥

∥

∥

(

w −∆1(θ1)−
1

µ
λ

)

−∆2(θ2)
∥

∥

∥

2

λ← λ− µ (W−∆1(θ1)−∆2(θ2)) multipliers step

if ‖w −∆1(θ1)−∆2(θ2)‖ is small enough then exit the loop
return w,θ1,θ2

B Metrics

B.1 Compression ratio, storage

We define a storage compression ratio (ρs) as a ratio between bits required to store a reference model over
bits of a compressed model:

ρs =
bits(reference)

bits(compressed)
(6)

In this paper, we assume that the weights of a reference model are stored as 32-bit IEEE floating point
numbers, therefore, the total bits for storing the reference model is

bits(reference) = weights×32, (7)

here weights is the total number of parameters in the reference network. We discuss how we compute
storage bits of compressed models, bits(compressed), next.

B.1.1 Quantization

When we quantize the weights with a codebook of size k, we need to store codebook itself and ⌈log k⌉ bits for
every weight to index them from the codebook. In our experimental setup, we define a separate codebook
for every layer with the same size k. The total compressed storage then:

bitsQ(compressed) = layers× k · 32
︸ ︷︷ ︸

codebook bits

+ weights×⌈log k⌉
︸ ︷︷ ︸

index bits

(8)
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B.1.2 Sparse corrections (Pruning)

In additive combination sense, un-pruned weights are point-wise corrections. We store such corrections
separately for each layer as a list of index-value pairs, where index is the location of a correction in a vector
of flattened weights. Instead of storing indexes directly, we adopt storing differences between subsequent
indexes, as in [13], using unsigned p-bit integers. If a difference is larger than 2p − 1, we add a dummy pair
of zeros, i.e., (0, 0); with such scheme storing some corrections would require multiple index-value pairs. We
choose to store the values of the corrections as 16-bit IEEE floating point numbers. Then, the compressed
storage for a layer is

bitsP (layer) = diffs× (p+ 16). (9)

B.1.3 Low-rank

Rank r matrix of shape m× n, is stored with two matrices of shapes m× r and r ×m using 16-bit floating
point numbers. The compressed storage for such layer is

bitsL(layer) = 16× r × (m+ n), (10)

and the total bits for compressed storage is the sum over all layers.

B.1.4 Uncompressed parts

Since we only compress weights of a layer, some additional structures like biases and batch-normalization
parameters would not be compressed. Therefore, we store them in full precision and add their storage cost
to the total of compressed bits. In some cases, we can reduce the storage by fusing elements, e.g., biases can
be fused with batch-normalization layer preceding it, which we take advantage of.

B.1.5 Additive combination

When compression combined additively, the total compressed storage is the sum of compression parts over
all layers, e.g., for quantization with point-wise corrections the total compressed storage is:

bits(compressed) =
∑

l

(

bitsP (layer l) + bitsQ(layer l)
)

(11)

B.2 Multiplications and additions, efficient implementation

We define reduction ratio of the number of floating point additions (ρ+) and floating point multiplications
(ρ×) as a ratio between the number of additions (and respectively multiplications) in reference model over
the number of additions (multiplications) in a compressed model:

ρ+ =
#add in reference

#add in compressed
(12)

ρ× =
#mult in reference

#mult in compressed
(13)

B.2.1 FLOPs for uncompressed model

A fully connected layer with weights W of shape n ×m and biases b of shape n × 1 requires the following
number of multiplications and additions to compute a result of Wx+ b:

#add = n× (m− 1) + n = nm

#mult = nm.

For a convolutional layer with shape n× c× d× d (here n filters with c channels and spatial resolution d× d)
and biases of size n, the total number of multiplications and additions are:

#add = ncd2 ×M,

#mult = ncd2 ×M,
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where M is the total number of one convolutional filter being applied to the input image.

B.2.2 Quantization

To perform efficient inference with quantized weights, for each neuron with weight vector w we need to
maintain an accumulator corresponding to each value of the codebook C = {c1 . . . ck}:

wTx =
∑

i

wixi =
∑

i

c(wi)xi =
∑

k

ck
∑

c(wi)=ck

xi

︸ ︷︷ ︸

accumulate

(14)

Therefore for each neuron, there are k multiplications and the number of additions is equal to the number
of the weights connected to the neuron. In the case of fully connected layers with m inputs and n outputs,
there are following number of add./mult.:

#mult = k × n

#add = m× n

For convolutional layers with n filters of shape c× d× d, we respectively have:

#mult = k × n×M,

#add = ncd2 ×M,

where M is the total number of the applications of conv. filters to the input.

B.2.3 Pruning

When the weight matrix W has only p non-zero items, it will require p multiplications and p−1 additions for
matrix-vector product; for convolutional layer these numbers should be multiplied by number of applications
of conv filter, M (see above).

B.2.4 Low-rank

A rank r matrix of shape n×m can be represented by two matrices of shapes n × r and r ×m, therefore,
during the inference of Wx+ b we have #mult = #add = r(n +m).

C Experiments on CIFAR10

In this section, we give full details of our experimental setup for the CIFAR10 networks reported in the
paper, as well as extended analysis of the results.

C.1 Quantization plus pruning, Q+P

C.1.1 Compressing biases together with weights

We would like to verify whether point-wise corrections are going to recover bad compression decisions. One
such decision is to quantize both weights and biases with a single codebook. We report the results of such
compression in Table 2. As you can see with few corrections (say, 0.65%) most of the biases are “recovered”
from the bad quantization decision. Below we give a full experimental setup.

Reference model We train a multinomial logistic regression classifier on the CIFAR10 dataset (60k color
images of 32 × 32 pixels, 10 classes). We use Nesterov’s SGD with a batch size of 1024 and learning
rate of 0.05 which decayed after every epoch by 0.98; we use momentum of 0.9 and run the training for
300 epochs. We preprocess images by standardizing pixel-wise means and variances. The model has
30730 weights (3072× 10 weights and 10 biases), and achieves train loss of 1.5253 and test accuracy of
38.79%.
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Model L test acc, % corrected biases (out of 10)

R logistic regression 1.5253 38.79
1-bit quant. + 100 corrections 1.6830 36.06 9
1-bit quant. + 200 corrections 1.6716 37.29 9

Table 2: Results of running 1-bit quantization with corrections on simple multinomial logistic regression
model (R) trained on the CIFAR10, where both weights and biases are compressed jointly with a single
codebook. We report train loss L, test accuracy, and the number of corrections acting on a total of 10
biases. When we allow correcting only 100 (0.16%) values 9 out of 10 biases are already corrected. This
indeed confirms that a) biases are important, and compressing them requires higher precision b) point-wise
corrections are able to “fix” bad compression decisions.

Compression setup We run our algorithm with quantization and point-wise corrections on the weights
and biases jointly. The codebook has k = 2 entries and we vary the number of corrections. The
algorithm runs for 50 LC steps with µ = ×5 × 10−4 × 1.1k at k-th step. Each L-step is performed
by Nesterov’s SGD with momentum 0.9 and run for 20 epochs with the initial learning rate of 0.05
decayed by 0.98 after each epoch. We do not perform any finetuning. Running the LC algorithm is 3.33
times longer comparing to the training of the reference model. We report results (loss and accuracies)
corresponding to the model with the smallest train loss seen during the training, which is usually on
the last iteration. For each C-step, we alternate between Q and P compressions 30 times.

C.1.2 ResNet experiments

We train ResNets [16] of depth 20, 32, 56, and 110 layers (0.27M, 0.46M, 0.85M, and 1.7M parameters,
respectively) on the CIFAR10 dataset using the same augmentation setup as in [16]. Images in the dataset
are normalized to have channel-wise zero mean, variance 1. For training, we use a random horizontal flip,
zero pad the image with 4 pixels on each side and randomly crop 32× 32 image out of it. For test, we use
normalized images without augmentation. We report results obtained at the end of the training. The loss is
average cross entropy with weight decay (as in the original paper).

Training reference nets The models are trained with Nesterov’s SGD [30] with a momentum of 0.9 on
the minibatches of size 128. The loss is average cross entropy with weight decay of 10−4; weights
initialized following [15]. Each reference network is trained for 200 epochs with a learning rate of 0.1
which is divided by 10 after 100 and 150 epochs.

Training compressed models We run our algorithm for 50 LC iterations on the ResNet-20/32, and for
45 iterations on the ResNet-56/110, with µ = ×10−3 × 1.1k at k-th step. Each L-step is performed
by Nesterov’s SGD with a momentum of 0.9 and runs for 20 epochs with a learning rate of 0.01 at
the beginning of the step and decayed by 0.94 after each epoch. We do not perform any finetuning.
Running the LC algorithm is 5 times longer comparing to the training of the reference network. We
report results (train loss and test error) corresponding to the networks with the smallest train loss seen
during the training, which is usually the last iteration. For each C-step, we alternate between Q and
P compressions 30 times.

In our compression setup, each layer is quantized with its own codebook of size 2, however, corrections
are applied throughout, to all weights with a predefined κ. We quantize only weights, and not the biases.
For ResNet 20 and 32, we chose κ values to be 1, 2, 3, 5 % of the total number of parameters. For ResNet
56 and 110, we chose κ values to be 0.5, 1, 2, 3 % accordingly. The results are given in Table 3, and we
compare our results to others in Fig.5. We additionally plot how pointwise corrections affect the weight of
each layer in Fig. 6.

C.2 Quantization plus low-rank, Q+L

We run quantization with low-rank corrections on ResNet-s of depth 20, 32, 56, and 110. Each layer is
quantized with its own codebook of size 2 applied to weights and corrected with r-rank matrices. We set r
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Model logL Etest, % ρs ρ+ ρ×

R -0.80 8.35 1.00 1.00 1.00
1-bit quant. + 1.0% correction -0.84 9.16 22.67 0.97 30.74

R
es
N
et
2
0

1-bit quant. + 2.0% correction -0.92 8.92 19.44 0.96 19.74
1-bit quant. + 3.0% correction -0.93 8.31 17.08 0.94 15.80
1-bit quant. + 5.0% correction -0.99 8.26 13.84 0.92 11.54

R -0.82 7.14 1.00 1.00 1.00
1-bit quant. + 1.0% correction -1.03 7.57 22.81 0.97 30.52

R
es
N
et
3
2

1-bit quant. + 2.0% correction -1.07 7.61 19.54 0.96 19.85
1-bit quant. + 3.0% correction -1.10 7.29 17.14 0.94 15.80
1-bit quant. + 5.0% correction -1.14 7.09 13.84 0.92 11.56

R -0.81 6.58 1.00 1.00 1.00
1-bit quant. + 0.5% correction -1.08 6.77 25.04 0.98 49.79

R
es
N
et
5
6

1-bit quant. + 1.0% correction -1.13 6.73 22.87 0.97 32.04
1-bit quant. + 2.0% correction -1.17 6.70 19.55 0.96 20.46
1-bit quant. + 3.0% correction -1.18 6.23 17.11 0.94 15.98

R -0.77 6.02 1.00 1.00 1.00
1-bit quant. + 0.5% correction -1.16 6.20 25.03 0.99 55.63

R
es
N
et
1
1
0

1-bit quant. + 1.0% correction -1.20 5.80 22.80 0.98 33.94
1-bit quant. + 2.0% correction -1.23 5.66 19.47 0.96 23.27
1-bit quant. + 3.0% correction -1.25 5.58 17.04 0.95 17.84

Table 3: Results of running 1-bit quantization with corrections on the ResNets (R-s) of different depth. We
report test error, the reduction ratio of storage(ρs), floating point additions (ρ+), and multiplications (ρ×),
under assumption of efficient implementation (section B.2); logarithms are base 10. We trade-off additions
to multiplications, e.g., for ResNet110 with 3% corrections, the number of multiplications is decreased by
factor of 17 with only a 5% increase in the number of additions. Also, notice that with a higher percentage
of the corrections the compressed model achieves better than reference test error.

to have the same value throughout all layers.
We follow the procedure for the reference and compressed net training as described in section C.1.2 with

minor changes. We use 45 LC iterations for all networks, however, learning rates are different: for ResNet20
we set learning rate at the beginning of each step to be 0.01 decayed by 0.94 after every epoch, and for other
ResNet-s the initial learning rate for every L-step is 0.007 decayed by 0.94 after every epoch. The results
are given in Table 4. We describe the low-rank parameterization of every convolutional layer next.

C.2.1 Low-rank parametrization of convolution

A convolutional layer having n filters of shape c× d× d (here c is a number of channels and d× d is spatial
resolution), can be seen as a linear layer with shape n × cd2 applied to the reshaped volumes of input. Its
rank-r parametrization will have two linear mappings with weights n×r and r×cd2, which can be efficiently
implemented as a sequence of two convolutional layers: the first with r filters of shape c × d × d and the
second with n filters of shape r × 1× 1.

C.3 Low-rank plus pruning, L+P

We compress using a low-rank plus pruning combination the ResNet-s on CIFAR10 of depth 20, 32, 56, and
110; and the VGG16 adapted for the CIFAR10. Each layer is compressed with r-rank matrices and point-
wise corrections. We set r to be the same throughout all layers; we set an amount of point-wise corrections
(pruning) for the entire network in terms of percentage of a total number of weights. The results are in
Table 6.
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Figure 5: Results of running 1-bit quantization with corrections on ResNets of different depth, we plot train
loss and test error as a function of compression (See Table 3 for more detail). Here, thick lines — our results,
horizontal thin lines — reference nets. We also additionally indicate (via markers) results from the literature:
Q — quantization, P—pruning, H.C — Huffman coding, right arrow indicates nesting the compression via
“add” combination.

C.3.1 ResNets

We follow the procedure for reference and compressed net training as described in section C.1.2 with minor
changes. We 45 LC iterations for all networks, with µk = 5 × 10−4 × 1.1k at k-th iteration. The learning
rate at the beginning of each L-step is 0.01 and decayed by 0.94 after every epoch; we run each L-step for
20 epochs.

C.3.2 VGG-16

We train the VGG16 [37] adapted for the CIFAR10 dataset. We employ batch normalization after every
layer except the last, and dropout after fully connected layers (see Table 5 for the full details). Images in
the dataset are normalized channel-wise to have zero mean and variance one. For training, we use simple
augmentation (random horizontal flip, zero pad with 4 pixels on each side and randomly crop 32×32 image).
For test we use normalized images without augmentation. We report results corresponding to a model
with the smallest loss. The loss is average cross entropy with ℓ2 weight decay. The resulting net has 15M
parameters.

Training the reference net The model is trained with Nesterov’s accelerated SGD [30] with momentum
0.9 on minibatches of size 128. The loss is average cross entropy with weight decay of 5 × 10−4. The
network is trained for 300 epochs with an initial learning rate of 0.05 decayed by 0.97716 after every
epoch. The resulting test error is 6.45%.

Training compressed models Our algorithm is run for 50 LC iterations, with µ = 5 × 10−4 × 1.1k at
k-th iteration. Each L-step is performed by Nesterov’s SGD with momentum of 0.9 and runs for 20
epochs with a learning rate of 0.0007 at the beginning of the step; and decayed by 0.98 after each
epoch. We do not perform any finetuning. Running the LC algorithm with finetuning is 3.4 times
longer comparing to the training of the reference network. The results are presented in Table 6.

C.4 Quantization plus low-rank plus pruning, Q+L+P

In order to verify the complementarity benefits of additive compressions, we run experiments on ResNet-s to
see whether adding another compression is going to help. As we saw in Table4, the quantization with additive
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Figure 6: For every ResNet compressed with Q+P, we plol the proportion of weight being corrected at every
level when the different amount of corrections are allowed. We see that the most corrected layers are the
first and the last ones, which coincide with heuristics in the literature of not compressing the first and last
layers.
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Model logL Etest, % ρs ρ+ ρ×

R -0.80 8.35 1.00 1.00 1.00
1-bit quant. + rank = 1 -0.77 9.71 20.71 0.96 21.45

R
es
N
et
2
0

1-bit quant. + rank = 2 -0.84 9.30 16.62 0.92 11.26
1-bit quant. + rank = 3 -0.89 8.64 13.88 0.89 7.64

R -0.82 7.14 1.00 1.00 1.00
1-bit quant. + rank = 1 -0.99 7.90 20.94 0.97 21.89

R
es
N
et
3
2

1-bit quant. + rank = 2 -1.04 8.06 16.81 0.92 11.47
1-bit quant. + rank = 3 -1.10 7.52 14.04 0.89 7.44

R -0.81 6.58 1.00 1.00 1.00
1-bit quant. + rank = 1 -1.13 7.19 21.04 0.96 22.19

R
es
N
et
5
6

1-bit quant. + rank = 2 -1.19 6.51 16.91 0.92 11.61
1-bit quant. + rank = 3 -1.22 6.29 14.10 0.89 7.87

R -0.77 6.02 1.00 1.00 1.00
1-bit quant. + rank = 1 -1.19 5.98 21.11 0.96 22.38

R
es
N
et
1
1
0

1-bit quant. + rank = 2 -1.24 5.93 16.96 0.92 11.70
1-bit quant. + rank = 3 -1.27 5.50 14.18 0.89 7.92

Table 4: Results of running 1-bit quantization plus low-rank on ResNet-s (R-s) of different depth. We report
test error, the reduction ratio of storage (ρs), floating point additions (ρ+) and multiplications (ρ×), under
assumption of efficient implementation (section B.2); logarithms are base 10. Notice how on the 110-layers
ResNet, all compressed models achieve better than the reference test error.

low-rank (Q+L) achieves good performance on the ResNet110, having compressed models outperforming the
reference. However, for smaller depth ResNets the Q+L scheme does not perform as good. We choose to
compress these ResNets of depth 20, 32, 56 with Q+L scheme with a small number additional point-wise
corrections (pruning), turning it to Q+L+P scheme. Table 7 shows the results.
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Figure 7: Results of running 1-bit quantization with corrections on ResNets of different depth, we plot train
loss and test error as a function of compression (See Table 3 for more detail). Here, thick lines are our
results, and horizontal thin lines are reference nets. We also additionally indicate (via markers) results from
the literature involving quantization (Q) and low-rank (L).

Layer Connectivity

Input 32× 32 image
1 convolutional, 64 3× 3 filters (stride=1), followed by BN and ReLU
2 convolutional, 64 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
3 convolutional, 128 3× 3 filters (stride=1), followed by BN and ReLU
4 convolutional, 128 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
5 convolutional, 256 3× 3 filters (stride=1), followed by BN and ReLU
6 convolutional, 256 3× 3 filters (stride=1), followed by BN and ReLU
7 convolutional, 256 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
8 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
9 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
10 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
11 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
12 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
13 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
14 fully connected, 512 neurons and dropout

with p = 0.5, followed by ReLU
15 fully connected, 512 neurons and dropout

with p = 0.5, followed by ReLU
16
(output)

fully connected, 10 neurons, followed by softmax

14981952 weights, 8970 biases, 8448 running means/variances for BN

Table 5: Structure of the adapted VGG16 network for CIFAR10 dataset. BN–Batch Normalization, ReLU
– rectified linear units.
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Model logL Etest, % ρs ρ+ ρ×

R -0.80 8.35 1.00 1.00 1.00
3% correction + rank = 3 -0.51 12.02 15.84 5.72 5.72

R
N
-2
0

3% correction + rank = 4 -0.55 11.44 13.34 4.70 4.70

R -0.82 7.14 1.00 1.00 1.00
3% correction + rank = 3 -0.70 9.55 15.98 5.92 5.92

R
N
-3
2

3% correction + rank = 4 -0.79 9.14 13.47 4.85 4.85

R -0.81 6.58 1.00 1.00 1.00
3% correction + rank = 3 -0.90 8.38 16.06 5.99 5.99

R
N
-5
6

3% correction + rank = 4 -0.98 8.02 13.54 4.90 4.90

R -0.77 6.02 1.00 1.00 1.00
3% correction + rank = 3 -1.11 6.63 16.03 6.38 6.38

R
N
-1
1
0

3% correction + rank = 4 -1.14 6.36 13.53 5.17 5.17

R -0.89 6.45 1.00 1.00 1.00
3% correction + rank = 2 -1.04 6.66 60.99 8.20 8.20

V
G
G
1
6

3% correction + rank = 3 -1.05 6.65 56.58 7.81 7.81

Table 6: Results of running low-rank with pointwise corrections (L+P) on ResNets of different depth and
VGG16. We report test error, the reduction ratio of storage (ρs), floating point additions (ρ+) and multipli-
cations (ρ×), under the assumption of efficient implementation (section B.2). RS stands for ResNet, and R
for reference models; logarithms are base 10. In general, this type of compression performs much better on
VGG16 than on ResNets.

Model logL Etest, % ρs improvement ∆

R -0.80 8.35 1.00
1-bit quant. + rank = 1 + 0.37% correction -0.87 9.55 19.55 +0.16

R
N
2
0

1-bit quant. + rank = 2 + 0.37% correction -0.93 9.14 15.85 +0.16

R -0.81 7.14 1.00
1-bit quant. + rank = 1 + 0.32% correction -1.08 7.47 19.82 +0.43

R
N
3
2

1-bit quant. + rank = 2 + 0.32% correction -1.12 7.27 16.81 +0.79

R -0.77 6.58 1.00
1-bit quant. + rank = 1 + 0.35% correction -1.20 6.64 19.82 +0.55

R
N
5
6

1-bit quant. + rank = 2 + 0.35% correction -1.23 6.47 16.10 +0.04

Table 7: Results of running our algorithm with three compressions combined: quantization + low-rank
corrections + point-wise corrections (Q+L+P). We choose to add a few pointwise compression to some of
the Q+L experiments in Table 4. We report loss L, test error Etest, storage compression ratio (ρs), and
improvement ∆ of test error over Q+L scheme (higher is better). R stands for the reference network, and
RS is shorthand for ResNet. As you can see, adding few point-wise corrections improve train loss and test
error in all compression schemes.
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Figure 8: We plot here for every ResNet compressed with Q+L+P scheme, the proportion of weight being
corrected at every layer when a different amount of rank corrections is applied. As rank increases, the
corrections move to other places where it is needed most.
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Model E top-1, % E top-5, % ρs

R BN-AlexNet 40.43 17.55 1.00

o
u
rs 1-bit quant. + 0.5M corrections (0.8%) 39.09 16.84 25.96

1-bit quant. + 1.0M corrections (1.6%) 38.94 16.69 22.42

1-bit (DoReFa) [54] 46.10 23.70 10.35
1-bit (BWN) [35] 43.20 20.59 10.35
1-bit (ADMM) [25] 43.00 20.29 10.35
1-bit (Quantization Net) [48] 41.20 18.30 10.35

multi-bit AlexNet-QNN [43] 44.24 20.92 18.76

Table 8: Results of running 1-bit quantization with 0.5M and 1M corrections on AlexNet and comparison
to the quantization methods in the literature. We report top-1 and top-5 errors on the validation set,
the compression ratio of parameter storage (ρs). Notice that although results in the literature use 1-bit
quantization, the compression ratio is rather small due to not compressing first and last layers, keeping them
full precision. Also, notice that our compressed model achieves better than the reference validation error.

D Experiments on ImageNet

Due to the large number of possible combinations and scale of each experiment, we limit our attention to
quantization with additive point-wise corrections combination (Q+P). Below we give details on training
reference and compressed networks.

Training the reference net We train Batch Normalized AlexNet (having 1140 FLOPs) network using
data-augmentation of the original paper [23] on ImageNet ILSVRC2012 dataset [36]. During training
the images are resized to have the shortest side of 256 pixels length, and random 227 × 227 part of
the image is cropped. Then pixel-wise color mean subtracted and image normalized to have standard
variance. During test, we use a central 227 × 227 crop. We train with SGD on minibatches of size
256, with weight decay of 0.5 × 10−4 and an initial learning rate of 0.05, which is reduced 10× after
every 20 epochs. The trained model achieves Top-1 validation accuracy of 59.57% and Top-5 validation
accuracy of 82.45%. This is slightly better than the the original paper [23] and Caffe re-implementation
[21]. Training time on the NVIDIA Titan V GPU is 17 hours.

Training compressed models We train Q+P scheme with 1-bit quantization throughout (every layer
having its own codebook) and total number of pointwise correction κ to be 0.5M and 1M. These
models are trained for 35 LC steps, with µ = 5 × 10−4 × 1.12k at k-th iteration. Each L-step is
performed by Nesterov’s SGD with momentum 0.9 and runs for 10 epochs (with 256 images in a
minibatch) with a learning rate of 0.001 at the beginning of the step and decayed by 0.94 after each
epoch. Finally, we perform fine-tuning for 10 epochs with a learning rate of 0.001 decayed by 0.9 after
every epoch, on minibatches of size 512. Running the LC algorithm with finetuning is 3.6 times longer
comparing to the training of the reference network.
The resulting compressed models are quantized and have sparse corrections. To efficiently save them
to disk, we utilized the sparse index compression technique described in Han et al. [13], and used the
standard compressed save option of numpy library.

Table 8 summarizes our results and compares to existing quantization methods. We would like to note
that we apply quantization throughout all layers, and allow compression mechanism (sparse additions) to
self-correct at necessary positions. This is in contrast to quantization results on AlexNet where first and
last layers are excluded from compression to keep overall performance from degradation. Thus, we achieve
25.96× compression in parameter storage size without any accuracy loss, while best 1-bit quantization
methods achieve only 10.35× compression.

Although the Q+P scheme is quite powerful in representing the weights, its compression ratio with scalar
quantization is limited by at most 32×, as the minimal amount of bits required to represent one weight is
at least 1bit. If we would like to drive it further, compressions need to be nested, and in the following set
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Model top-1 top-5 size compression MFLOPs
% % MB ratio, ρsize

Caffe-AlexNet[13] 42.70 19.80 243.5 1 724

Caffe-AlexNet-QNN [43] 44.24 20.92 13 18.7 175∗

P→Q [13] 42.78 19.70 6.9 35.2 724
P→Q [11] 43.80 – 5.9 41.2 724
P→Q [39] 42.10 – 4.8 50.7 724
P→Q [47] 42.48 – 4.7 51.8 724
P→Q [47] 43.40 – 3.1 78.5 724
filter pruning [40] – 21.63 – – 231
filter pruning [51] 44.13 – – – 232
filter pruning [28] 43.17 – 232 1.04 334
filter pruning [12] 43.83 20.47 – – 492
weight pruning [44] 44.10 – 13 18.7 –

R Low-rank AlexNet (L1) 39.61 17.40 100.9 2.4 227
L1 → Q (1-bit) + P (0.25M) 39.67 17.36 3.7 65.8 227

o
u
r

L1 → Q (1-bit) + P (0.50M) 39.25 16.97 4.3 56.9 227

R Low-rank AlexNet (L2) 39.61 17.40 72.4 3.6 185
L2 → Q (1-bit) + P (0.25M) 40.19 17.50 2.8 87.6 185

o
u
r

L2 → Q (1-bit) + P (0.50M) 39.97 17.35 3.4 72.15 185

R Low-rank AlexNet (L3) 41.02 18.22 49.9 4.8 152
L3 → Q (1-bit) + P (0.25M) 41.27 18.44 2.1 117.3 151

o
u
r

L3 → Q (1-bit) + P (0.50M) 40.88 18.29 2.7 90.4 151

Table 9: Q+P scheme is powerful enough to further compress already downsized models, here (bottom of the
table) obtained by low-rank compression (L). We report top-1 validation error, size of the final model in MB,
and resulting FLOPs. Shorthands are as follows: P stands for pruning, Q for quantization, L for low-rank,
and H.C. for Huffman Coding. Numbers with ∗ assumes efficient software/hardware implementation.

of experiments we show that we can capitalize on the power of the Q+P scheme and drive the compression
further. To demonstrate it, we decided to further compress using the Q+P scheme the low-rank versions
of AlexNet obtained from [17], see Table 9. We choose multiple low-rank networks achieving 3.20× to
4.78× reduction in FLOPs and applied our algorithm with varying amount of corrections (P) and fixed 1-bit
quantization (Q).

D.1 Runtime measurements on Jetson Nano

The NVIDIA’s Jetson Nano3 is a small yet powerful edge inference device with quad core CPU and 128
core GPU requiring only 10 watts. We use its publicly available developer kit4 to run our experiments. The
full characteristics of our setup is given on Figure 9. Since device runs the Ubuntu operating system, most
of the software is readily available. However, the deep-learning libraries require specific configuration and
re-compilation to run on the available GPU. The pre-configured libraries are made available by NVIDIA’s
software teams.

D.1.1 Runtime evaluation

We evaluated the models on both CPU and GPU. We run the inference task (the forward pass) of tested
neural networks using the batch size of 1, i.e., a single image, using 32 bit floating point values. For the CPU
inference we converted all models into the ONNX inter-operable neural network format and used highly

3https://developer.nvidia.com/embedded/jetson-nano
4https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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characteristics

CPU Quad-core ARM Cortex-A57 at 1479 MHz
GPU 128 CUDA cores at 922 MHz
RAM 4 GB 64-bit LPDDR4 at 1600MHz
OS Ubuntu 18.04.5 LTS
Kernel GNU/Linux 4.9.140-tegra
Storage 128 GB microSDXC memory card (class UHS-I)
Software PyTorch v1.6.0, TensorFlow v2.2.0,

ONNXRuntime v1.4.0, TensorRT v7.1.3.0

photo of the actual board

Figure 9: The characteristics of the Jetson Nano developer kit we have used and a photo of the actual
experimental setup.

Model Top-1 err, %
Edge CPU Edge GPU

time, ms speed-up time, ms speed-up

Caffe-AlexNet 42.70 328.69 1.00 23.27 1.00
L1 → Q (1-bit ) + P (0.25M) 39.67 83.62 3.93 11.32 2.06
L2 → Q (1-bit ) + P (0.25M) 40.19 60.49 5.43 8.74 2.66
L3 → Q (1-bit ) + P (0.25M) 41.27 44.80 7.33 6.72 3.46

Table 10: Runtime measurements of forward pass on Jetson Nano and corresponding speed-up when com-
pared to Caffe-Alexnet.

optimized ONNXRuntime. For the GPU inference we used the TensorRT library to convert the ONNX
models into TensorRuntime models. To account for various operating systems scheduling issues and context
switches, we repeated the measurements N times and dropped p-proportion of the largest measurements.
For the CPU measurements we used N = 100 and for the GPU we used N = 1000. We set p = 0.1, i.e., the
highest 10% of the measurements will not be used in calculating the average delay. To avoid the influence
of the thermal throttling, we allowed a cooldown period of at least 30 seconds between the measurements of
different neural networks.
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