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Abstract

We consider finding a counterfactual explanation for a classification or regression forest, such as a

random forest. This requires solving an optimization problem to find the closest input instance to a

given instance for which the forest outputs a desired value. Finding an exact solution has a cost that is

exponential on the number of leaves in the forest. We propose a simple but very effective approach: we

constrain the optimization to only those input space regions defined by the forest that are populated by

actual data points. The problem reduces to a form of nearest-neighbor search using a certain distance

on a certain dataset. This has two advantages: first, the solution can be found very quickly, scaling to

large forests and high-dimensional data, and enabling interactive use. Second, the solution found is more

likely to be realistic in that it is guided towards high-density areas of input space.

1 Introduction

A counterfactual explanation (CE) seeks the minimum change to an input instance that will result in a
desired outcome under a given predictive model. For example, “reducing your weight by 10 kg will reduce
your risk of stroke by 80%” (regression) or “you will be eligible for the loan if you increase your annual salary
by $10k” (classification). CEs extend the use of a machine learning model beyond just prediction to querying
about potential scenarios. This is especially relevant in applications where interpretability or explainability
is important, such as in financial, legal, human resources, government or health models. It can also make
it possible to audit a model to find errors or bias, and to have an objective measure of the importance of
the input features. CEs are also formally equivalent to adversarial attacks, but the latter have a different
motivation: they seek to trick a model into making the wrong prediction by making imperceptible changes
to the input.

CEs can be naturally formulated as an optimization problem over the input instance of the form “minimize
the distance to a source instance subject to the model predicting a desired outcome”. Here, we consider
as model an ensemble of decision trees (a decision forest). We consider both axis-aligned trees, which are
widely used in Random Forest [1], AdaBoost [10] and Gradient Boosting [11], but also oblique trees, which
achieve state-of-the-art accuracy using fewer and shallower trees [8, 12, 33]. The optimization problem is
difficult because forests define a piecewise constant predictive function, so gradients are not applicable. The
number of constant-value regions is exponential on the size of the forest (number of leaves and number of
trees), so exhaustive search approaches (even making use of clever pruning and engineering heuristics) will
not be able to scale to real-world forests, for which the number of leaves per tree and the number of trees
each run into hundreds or thousands.

We propose a simple but effective approach: to limit the search to the set of regions containing actual
(training) data points. This makes the search extremely fast, producing a good, feasible CE estimate in less
than a second (for axis-aligned forests) or a few seconds (for oblique forests) even for the largest problems we
experimented with. A secondary advantage is that it tends to produce realistic CEs, since the live regions

∗A shorter version of this paper appears as [5].
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can be seen as a nonparametric density estimate built in the forest. In section 3 we study the geometry of
the forest predictive function and the number of nonempty and live regions. In sections 4–5 we give our
algorithm (LIRE) and evaluate it in section 6.

2 Related work

Much of the work about counterfactual explanations, particularly in the guise of adversarial attacks, has
focused on deep neural nets [14, 27]. The optimization here is relatively easy because gradients of the model
are available (at least approximately, with ReLU activations). That said, with a heavily nonlinear function
such as a neural net, the optimization problem may have multiple local minima, some of them not even
feasible (i.e., failing to produce the desired prediction). This makes finding a good solution difficult. Some
work is agnostic to the model [15, 19, 31], requiring only function evaluations (and possibly constructing
a mimic of the model), but this restricts its performance severely in terms of computational efficiency and
quality or feasibility of the result.

For decision trees, whether axis-aligned or oblique, the problem can be solved exactly and efficiently
[4, 16] by finding an optimal CE within each leaf’s region and picking the closest one. This scales nicely
because an individual tree, particularly an oblique tree, will rarely have more than several hundred leaves.
For a decision forest, the problem is NP-hard. This was shown for a special case (a binary classification
axis-aligned tree with discrete features) by reduction from a maximum coverage problem [32], and for a more
general case by reduction from a DNF-MAXSAT problem [9].

Some works use heuristic approaches to solve the CE for forests. Lucic et al. [23] use a gradient-based
algorithm that approximates the splits of the decision trees with sigmoid functions. Tolomei et al. [28]
propose an approximate algorithm based on propagating the source instance down each tree towards a leaf.
As seen in our experiments, these approaches are slow for large forests and often fail to find a feasible solution
as the number of features or trees grows.

Several approaches [9, 18, 25] are based on encoding, more or less efficiently, the CE problem as a mixed-
integer program (where binary variables encode the path that the instance takes through each tree) and
then solving this using an existing solver (typically based on branch-and-bound). This capitalizes on the
significant advances that highly-optimized commercial solvers have incorporated in the last decades (which,
unfortunately, are not yet available to free or open-source solvers). This is guaranteed to find the global
optimum but only if the solver terminates its essentially brute-force search. Even with highly efficient solvers,
the optimistic claims in some of these papers about scalability to large datasets and forests just do not hold
up, as seen in our experiments.

Finally, several approaches (not necessarily for forests) seek to generate CEs that are more plausible or
realistic [18, 19, 24–26, 29, 30]. They do this by adding distances to a set of training instances as a penalty
to the cost function to encourage the solution to be close to the training data.

3 Counterfactual explanation problem: definition, geometry and
complexity

We define the counterfactual explanation (CE) problem as the following optimization:

min
x∈RD

d(x,x) s.t. F (x) ∈ S. (1)

Here, x ∈ R
D is the source instance (whose prediction under F we wish to change), x ∈ R

D is the solution
instance, and d(·, ·) is a distance in input (feature) space, which measures the cost of changing each feature.
We will focus primarily on the ℓ22 or ℓ1 distances; weighted distances can be handled by appropriately rescaling
the features. F is the predictive function of the model (a decision forest in our case), which maps an input
instance x to either a value in {1, . . . ,K} for multiclass classification, or to a real value for regression (we
can also include classification here if the forest output is a class probability). Finally, S is a set of target
predictions, i.e., we want x’s prediction to be a value in S. For example, for classification S can be a specific
class (or a subset of classes) in {1, . . . ,K}; for regression, S can be an interval (e.g. F (x) ≥ 7) or a set of
intervals. We may also have constraints on x.
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A decision forest is an ensemble of decision trees. We consider two types of trees: axis-aligned, where
each decision node i has the form “xd(i) ≥ θi” for some feature d(i) ∈ {1, . . . , D} and bias θi ∈ R; and
oblique trees, where each decision node has the form “wT

i
x ≥ wi0” for some weight vector wi ∈ R

D and
bias wi0 ∈ R. In both cases, each leaf of a tree outputs a constant value (class label in {1, . . . ,K} or value
in R). A forest of T trees computes its prediction F (x) by finding the leaf lt that x reaches in each tree
t ∈ {1, . . . , T } and applying a function to the leaf outputs (usually the majority vote for discrete labels or the
average for real values). The forest is trained on a dataset using an algorithm to learn individual trees (such
as CART, C4.5 or any of its variations) and an ensemble mechanism (bagging and random feature subsets
in Random Forests, reweighted training set in AdaBoost, residual error fitting in Gradient Boosting, etc.)
[17]. Although the vast majority of work on forests uses axis-aligned trees, here we also consider forests of
oblique trees. These can be learned with any ensemble mechanism using as base learner the Tree Alternating
Optimization (TAO) algorithm [3, 6, 34], and have been recently shown to outperform axis-aligned forests
in accuracy while resulting in forests having fewer and shallower trees [7, 8, 12, 13, 33]. This is important
here because, as shown later, oblique forests need to search far fewer regions. That said, the details of how
a forest was constructed are irrelevant here. All we need is to be able to apply the forest to an input to
compute two things: which leaf it reaches in each tree, and the forest output.

3.1 Geometry of the forest predictive function F

A single tree with L leaves partitions RD into L regions, since an input x reaches exactly one leaf, and each
region outputs a constant value. For an axis-aligned tree, each region is a box and can be put in the form
a ≤ x ≤ b elementwise, where a,b ∈ R

D contain the lower and upper bounds (including ±∞), respectively;
this can be obtained from the (feature,bias) pairs in the decision nodes in the path from the root to the leaf.
For an oblique tree, each region is a convex polytope bounded by the hyperplanes at the decision nodes in
the root-leaf path.

A forest with T trees (where tree t has Lt leaves) partitions R
D into at most L1L2 · · ·LT regions (LT if

each tree has L leaves), since an input x reaches exactly one leaf in each tree. We can encode each region as
a tuple (l1, . . . , lT ) indicating the leaf reached in each tree. Hence, each region is the intersection of exactly
T leaf regions, and it is a box for axis-aligned trees and a convex polytope for oblique trees. In each region,
the forest output is constant, so the forest predictive function F is piecewise constant. Although many tuples
(l1, . . . , lT ) result in empty intersections, the number of (nonempty) regions is still exponential in general.

3.2 Number of regions in F in practice

The fact that F is piecewise constant means that problem (1) can be solved exactly by enumerating all
regions that satisfy the constraint F (x) ∈ S, finding the CE in each region1, and returning the one with
lowest distance to x. This was the approach in [4, 16] for single tree models, where it works very well because
the number of leaves is always relatively small. But, how many nonempty regions can we expect with a forest,
and how far is that from the upper bound LT ? It is difficult to answer this in general for practical forests,
which are the result of a complex optimization algorithm, so we estimate this empirically. We can enumerate
all nonempty regions with the constructive algorithm of fig. 1 (left). This proceeds sequentially to construct
a sparse t-way tensor It, where It(l1, . . . , lt) = 1 if tuple (l1, . . . , lt) defines a nonempty intersection and 0
otherwise. It is constructed by intersecting every nonempty region in It−1 with every leaf in tree t. Its
correctness relies on the fact that if It−1(l1, . . . , lt−1) = 0 then It(l1, . . . , lt−1, lt) = 0 for any leaf lt. The final
tensor IT has L1 · · ·LT entries, but only those for which IT = 1 are nonempty. The number of regions in It
grows monotonically with t because, if It−1(l1, . . . , lt−1) = 1 then It(l1, . . . , lt) = 1 for at least one leaf lt in
tree t (since the leaves of each tree form a partition of the input space).

Fig. 2 shows the results for Random Forests [1] on several small datasets, for which it is computationally
feasible to count the regions. The actual number of regions depends in a complex way on the dataset (size
and dimensionality) and type of forest. For axis-aligned forests, the number of nonempty regions, while far

1This requires minimizing d(x,x) over the region. As shown in [4], for axis-aligned trees, this is a box, and the exact solution
is given, separately along each dimension, by the median of 3 numbers: the lower and upper bound of the box, and xd. For
oblique trees, the region is a polytope, and the exact solution results from solving a quadratic program (QP) for the ℓ2 distance
and a linear program (LP) for the ℓ1 distance.
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Enumerating all nonempty regions

input forest F with T trees
I1 ← all-ones vector of dimension L1

for t = 2, . . . , T
It ← all-zeros sparse array of L1 × · · · × Lt

for each (l1, . . . , lt−1) with It−1(l1, . . . , lt−1) = 1
for lt = 1, . . . , Lt

if region(l1, . . . , lt−1) ∩ region(lt) 6= ∅ then

It(l1, . . . , lt−1, lt)← 1
remove It−1 from memory

return IT

Enumerating all live regions

input forest F with T trees, dataset XD×N

I, Y ← all-zeros sparse array of L1 × · · · × LT

for n = 1, . . . , N
for t = 1, . . . , T
lt ← leaf reached by xn in tree t

if I(l1, . . . , lT ) = 0 then

I(l1, . . . , lT )← 1
Y (l1, . . . , lT )← F (l1, . . . , lT )

return I and Y , both sorted by Y value

Figure 1: Pseudocode for finding all nonempty regions (left) and all live regions (right), valid for both axis-
aligned and oblique trees. We omit the construction of the arrays A, B and R (needed in fig. 4). Left :
region(l1, . . . , lt) ≡ ∩

t

i=1region(li) and region(li) is the input space region of leaf li in tree i (defined by the
intersection of the decision node hyperplanes along the path from the root to leaf li). F (l1, . . . , lT ) means
the forest output for region(l1, . . . , lT ).

smaller than the upper bound, does grow exponentially quickly and exceeds a million for just a handful
of trees. For oblique forests, the growth is significantly slower but still exponential. This shows than an
exhaustive search, even with clever speedups, will be intractable unless the forest is impractically small.

4 An approximation: search only over the “live” regions

Instead of considering all regions, we restrict the search to only those regions containing at least one actual
data point (from the training, validation and test datasets used to train the forest). We call these live
regions, and call the procedure LIRE (for LIve REgion search). LIRE results in an approximate but fast
search and, intuitively, retrieves realistic CEs, as described next. Fig. 3 illustrates the idea. Let the dataset
have N points and the number of live regions be M ≤ N .

4.1 Faster computation

The number of regions reduces from exponential to at most N , so the search is far faster and also has a very
predictable runtime (unlike, for example, approaches based on mixed-integer programming, which have a
wildly variable runtime). The number of live regions M is at most N because multiple points may belong to
the same region (this is particularly so with oblique forests). A second reduction in the number of regions to
search is due to the constraint F (x) ∈ S (for example, we may need to search only on regions of one target
class).

Fig. 2 shows the number of live regions. The growth behavior is very different from that of the nonempty
regions, because it is upper bounded by N . For axis-aligned forests, the number of live regions reaches N
with just a handful of trees, so we can expect about N regions with any practical forest (with nearly every
region containing just one instance). For oblique forests, it takes well over 10 trees to approach N regions,
so practical oblique forests (which do not require as many trees as axis-aligned forests) may have quite less
than N regions, particularly with large datasets.

As expected, the resulting runtime of LIRE is very small (see experiments). For axis-aligned trees it
takes less than 1 second in even our largest experiments; in this case, the search reduces to a special type
of nearest-neighbor search, efficiently implementable using arrays and vectorization (see later). For oblique
trees, each region requires solving a small QP or LP (having T∆ constraints on average, where ∆ is the
average leaf depth). Although this is more costly, the number of regions in an oblique forest is far smaller.
In our experiments this takes at most a couple of minutes.
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Figure 2: Growth of the number of regions of a forest as a function of the number of trees T , for different
datasets, for axis-aligned trees (top panels) and oblique trees (bottom panels). Within each pair of panels,
on the left panel we plot the number of nonempty regions (solid lines) and of live regions (dashed lines); on
the right panel, the upper bound for the number of nonempty regions. All regions are capped to a maximum
of 5 · 106 (axis-aligned) and 106 (oblique). The axis-aligned forests use fully-grown trees with an average
depth of 8.9, 33.5, 27.6, 35.1 and 48.9, for Breast cancer, Spambase, Letter, MNIST and Adult, respectively.
The oblique forests have a fixed depth of 8.

4.2 Approximate solution

The CE found by searching only on the live regions is suboptimal: it has a larger distance than the exact
CE. We estimate this in our experiments by comparing with the exact CE (for small forests) and with other
existing algorithms for CEs.

It is instructive to consider also an even simpler approximation to CEs: to ignore entirely the forest
regions, and search directly in a dataset of instances (say, the training set), but labeled per the forest (not
the ground truth). While this is very fast, it is never better than LIRE, because the live regions contain
the data instances. In fact, as shown in our experiments, this approach produces CEs with quite a larger
distance than LIRE.

4.3 Realistic solution

A difficult problem with counterfactual explanations with any type of model (not just forests) is that it is
difficult to constrain the search space in problem (1) to find realistic instances. Although the input space is
defined to be R

D, most real-world data live in a manifold or subset of it. Some domain knowledge can be
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Figure 3: Illustration of the LIRE idea. We show a forest of T = 3 trees of depth ∆ = 2, each trained on
a subset of the training set. The plots show the regions of each tree and the forest, colored accordingly to
the class label they predict. The live regions are those containing at least one data point. For the source
instance x, the optimal counterfactual explanation is x∗ (searching over all regions) and the approximate
one with LIRE is x′ (searching only over the live regions).

incorporated through simple constraints (e.g. a grayscale pixel should be in [0,1]), but this is insufficient to
capture the subset of realistic instances. Intuitively, this requires estimating the density distribution of the
data, a very hard problem in high dimensions, and then constraining problem (1) to that. We can see LIRE
in this light as imposing a constraint based on a nonparametric, adaptive kernel density estimate: each live
region (a box or polytope) sits on one point and has constant density; all other regions have zero density.
The kernel is adaptive, rather than having a given form and bandwidth. This density estimate comes for free
with the forest and blends conveniently into the optimization. This makes it more likely that a CE found
by searching on the live regions will be more realistic than searching anywhere in the space.

In summary, LIRE can be seen either as an approximate solution to searching CEs in the entire space, or
as an exact solution of a CE subject to lying in high density regions, using a nonparametric density estimate.
Either way, LIRE is extremely fast and scales to forests with practically useful sizes.
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5 Efficient implementation of the live region search

5.1 Constructing the set of live regions (offline)

Obviously, we do not need to build the sparse tensor IT and test every nonempty region. All we have to
do is feed each input instance to the forest and determine which leaf it reaches in each tree. The resulting
region is live. See the pseudocode in fig. 1 (right). This is done offline and has a complexity of O(NT∆)
where ∆ is the average depth of a tree. The result is a list of M ≤ N regions, each encoded by a leaf
tuple (l1, . . . , lT ). For axis-aligned trees, each forest region is a box and can be compactly represented by
two vectors an,bn ∈ R

D with an ≤ bn elementwise, containing the lower and upper bounds along each
dimension (or ±∞ if unbounded). For oblique trees, each region is defined by the intersection of all the
constraints (hyperplanes) along one root-leaf path in each tree; computationally, it is better not to construct
this list explicitly, instead reconstructing it on the fly during the live region search.

5.2 Sorting or indexing the set of live regions (offline)

Of all M live regions, we need only search in those that satisfy the constraint F (x) ∈ S, which are usually
far less than M ; this greatly accelerates the search. For example, in K-class classification, if our target is a
specific class, we need only search M

K
regions (assuming uniform class populations). Determining the range

of target regions to search can be done by a binary search in O(logM) time if we presort the M regions by
their value of F ; this is useful in regression. In K-class classification, we can pre-index the M regions into
K groups (one per class) and determine the target in constant time. This supports complex targets such as
F (x) ∈ {1, 3, 7} or [2, 5] ∪ [7,∞). Then, the actual search in the range of target regions is done sequentially
as described next.

5.3 Searching in each target live region

Axes-aligned trees This can be implemented in a way that is very efficient in time and memory through
arrays and vectorization, without any need for the tree structures. Firstly [4], for any distance that is
separable over dimensions (e.g. ℓ1, ℓ

2
2, possibly weighted), the solution to “x∗ = argminx d(x,x) s.t. a ≤

x ≤ b” (where a, b are the lower and upper bounds of a particular box) can be given in closed form as
x∗ = median(a,b,x) elementwise. (That is, for each dimension, x∗ is a if x∗ ≤ a, b if x∗ ≥ b and x otherwise.)
However, it is more efficient to compute directly the distance-to-a-box dbox(x,

(

a
b

)

) ≡ d(x∗,x). For the ℓ22
and ℓ1 distances this is:

‖x∗ − x‖
2
2 = 1T (max(a− x,0) + max(x− b,0))2

‖x∗ − x‖1 = 1T (max(a− x,0) + max(x− b,0))

where max(·, ·) applies elementwise. This holds by noting that, for each dimension d = 1, . . . , D, |x∗

d
− xd| =

ad − xd if ad − xd ≥ 0, xd − bd if xd − bd ≥ 0, and 0 otherwise. To preserve memory locality, this can be
vectorized over the entire array of AD×N = (a1, . . . , aN ) and BD×N = (b1, . . . ,bN ) to find the box n with
the smallest distance to x.2 This shows that, in effect, the problem reduces to a form of nearest-neighbor
search, where we have a search set of N multidimensional points

(

an

bn

)

∈ R
2D (each representing a box), a

query x ∈ R
D, and a distance dbox(x,

(

an

bn

)

) given by the distance-to-a-box. Fig. 4 (left) gives the pseudocode.

Oblique trees In this case we cannot vectorize using arrays because each region (l1, . . . , lT ) has an irregular
(polytope) shape, given by the constraints for each leaf lt, t = 1, . . . , T (which, in turn, are the constraints in
the root-leaf path to lt in tree t). So we have to loop through each region, solve its QP or LP, and return the
one with minimum distance; see pseudocode in fig. 4 (right). As noted earlier, the advantage with oblique
trees is that they use few, shallower trees, so the number of regions is much smaller.

2For ex., in Matlab for ℓ2
2
: [d,n] = min(sum((max(bsxfun(@minus,A,x),0)+max(bsxfun(@minus,x,B),0)).^2,2));.
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Search for closest live region
(axis-aligned trees)

input AD×M , BD×M , x ∈ R
D

δ ←∞
for n = 1, . . . ,M
α← dbox(x,

(

an

bn

)

)
if α < δ then

i← n

δ ← α

x∗ ← argminx d(x,x) s.t. ai ≤ x ≤ bi

= median(ai,bi,x)
return i, x∗, d(x∗,x)

Search for closest live region
(oblique trees)

input forest of T trees, RT×M

δ ←∞
for n = 1, . . . ,M
α← minx d(x,x) s.t. constraints for R(:, n)
if α < δ then

i← n

δ ← α

x∗ ← argminx d(x,x) s.t. constraints for R(:, i)
return i, x∗, d(x∗,x)

Figure 4: Pseudocode for the search for the closest live region to a source instance x for axis-aligned (left) and
oblique trees (right). We assume there areM target regions which have been preselected into the lower/upper
bound arrays A and B (for axis-aligned trees) or the array R (for oblique trees). R(t, n) contains the index
of the leaf in tree t that participates in region n and R(:, n) stands for {R(1, n), . . . , R(T, n)}. Region n is
defined by the constraints (halfspaces) in the decision nodes from t’s root to the parent of leaf R(t, n), for
each leaf in R(:, n). dbox(x,

(

ai

bi

)

) = d(x,median(ai,bi,x)) represents the distance-to-a-box.

Handling constraints In practice with CEs, we often impose additional, linear constraints on x in prob-
lem (1). For example, we can fix (xd = ·) or bound (· ≤ xd ≤ ·) the values of some variables (this can also be
used to force the solution to be interior to the regions rather than right on the boundary). Such constraints
are simply handled individually in each region as in [4]. For axis-aligned trees, we can preprocess each box
offline to shrink it correspondingly by intersecting it with the constraints and eliminating infeasible boxes
(which makes the search even faster).

5.4 Further accelerating the search

The exhaustive search over all live regions is very fast. For example, sequentially searching M = 106 points
in D = 100 dimensions takes less than a second on a laptop. However, for very large data sets (say, a billion
points), this will be too slow. One way to speed this up while finding the exact solution is by parallelizing the
search, which can be done trivially over subsets of regions. Another one is by using a search tree, decorated
at each node with bounding boxes, to prune sets of regions that are guaranteed not to be optimal. If we
allow the search to be inexact, a simple approach is to use live regions for a random sample of data points.
It should also be possible to adapt fast techniques to find approximate nearest neighbors in high dimensions.
Note that LIRE is an anytime algorithm in that we can stop at any time and return a feasible solution.

5.5 Computational complexity

As noted earlier, determining the range of regions we need to search (say, the regions with a desired target
class) takes negligible time: a logarithmic binary search if the list of regions has been sorted by forest output,
or a constant-time lookup if it has been indexed. The cost is dominated by the exhaustive search over the
range of regions. For axis-aligned trees, this is O(MD) with M regions and D features, with a small constant
factor due to the distance-to-a-box computation. For oblique trees, we have to solve M QPs (ℓ22) or LPs
(ℓ1). Each has D variables and T∆ constraints on average (assuming an average leaf depth ∆). In both
cases, the search can be trivially parallelized.

6 Experiments

In this section, we used Random Forests (where each tree is grown in full, i.e., not pruned), with individual
trees trained by CART [2] if axis-aligned and by TAO [3, 6] if oblique. All runtimes were obtained in a
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single core (without parallel processing). The appendices give details about the experiments, as well as more
results (e.g. with AdaBoost forests, and the training and test error of the forests we trained). Here, we
comment on the main results.

6.1 LIRE as an approximate CE

In order to estimate how good an approximation LIRE is to the exact solution, we do an exhaustive search
on all the nonempty regions in small problems for which the latter is computationally feasible. Fig. 5 shows
that the approximation (in terms of the distance to the source instance) is quite good, though it degrades
as the number of trees increases—since the number of nonempty regions continues to increase exponentially
while the number of live regions is capped at N . The approximation is quite better for oblique forests than
for axis-aligned ones, in agreement with the fact that the number of regions grows more slowly for oblique
forests. Importantly, note than LIRE is far better than searching directly on the dataset instances. This,
and its very fast runtime, makes LIRE highly practical in order to get a fast, relatively accurate estimate of
the optimal CE.

6.2 LIRE vs other algorithms

Table 1 compares LIRE with searching on the dataset instances, Feature Tweak [28] and OCEAN [25]. We
use several classification datasets of different size, dimensionality and type, and axis-aligned forests (Random
Forests) of different size. Unlike previous works on forest CEs, we consider quite larger, high-dimensional
datasets and forests—having up to 1 000 trees, with thousands of leaves per tree. This is important because,
to achieve competitive performance in practice, the number of trees may need to be quite large. For small
problems, OCEAN (which does an exhaustive search) finds the best solution, but its runtime quickly shoots
up and becomes intractable for most cases (see detailed comments in the appendix). LIRE is extremely fast
even for large problems, comparable to searching on the dataset instances, but finding better CEs. Also, it
is guaranteed to find a feasible solution, i.e., producing the desired prediction.

Table 2, for oblique trees on some classification datasets, compares LIRE only with the dataset search,
since no other algorithm is applicable. Again, LIRE finds better CEs and is reasonably fast, although for
large problems its runtime grows from seconds to minutes.

Table 3 shows results with axis-aligned forests (Random Forests) in regression datasets. From each dataset
we randomly select 5 source instances and for each source instance (x) we solve two CE problems by setting
two different intervals S in eq. (1) as follows: S = [a1, b1] ⊂ R, where F (x) > b1; and S = [a2, b2] ⊂ R,
where F (x) < a2. This way, for each dataset, we solve 10 CE problems. The conclusions are as for the
classification datasets.

6.3 Realistic CEs

Fig. 6 shows actual source and CE instances for the MNIST dataset of handwritten digit images, optimizing
for the ℓ2 and ℓ1 distances. Besides LIRE and the search in the dataset instances, we also show the instance
(or, if there are several, the closest one to the source instance) in the closest live region that LIRE finds.
Note that the latter two, being actual data points, are realistic by definition, but they are also necessarily
farther than the LIRE CE. We can see that the LIRE CE also looks like quite a realistic image, sometimes
altering strokes of the source digit so as to make it look like the target class.

9



Breast cancer Spambase Letter Adult

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

PSfrag replacements all regions
LIRE
dataset search

a
x
is
-a
li
g
n
ed

tr
ee
s

av
g
.
d
is
ta
n
ce

2 4 6 8 10
0

0.05

0.1

0.15

0.2

PSfrag replacements

all regions
LIRE
dataset search

2 4 6 8 10
0

0.1

0.2

0.3

0.4

PSfrag replacements
all regions
LIRE
dataset search

2 4 6 8 10
0

1

2

3

4

5

6

PSfrag replacements

all regions
LIRE
dataset search

2 4 6 8 10

10-2

100

102

PSfrag replacements

all regions
LIRE
dataset search

av
g
.
ru
n
ti
m
e
(s
)

# trees
2 4 6 8 10

10-2

100

PSfrag replacements
all regions
LIRE
dataset search

# trees
2 4 6 8 10

10-2

100

PSfrag replacements

all regions
LIRE
dataset search

# trees
2 4 6 8 10

10-2

100

PSfrag replacements

all regions
LIRE
dataset search

# trees

Breast cancer Spambase Letter MNIST

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

PSfrag replacements
all regions
LIRE
dataset search

o
b
li
q
u
e
tr
ee
s

av
g
.
d
is
ta
n
ce

5 10 15
0

0.1

0.2

0.3

PSfrag replacements

all regions
LIRE
dataset search

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

PSfrag replacements all regions
LIRE
dataset search

2 4 6 8 10 12 14
0

2

4

6

PSfrag replacements

all regions
LIRE
dataset search

5 10 15

10-2

100

PSfrag replacements

all regions
LIRE
dataset search

av
g
.
ru
n
ti
m
e
(s
)

# trees
5 10 15

10-2

100

PSfrag replacements

all regions
LIRE
dataset search

# trees
5 10 15

10-2

100

PSfrag replacements

all regions
LIRE
dataset search

# trees
5 10 15

10-2

100

PSfrag replacements

all regions
LIRE
dataset search

# trees

Figure 5: Performance of three types of search: on all nonempty regions, on the live regions (LIRE) and on
the dataset points, as a function of the number of trees T , for different datasets, for axis-aligned trees (top
2 rows) and oblique trees (bottom 2 rows). We show the ℓ2 distance of the CE found (‖x∗ − x‖2) and the
runtime (seconds) to solve the CE problem. The curves are the average for 5 source instances.
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Table 1: Comparison of different CE algorithms: LIRE, search on dataset points, Feature Tweak [28] and
OCEAN [25], for different datasets and Random Forests, for axis-aligned trees, and optimizing the ℓ2 (above)
and ℓ1 (below) distance. We show the resulting distance ‖x∗ − x‖2 or ‖x∗ − x‖1 and the runtime in seconds
(average ± stdev over 10 source instances). All distances are normalized so that LIRE has unit distance.
For LIRE we give the number of live regions and for Feature Tweak the percentage of times the CE found
is feasible i.e., it is predicted to be the desired class (all other algorithms are always feasible). For each
dataset we give its size, dimensionality and number of classes (N,D,K); for each forest we give its number
of trees and average tree depth and number of leaves (T,∆, L). “timeout” means runtime over 500 s. The
best (smallest) distance is in boldface.

Dataset LIRE dataset search Feature Tweak OCEAN
(N,D,K) regions time (s) ℓ2 time (s) ℓ2 time (s) ℓ2 feasible time (s) ℓ2
(T,∆, L) ℓ1 ℓ1 ℓ1 ℓ1

337 2×10−4 1.00±0.95 1×10−4 1.17±1.08 8.6±1.4 1.25±0.82 100% 2.1±1.0 0.48±0.32

breast cancer

(559,9,2)

(100,9.1,51.9) 337 2×10−4 1.00±0.51 1×10−4 1.25±0.56 8.4±1.6 1.04±0.16 100% 4.6±2.1 0.45±0.15

432 6×10−4 1.00±0.68 2×10−4 1.23±0.54 6.6±1.1 1.04±0.98 100% 3.3±2.9 0.47±0.45

climate

(432,18,2)

(100,8.7,48.7) 432 6×10−4 1.00±0.65 2×10−4 2.67±0.29 7.2±1.8 1.14±0.95 100% 4.1±3.7 0.38±0.28

3211 6×10−3 1.00±0.90 2×10−4 1.09±0.90 89.6±13.2 0.54±0.36 100% 75.5±82.7 0.09±0.04

spambase

(3.6k,57,2)

(100,31.8,596.4) 3211 6×10−3 1.00±0.63 2×10−4 1.15±0.65 91.2±14.6 0.37±0.29 100% timeout

1162 3×10−4
1.00±0.78 2×10−4 1.27±1.15 15.9±8.5 1.12±1.03 67% timeout

yeast

(1162,8,10)

(100,23.6,734.2) 1162 3×10−4
1.00±0.76 2×10−4 1.33±0.96 14.8±8.1 1.15±0.57 67% timeout

14532 9×10−4
1.00±0.26 6×10−5 1.32±0.97 58.2±18.5 1.09±0.82 100% timeout

letter

(16k,16,26)

(100,27.9,4201) 14532 9×10−4
1.00±0.61 6×10−5 1.96±0.68 61.1±18.9 1.42±0.37 100% timeout

55000 2×10−1
1.00±0.73 4×10−2 1.41±0.89 147.8±48.5 – 0% timeout

MNIST

(55k,784,10)

(100,34.1,9369) 55000 2×10−1
1.00±0.44 4×10−2 1.88±0.58 151.8±51.4 – 0% timeout

103692 2×10−1
1.00±0.80 1×10−2 1.17±0.87 timeout timeout

MiniBooNE

(104051,50,2)

(100,34.5,9616) 103692 2×10−1
1.00±0.32 1×10−2 1.42±0.38 timeout timeout

8607 8×10−1
1.00±0.66 4×10−1 11.21±4.44 timeout timeout

Swarm

(18647,2400,2)

(100,31.6,1464) 8607 8×10−1
1.00±0.41 4×10−1 27.00±6.31 timeout timeout

12901 1.3 1.00±0.70 4×10−1 5.31±2.10 timeout timeout

Swarm

(18647,2400,2)

(1000,31.3,1468) 12901 1.3 1.00±0.53 4×10−1 18.59±4.34 timeout timeout

Table 2: Like table 1 but using a Random Forest of oblique trees (trained with TAO [3, 6]).

Dataset (N,D,K) (T,∆, L) LIRE dataset search
regions time (s) ℓ2 time (s) ℓ2

breast cancer (559,9,2) (30,2.3,5.8) 60 0.07 1.00±0.52 0.001 1.23±0.95
spambase (3.6k,57,2) (30,2.6,7.8) 214 0.36 1.00±0.71 0.011 2.57±2.42
letter (16k,16,26) (30,8.0,289.2) 13238 2.63 1.00±0.70 0.004 1.21±0.83
MNIST (55k,784,10) (30,8.0,148.6) 50711 151.97 1.00±0.83 0.040 3.03±1.81
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ℓ2 ℓ1
x LIRE LIRE xn dataset LIRE LIRE xn dataset

(1,1.0,0.0) (8,0.0,1.0),2.8 (8,0.0,1.0),8.6 (8,0.1,0.7),5.3 (8,0.0,1.0),18.0 (8,0.0,1.0),94.7 (8,0.1,0.7),43.8

(1,1.0,0.0) (2,0.1,0.8),3.1 (2,0.1,0.8),4.7 (2,0.1,0.8),4.7 (2,0.1,0.8),18.3 (2,0.1,0.8),36.8 (2,0.1,0.8),36.8

(1,1.0,0.0) (3,0.0,1.0),3.2 (3,0.0,1.0),9.5 (3,0.2,0.7),4.8 (3,0.0,1.0),20.2 (3,0.0,1.0),100.4 (3,0.2,0.7),35.8

(1,1.0,0.00) (4,0.1,0.7),3.4 (4,0.1,0.7),4.1 (4,0.1,0.7),4.1 (4,0.1,0.7),18.6 (4,0.1,0.7),29.4 (4,0.1,0.7),28.9

(4,0.9,0.0) (3,0.0,0.9),5.4 (3,0.0,0.9),9.8 (3,0.1,0.7),7.3 (3,0.0,0.9),42.2 (3,0.0,0.9),95.9 (3,0.1,0.7),76.7

(4,0.9,0.00) (1,0.0,0.7),7.3 (1,0.0,0.7),9.4 (1,0.1,0.8),8.5 (1,0.1,0.8),72.6 (1,0.1,0.8),100.4 (1,0.1,0.8),93.3

(7,0.9,0.0) (1,0.1,0.7),6.1 (1,0.1,0.7),9.2 (1,0.1,0.7),7.6 (1,0.1,0.7),55.1 (1,0.1,0.7),95.5 (1,0.1,0.7),81.2

(2,0.9,0.0) (6,0.0,1.0),3.6 (6,0.0,1.0),9.2 (6,0.1,0.7),6.6 (6,0.0,1.0),23.4 (6,0.0,1.0),109.2 (6,0.0,0.6),81.2

(4,1.0,0.0) (7,0.0,0.7),5.0 (7,0.0,0.7),7.5 (7,0.2,0.6),7.0 (7,0.0,0.9),38.9 (7,0.0,0.9),87.2 (7,0.1,0.8),71.3

Figure 6: MNIST handwritten digit image CEs. Each row is a different source instance and target class (the
class labels are underlined). For each instance, we show the source instance x, and the CEs for: LIRE; the
dataset instance in the region found by LIRE (“LIRE xn”); and the search over all dataset instances (for
both optimizing the ℓ2 distance in columns 2–4, and the ℓ1 distance in columns 5–7). The best (closest)
CE is in boldface. For each CE, we give numbers like “(8,0.0,1.0),2.8” meaning the class predicted (8), the
forest-predicted probability for the source and target class (0.0,1.0) and the distance (2.8).
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Table 3: Like table 1 but for regression.

Dataset LIRE dataset search
(N,D,K) regions time (s) ℓ2 time (s) ℓ2
(T,∆, L) ℓ1 ℓ1

abalone
(3341,10,1) 1097 1×10−4 1.00±0.91 5×10−5 1.31±1.14

(100,24.7,1277) 1097 1×10−4 1.00±0.95 5×10−5 1.48±1.35

cpuact
(6553,21,1) 6553 2×10−4 1.00±0.84 7×10−5 1.29±0.91

(100,29.6,4133) 6553 2×10−4 1.00±0.91 7×10−5 1.36±0.93

ailerons
(7154,40,1)) 1106 2×10−4 1.00±0.46 1×10−4 5.04±4.56
(100,7.9,18.1) 1106 2×10−4 1.00±0.47 1×10−4 4.58±3.86

CT slice
(42800,384,1) 42416 4×10−2 1.00±0.21 1×10−4 2.01±0.61

(100,25.0,22550) 42416 4×10−2 1.00±0.33 1×10−4 3.42±1.68

CT slice
(42800,384,1) 42691 5×10−2 1.00±0.19 1×10−4 1.56±0.48

(1000,25.0,22550) 42691 5×10−2 1.00±0.32 1×10−4 2.24±1.06
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7 Conclusion

Decision forests define a piecewise constant function with an exponential number of regions in feature space,
so searching for a counterfactual explanation exhaustively is impractical unless the forest is very small (in
number of trees and of leaves). However, if we restrict the search to only those regions containing at least an
actual data point (“live” regions), then the search becomes not only practical but very fast, even suitable for
interactive use in some cases. This can also be seen as a realistic formulation of counterfactual explanations
where the solution is constrained to lie in high-density regions of feature space, and the live regions act as
a nonparametric density estimate. We are working on scaling the search to even larger forests and datasets
using pruning heuristics and approximate nearest-neighbor search techniques.
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A Details about the experiments’ setup

A.1 Datasets

All datasets are from the UCI Machine Learning Repository [21] unless otherwise indicated.

A.1.1 Classification datasets

For classification we use the following nine datasets:

Breast Cancer The task is to classify whether the cancer is malignant or benign. There are 699 instances,
and each instance has 9 real-valued attributes. Since there is no separate test dataset, we randomly
divide the entire data into training (80%) and test (20%).

Spambase This dataset consists of a collection of emails, and the task is to create a spam filter that can
tell whether an email is spam or not. There are 4 601 instances, and each instance has 56 real-valued
attributes. Since there is no separate test dataset, we randomly divide the entire data into training
(80%) and test (20%).

Yeast This has 1 453 instances, each with 8 real-valued attributes, in 10 classes. Similar to other datasets,
we use 20% inputs as the test set and the rest as the training set.

Climate The task is to predict climate model simulation outcomes (fail or succeed) using 18 real-valued
attributes. There are 540 instances in total, out of which we use 80% for training and the rest for
testing.

Letter The objective of this dataset is to classify 26 capital letters in the English alphabet. It has separate
4 000 test instances along with 16 000 training instances. Each instance has 16 real-valued attributes.
The character images were based on 20 different fonts and each letter within these 20 fonts was
randomly distorted to produce a file of 20 000 unique stimuli. Each stimulus was converted into 16
primitive numerical attributes (statistical moments and edge counts), which were then scaled to fit
into a range of integer values from 0 through 15.

MNIST The dataset (from [20]) consists of grayscale images of handwritten digits and the task is to classify
them as 0 to 9. There are 60 000 training images and 10 000 test images. Each image is of size 28× 28
with gray scales in [0,1].

Miniboon The dataset is taken from the MiniBooNE experiment and is used to distinguish electron neu-
trinos (signal) from muon neutrinos (background). There are 104K training and 26 013 test inputs,
each containing 50 real-valued features.
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Swarm There are 23 309 instances, each with 2 400 real features, and 2 classes. Similar to other datasets,
we use 20% inputs as the test set and the rest as the training set.

Adult It is a dataset with mixed type attributes. The prediction task is to determine whether a person
makes over 50K a year. There are 12 attributes, out of which 4 are continuous, and the rest are
categorical. In all our experiments we convert each categorical attribute to one-hot encoding attribute.
Thus each instance has 102 attributes. There are 30 162 training instances, and separate 15 062 test
instances.

A.1.2 Regression datasets

Since all datasets except Ailerons do not contain separate test sets, we use 80% inputs as training and the
rest as the test.

Abalone The task is to predict the age of abalone from physical measurements. There are a total 4 177
inputs, each with 10 real-valued attributes.

Cpuact The task (from the DELVE data collection3) is to predict the portion of time that CPUs run in user
mode given different system measures. The total number of inputs is 8 192, and each input contains
21 real-valued attributes.

Ailerons Aircraft control action prediction4. The attributes describe the status of the aircraft, and the
target is the command given to its ailerons. It has separate 6 596 test instances along with 7 154
training instances. Each instance has 40 real-valued attributes.

CT slice The attributes are histogram features (in polar space) of a Computer Tomography (CT) slice.
The task is to predict the relative location of the image on the axial axis (in the range [0 180]). There
are 53 500 inputs in total, each with 384 real-valued attributes.

A.2 Decision forest models

All our experiments are implemented in Python and run in a single core (without parallel processing). For
classification, we present results on two types of decision forests:

Random Forest We consider a Random Forest of axis-aligned or oblique trees, where individual trees were
trained as follows.

Axis-aligned trees We used the scikit-learn Random Forest classifier, where individual trees are
trained using CART. In our experiments, we used the default parameters, and each tree is grown
in full (i.e., not pruned). The only parameter we change is the number of trees in the Random
Forest.

Oblique trees Each tree is trained using the TAO algorithm [3, 6]. We use our own implementation
based on [33]. Each tree in the Random Forest is initialized with a full tree of depth 8 and random
parameters in all our experiments. We apply an ℓ1 penalty on the weights of the decision nodes
(which are then somewhat sparse), with a penalty hyperparameter equal to 1 for all datasets.

AdaBoost forest For AdaBoost forests, we again use the scikit-learn AdaBoost classifier, where indi-
vidual trees are axis-aligned and trained using CART. For all datasets, we use a maximum depth of
8 except for the Breast-cancer dataset, where it is 6. The number of trees is selected based on the
experiment, and the rest of the parameters are default.

For regression, we use forests of axis-aligned decision trees only (not oblique). We use the scikit-learn

Random Forest regression model, where individual trees are trained using CART. Similar to the classification
case, we used the default parameters, and each tree is grown in full. The only parameter we change is the
number of trees in the Random Forest.

3http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
4https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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A.3 Counterfactual explanation algorithms: implementations and comments

We implement LIRE (both for axis-aligned and oblique) and the dataset search in Python. For other
algorithms, we use the implementation available online. For both Optimal Action Extraction (OAE) [9] and
OCEAN [25], we use the implementation by the author of OCEAN5. For Feature Tweak [28], we use the
same implementation as in the OCEAN paper6. OCEAN uses Gurobi as solver.

In table 1, we write “timeout” for a method in a dataset if, for any of the randomly picked source
instances from that dataset, the method fails to generate a counterfactual within 500 seconds (a very long
time, which would make practical use very inconvenient). Whenever that happens, we stop the experiments
for that dataset with that method. For OAE, this happened in all our experiments, so we did not add it to
table 1.

In table 3, we do not show OAE because the OCEAN implementation does not support regression
(although Cui et al. [9] claim that OAE can be used for regression).

OCEAN can only handle source instances (or solution instances) where the numerical (continuous) feature
values are in the [0,1] interval. This is achieved by rescaling the training set range of each feature (the
minimum and maximum value of each feature). However, test instances may well have features whose values
exceed the range in the training set, so after the rescaling they will not lie in [0,1]. During our experiments,
we observed that in such cases, sometimes OCEAN fails to return the counterfactual and terminates the
process with a message “MY MILP IS WRONG”. We did not report such cases in the main paper.

Even though OCEAN relies on an highly optimized, commercial MIO solver (Gurobi), its runtime ex-
plodes unless one uses very small forests and feature dimensionality—from a few seconds in [25] to usually
exceeding the 500 seconds’ timeout in our experiments. The experimental results shown by Parmentier and
Vidal [25] used Random Forests of shallow trees and datasets of low feature dimensionality. This gives an
incomplete, overly optimistic picture of the runtime one can typically expect in realistic situations. In Ran-
dom Forests each tree is grown fully (without pruning) [1], otherwise one hurts the accuracy of the forest,
which defeats its purpose. Fully-grown trees are quite deep with most datasets (see fig. 7, for example).
OCEAN’s runtime seems to grow exponentially with the tree depth [25].

While Parmentier and Vidal [25] claim that OCEAN can handle multiclass forests, their results only
showed binary classification forests. In our experience with multiclass forests, the runtime of OCEAN blows
up with even very small forests. Even for a low-dimensional dataset like Yeast (only 8 features), the runtime
exceeds 500 seconds.

Another important, undesirable behavior in MIO approaches such as OCEAN is their large runtime
variability, which makes it hard to predict how long it will take to solve a CE, and often results in runtimes
that are considerably nonmonotonic as a function of the problem size. This is a consequence of the fact that
MIO solvers essentially perform a brute-force search for an NP-hard problem, so we have to expect worst-case
exponential runtimes. This large runtime and the effect of the many heuristics that an MIO solver tries in
pruning the branch-and-bound search results in a large runtime variability when solving problems of the
same size (e.g. different source instances or target classes for the CE). Even further, MIO solvers are known
to be extremely variable in runtime even on the same exact problem and the same computer, software and
software settings. For example, simply changing the representation of the problem (e.g. the ordering of the
variables or the constraints) can significantly affect the runtime [22]. Indeed, in our experiments (for the
few cases where it runs within the time limit), we observe OCEAN has a standard deviation comparable
to the mean. In contrast, the runtime for our algorithm has a far smaller variation, as expected from its
computational complexity analysis.

Finally, we also tried to compare with the code for FOCUS7 [23]. This is an approximate CE method
which replaces the hard splits of the decision trees with soft (sigmoid) functions and uses a gradient-based
algorithm to optimize the CE problem. FOCUS requires tuning four hyperparameters to generate any single
CE. Despite our best efforts, we were unable to generate CEs for all the 10 instances per dataset we report
in table 1, so we do not include FOCUS in our results.

5https://github.com/vidalt/OCEAN
6https://github.com/upura/featureTweakPy
7https://github.com/a-lucic/focus
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B Additional experimental results

B.1 Accuracy and size of the forests we used

Fig. 7 shows the training and test error for the forests we used in our experiments. Importantly, observe that
for forests with axis-aligned trees (Random Forests, AdaBoost), in order to achieve good accuracy the number
of trees may need to reach hundreds or thousands and the depth of each tree may have to be considerable.
This is particularly so for Random Forests, which require growing a tree in full, without pruning, for good
performance (and this is the default in any practical implementation, such as scikit-learn). Unless the
dataset is very small in both dimensionality and sample size, one can expect Random Forests to have trees
with depth upwards of 10 (and, consequently, hundreds or thousands of nodes). Previous papers, particularly
those using a mixed-integer programming formulation, report experimental results using very small forests
(up to depth 5 in [25]). Such small forests would not be competitive in terms of accuracy. With larger, more
practically useful forests, solving counterfactuals exactly as in such approaches is infeasible, because they
essentially do a brute-force search in an exponentially large search space.

For forests of oblique trees (trained with the TAO algorithm), we can achieve even better accuracy than
for axis-aligned trees using a much smaller number of trees with much smaller depth (up to 30 trees of depth
8 to 10 in fig. 7). This is important because, while the region counterfactual requires solving a QP or LP,
the number of live regions in the forest is quite smaller, so the runtime remains moderate. Note that the
only counterfactual explanation algorithm considered here that can handle oblique forests is LIRE.

B.2 AdaBoost forests

In this section, we present results with AdaBoost forests. As described in section A.2 we use the scikit-learn
AdaBoost classifier, where individual trees are axis-aligned and trained using CART. The results are quali-
tatively very similar to those shown in section 6 for Random Forests. Specifically:

• Growth of the number of regions of an AdaBoost forest as a function of the number of trees T (fig. 8).
The number of non-empty regions grows exponentially as the number of trees in the forest increases,
while the growth of live regions is upper bounded by the number of training instances.

• Approximation error between LIRE and using all non-empty regions for different datasets (fig. 9). The
approximation (in terms of the distance to the source instance) is quite good, though it degrades as
the number of trees increases.

• Comparison of LIRE with dataset search (table 4). LIRE finds better CEs and is very fast.

B.3 Growth of regions in Random Forest with depth of the trees

In this section, we demonstrate how the number of regions in the Random Forest grows as a function of the
depth of the individual trees. The experiment setup is the same as in fig. 2. The only difference is that
here we change the maximum depth of the trees in the forest while keeping the number of trees in the forest
constant. As shown in fig. 10 the number of regions grows similarly to fig. 2. The number of live regions is
bounded by N (number of training instances), reaching N even for smaller depths. Similarly, the number of
non-empty regions hits the cap even for small depths for almost all datasets.

B.4 Realistic counterfactuals

In fig 11, we show one example where generating a counterfactual that is closer to the source does not
provide a realistic counterfactual. LIRE generates a counterfactual which is worse in terms of distance from
the source but is more realistic, adding a horizontal stroke to convert the digit 1 into a digit 4.
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Figure 7: Training and test error of different types of forests (Random Forests, AdaBoost) with different
types of trees (axis-aligned, oblique), for different forests sizes (number of trees, depth). Beyond 30 trees,
we just show the accuracy of the final forest, to avoid clutter. For axis-aligned Random Forests, the average
depth of each tree in the forest for the Breast cancer, Spambase, Letter and MNIST datasets is 9.0, 32.0, 27.9
and 33.8, respectively. For axis-aligned AdaBoost forests, the depth of each tree in the forest is 8, except for
Breast cancer, where it is 6.
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Figure 8: Growth of the number of regions of an AdaBoost forest as a function of the number of trees T ,
for different datasets, for axis-aligned trees. On the left, we plot the number of nonempty regions (solid
lines) and live regions (dashed lines); on the right, the upper bound for the number of nonempty regions.
All regions are capped to a maximum of 5 · 106.
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Figure 9: Like fig. 5 but for AdaBoost forest (axis-aligned trees).

Table 4: Like table 2 but for the AdaBoost forest.

Dataset (N,D,K) (T,∆, L) LIRE dataset search
regions time (s) ℓ2 time (s) ℓ2

breast cancer (559,9,2) (100,5.9,32.3) 376 2×10−4 1.00±0.89 1×10−4 1.21±1.00
spambase (3.6k,57,2) (100,7.9,104.8) 3226 6×10−3 1.00±0.63 2×10−4 1.41±0.51
letter (16k,16,26) (100,8.0,157.6) 14877 9×10−4 1.00±0.76 6×10−5 1.32±0.91
MNIST (55k,784,10) (100,8.0,250.5) 55000 2×10−1 1.00±0.58 4×10−2 1.66±0.98
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Figure 10: Growth of the number of regions of a Random forest as a function of maximum depth of the trees
T , for different datasets, for axis-aligned trees. On the left, we plot the number of nonempty regions (solid
lines) and live regions (dashed lines); on the right, the upper bound for the number of nonempty regions. In
each case, the number of trees in the forest is 10, and all regions are capped to a maximum of 5 · 106.

ℓ2
x LIRE LIRE xn dataset

(1,1.00,0.00) (4,0.03,0.77),3.32 (4,0.03,0.70),4.41 (4,0.1,0.70),31.98

all regions
(4,0.04,0.28),3.06

Figure 11: The first row is the same as fig. 6, where the source class is 1 and the target class is 4, and only
contains CEs generated by optimizing the ℓ2 distance. The second row contains one CE that is not in the
live region and is closer to the source.
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[3] M. Á. Carreira-Perpiñán. The Tree Alternating Optimization (TAO) algorithm: A new way to learn
decision trees and tree-based models. arXiv, 2022.
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[6] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with application
to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems (NEURIPS), volume 31,
pages 1211–1221. MIT Press, Cambridge, MA, 2018.
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[16] S. S. Hada and M. Á. Carreira-Perpiñán. Exploring counterfactual explanations for classification and
regression trees. In ECML PKDD 3rd Int. Workshop and Tutorial on eXplainable Knowledge Discovery
in Data Mining (XKDD 2021), pages 489–504, 2021.

21



[17] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning—Data Mining,
Inference and Prediction. Springer Series in Statistics. Springer-Verlag, second edition, 2009.

[18] K. Kanamori, T. Takagi, K. Kobayashi, and H. Arimura. DACE: Distribution-aware counterfactual
explanation by mixed-integer linear optimization. In Proc. of the 20th Int. Joint Conf. Artificial Intel-
ligence (IJCAI’07), pages 2855–2862, Hyderabad, India, Jan. 6–12 2007.

[19] A.-H. Karimi, G. Barthe, B. Balle, and I. Valera. Model-agnostic counterfactual explanations for
consequential decisions. In Proc. of the 23rd Int. Conf. Artificial Intelligence and Statistics (AISTATS
2020), pages 895–905, Online, Aug. 26–28 2020.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proc. IEEE, 86(11):2278–2324, Nov. 1998.

[21] M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013.

[22] A. Lodi and A. Tramontani. Performance variability in mixed-integer programming. INFORMS TutO-
Rials in Operations Research, pages 1–12, Sept. 2013.

[23] A. Lucic, H. Oosterhuis, H. Haned, and M. de Rijke. FOCUS: Flexible optimizable counterfactual
explanations for tree ensembles. In Proc. of the 36th AAAI Conference on Artificial Intelligence (AAAI
2022), pages 5313–5322, Online, Feb. 22 – Mar. 1 2022.

[24] R. K. Mothilal, A. Sharma, and C. Tan. Explaining machine learning classifiers through diverse coun-
terfactual explanations. In Proc. ACM Conf. Fairness, Accountability, and Transparency (FAT 2020),
pages 607–617, 2020.

[25] A. Parmentier and T. Vidal. Optimal counterfactual explanations in tree ensembles. In M. Meila
and T. Zhang, editors, Proc. of the 38th Int. Conf. Machine Learning (ICML 2021), pages 8422–8431,
Online, July 18–24 2021.

[26] C. Russell. Efficient search for diverse coherent explanations. In Proc. ACM Conf. Fairness, Account-
ability, and Transparency (FAT 2019), pages 20–28, Atlanta, GA, Jan. 29–31 2019.

[27] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In Proc. of the 2nd Int. Conf. Learning Representations (ICLR 2014),
Banff, Canada, Apr. 14–16 2014.

[28] G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas. Interpretable predictions of tree-based ensembles
via actionable feature tweaking. In Proc. of the 23rd ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining (SIGKDD 2017), pages 465–474, Halifax, Nova Scotia, Aug. 13–17 2017.

[29] B. Ustun, A. Spangher, and Y. Liu. Actionable recourse in linear classification. In Proc. ACM Conf.
Fairness, Accountability, and Transparency (FAT 2019), pages 10–19, Atlanta, GA, Jan. 29–31 2019.

[30] A. Van Looveren and J. Klaise. Interpretable counterfactual explanations guided by prototypes. In
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