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Internet-of-Things is rapidly growing from traditional small-scale applications like smart homes (10-100m range) to large-scale
applications like Microsoft Farmbeats (1-5Km range). Small-scale applications are catered by short-range radios like Zigbee and
Bluetooth LE while large-scale applications are catered by long-range radios like LoRa and NB-IoT. The other upcoming category
of IoT applications like P2P energy-trade in smart homes (0.1Km-1Km range) are termed mesoscale IoT applications. There are no
specialized radios fully developed for mesoscale IoT applications. They either use short-range or long-range radios. To close this
gap, we explored mesoscale IoT applications using commercial-off-the-shelf (COTS) IoT radios available. Our qualitative analysis
identifies Zigbee and LoRa as potential candidates. Further quantitative analysis of radio candidates on both single-hop and multi-hop
topologies showed that Zigbee and LoRa achieve competitive throughput at the distance of 500-1200m from the gateway, termed the
gray-region. A fundamental finding of these analyses is that a multi-radio system that can efficiently switch between Zigbee and LoRa
performs better than the single-radio systems. However, instantaneously selecting and switching to a high-throughput radio at the
time of transmission is not trivial because of erratic link quality dynamics in mesoscale IoT environments.

To address this issue, we developed MARS: a Multi-radio Architecture with Radio Selection using Decision Trees that use
instantaneous end-to-end path quality metrics to instantaneously select the high-throughput radio at the time of transmission.
However, realizingMARS on resource-constrained end-devices entails the challenge of obtaining instantaneous path quality information.
Traditional path quality estimation is not instantaneous due to propagation and queuing delays. We overcome this challenge by
showing that collecting local path metrics as input to our decision trees provides sufficient information to instantaneously identify
the high-throughput radio. The radio selector of MARS is powered by TAO-CART trees. These trees are converted into IF...ELSE
statements for efficient deployment on end devices. The evaluation of MARS on a large-scale mesh topology at two different locations
show that MARS can efficiently identify and switch to the high-throughput radio at the time of transmission, leading to an average
throughput gain of 48.2% and 49.79% than the competing schemes1.
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1 Introduction

Traditional IoT networking comprises both small-scale applications, like smart homes (10-100m range), and large-
scale applications, like Microsoft FarmBeats [45] (1-5Km range). On the other hand, emerging applications serve in
the range of 0.1-1.5Km, like smart-grid Neighborhood Area Networking (NAN) [22], target tracking [46], Industrial
Automation [39, 49] and P2P energy-trade in smart neighborhood [36, 41, 44]. These applications are hereafter referred
to as mesoscale IoT applications. In P2P energy trade [15], multiple nodes bid for available energy like stock market
transactions. Industrial automation [14, 16, 51, 56] provides time-critical closed-loop control for M2M communications.
Here, the radios should optimize latency/throughput for better application performance [42]. The latency/throughput
are calculated on successfully delivered packets, indirectly including reliability. The IoT radio utilized here will be
a small component of a larger device. Unlike the typical IoT nodes powered by a smaller battery, these devices are
either grid-powered [57, 65] or have a large battery reserve to support the entire device [14–16]. Hence, we chose
latency/throughput as the performance indicator with a secondary emphasis on energy consumption.

Unlike the comparatively stable deployed environments of smart homes and Microsoft Farmbeats [45], mesoscale
applications serve in urban/semi-urban environments that are relatively dynamic. This dynamic nature is because of
environmental obstacles, like buildings made of wood, glass, and concrete, heavy human influx, and vehicle movements.
These factors erratically alter the wireless link quality. Some applications may need direct single-hop communication
with the gateway while other applications may need multi-hop communication to communicate with other nodes in the
network. Since LoRa covers the entire mesoscale range, an intuitive idea would be to use LoRa in a multi-hop fashion,
for applications that need inter-node communications. However, using a low-throughput LoRa radio in a multi-hop
fashion will further reduce the end-to-end throughput with the increase in hops [10]. Furthermore, mesoscale IoT
applications do not have a dedicated, well-developed radio technology. To close this gap, we explored the performance
of the available Commercially-Off-The-Shelf (COTS) IoT radios for the mesoscale IoT applications.

First, we characterized the mesoscale IoT environment and conducted a qualitative analysis on the available IoT
radios (§5). This analysis identifies Zigbee and LoRa as potential candidates for mesoscale IoT applications. Further
quantitative analysis (refer §5.1) of the radio candidates on both single-hop and multi-hop topologies show that Zigbee
and LoRa achieve competitive throughput at the distance of 500-1200m from the gateway, hereafter referred as the
gray-region. In this gray-region, LoRa and Zigbee radios achieve high end-to-end throughput at different time instants
due to erratic channel conditions ( refer §5.2). Unlike transitional region[48] that shows the dynamicity of PDR between
connected and disconnected regions of a single hop, the gray region shows that two radios with an order of magnitude
difference in theoretical throughput, achieve competitive throughput, over multiple hops. The fundamental finding is
that Zigbee and LoRa can work together as a multi-radio system and efficiently switch between the radios to maximize
throughput (refer §6). However, instantaneously selecting a high-throughput radio is not a trivial problem because of
erratic link quality dynamics in the mesoscale IoT application environments.

Second, we developed MARS to instantaneously select high throughput radio during transmission, using instantan-
eous end-to-end path/link quality metrics. MARS’s node comprises both Zigbee 2.4 GHz and LoRa 915 MHz radios.
While it is intuitive to employ a Machine Learning (ML) model to perform radio selection, it entails the challenge of
obtaining instantaneous path/link quality estimations. Multi-hop Zigbee radios propagate the link quality information
of all the links along the path to compute path quality [24]. However, the propagated link quality info expires before
it reaches the destined node because of temporal link quality variations, propagation, and queuing delays along the
path (refer §8.1). While it is ideal to compute the path quality of the entire path, we observed that a part of the entire
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path length is sufficient to identify the high throughput radio during transmission. We performed extensive analysis
and evaluation on multiple topologies, to find the fewer hops required to estimate the end-to-end path quality as input
to our ML model and still obtain good radio selection accuracy (refer §8.2). This way we balance the trade-off between
perfectly accurate global metrics that cannot be gathered on time and acceptably accurate local metrics that can be
collected on time while still providing good input for our ML model, trained by CART[60], to achieve acceptable radio
selection accuracy.

Finally, we optimize the CART with Tree-Alternating Optimization (TAO) [21]. The TAO algorithm optimizes the
traditional trees to achieve higher accuracy with lower training data requirements. The TAO-Optimized CART (TAO-
CART) can be converted into IF...ELSE statements for efficient deployment on IoT end devices. An evaluation of MARS on
a complex mesh topology at two different locations showed that MARS can instantaneously select the high-throughput
radio during transmission leading to an average throughput gain of 48.2% and 49.79% than the competing schemes.

In summary, the contributions of our work are:

(1) Identifying the absence of a dedicated radio for emerging mesoscale IoT apps, we developed an intelligent multi-
radio architecture with COTS IoT radios, namely Zigbee and LoRa, that has an order of magnitude difference in
theoretical throughput.

(2) We identified the existence of a gray-region between 0.5-1.2 Km from the gateway, through analytic and experi-
mental analysis, showing that due to the temporal variability in the channel, it is uncertain which radio provides
the best throughput at any given time.

(3) We developed an implementation of an ML Decision Tree model for radio selection using the TAO [21] algorithm.
To the best of our knowledge, this is the first real-world use case of TAO.

(4) We showed that partial path quality can provide sufficient information for our TAO-optimized tree to accurately
select the high-throughput radio during transmission.

2 Related work

Multi-radio wireless networks have been heavily worked on for a decade using different radio combinations. WiFi
+ LTE [9, 12], WiFi + Bluetooth [4, 7, 58], 60GHz+WiFi [63] to ameliorate energy efficiency [4, 32, 34, 53], traffic
management [50], mobility management [59] and routing management [5, 13]. Bahl et al. [8] identified that multi-radio
systems are beneficial for wireless networks. They showed that using different radio technologies on the same platform
improves performance. They recommended abstracting multiple radios as a single logical pipeline yet providing access
to the networking protocols. While most of the above multi-radio systems were developed for high-power radios like
WiFi, the systems designed for IoT networks are discussed below.

Backpacking [17] was developed for high data rate sensor networks like HP’s CeNSE [54]. Initially, they experiment
with the network-level energy efficiency of the low-power (802.15.4) and high-power (802.11b) radios on different data
rates, node densities, and distances. Using these results, a cross-layer empirical model is developed to calculate the
optimal density of high-power radios to be augmented with the low-power radios, to strike a balance between the
usage of the two radio types. They use 802.15.4 and 802.11b radios in the accumulator node and only 802.15.4 radio
in the originator node. Originator nodes send smaller packets of sensed data to the accumulator node using 802.15.4
radio. The accumulator acts as a relay between multiple originator nodes and the base station. An accumulator node
gathers all the data to be sent to the base station from multiple originator nodes and uses 802.11b radio to transmit
the accumulated data to the base station. Their indoor experiments inside a small room show that Backpacking can
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Table 1. A comparison of related work

Multi-radio systems Radios Used Optimized Metric Deployment Range >500m? Radio Selector Mobility?Energy Reliability Throughput Latency
Backpacking [17] 802.11 + 802.15.4 ✔ ✗ ✗ ✗ ✗ ✗ ✗

Kusy et al. [32] 802.15.4 (915MHz) + 802.15.4 (2.4GHz) ✗ ✔ ✗ ✗ ✗ ✗ ✗

Gummeson et al. [27] 802.15.4 (915MHz) + 802.15.4 (2.4GHz) ✔ ✗ ✗ ✗ ✗ Reinforcement Learning ✔

Lymberopoulos et al. [34] 802.11b + 802.15.4 ✔ ✗ ✗ ✗ ✗ Threshold-based ✗

MARS 802.15.4 (2.4GHz) + LoRa LPWAN ✗ ✗ ✔ ✔ ✔ Decision Trees ✗

gain 44% improvement in average energy per bit. This will work perfectly for high-data-rate, non-deadline-oriented
applications but won’t work for low-data-rate, time-sensitive applications because an accumulator node has to gather a
lot of data before transmitting via 802.11 radio. Unlike this work, we develop a multi-radio architecture for low data
rate, time-sensitive mesoscale IoT applications.

Kusy et al. [32] develop a multi-radio architecture for wireless sensor networks. They show that employing two multi-
hop radios in the same node improves communication reliability but pays a toll of 3-33% higher energy consumption.
They exploit radio diversity with two 802.15.4 radios working in mutually exclusive bands of 2.4 GHz and 900 MHz to
enable simultaneous transmission and reception capabilities. They abstract the radios behind a software driver that
enables simultaneous, independent control and data plane operations. Their experiment on a 400m×450m area achieves
communication reliability but pays a 33% overhead in energy consumption as multi-hop networks will incur more
delay and energy when more hops are added [17]. Unlike this work, we focus on optimizing throughput and latency for
mesoscale IoT applications, ranging from 100-1000m from the gateway. Hence, it is clear that using two independent,
simultaneously operating multi-hop networks for a mesoscale IoT application is not energy-inefficient and they incur
more delay at each hop leading to a reduced throughput. These results suggest to use one multi-hop radio and one
single-hop radio with diverse frequency ranges to improve the performance of mesoscale IoT applications.

Gummeson et al. [27] found that range diversity and channel dynamics are the major impediments to energy
efficiency in mobile sensor networks. They developed a Reinforcement Learning (RL) based adaptive link layer to
predict channel dynamics. The reward of this RL algorithm is the expected energy efficiency when choosing a particular
radio for transmission. On learning the channel dynamics, they employ a formula to translate the learned channel
dynamics to estimate the energy required by each radio for transmitting a packet. Finally, they choose a radio that
consumes less energy. They also propose a protocol to coordinate the data plane and control plane operations of the two
radios. The RL algorithm is the appropriate choice for learning channel dynamics of complex mobile sensor networks,
but their complexity is very high (refer §9 (ii)) for static IoT network employed for mesoscale IoT applications.

Lymberopoulos et al. [34] provided guidelines to design a multi-radio architecture for energy-efficient Wireless
Sensor Networks (WSN). They use 802.11b and 802.15.4 radios in the same platform and study the effect of packet
size, and transmission time on energy consumption. Through experiments, they identified the bottlenecks, trade-offs,
and break-even points of multi-radio systems. Based on these break-even points, they developed a threshold-based
radio-switching algorithm to optimize energy efficiency. This threshold-based algorithm utilizes the break-even point
regions, where one radio performs better than the other, to switch to an energy-efficient radio.

A comparison of related work with MARS is tabulated in Table 1. While all the previous works employed multi-radio
systems for energy efficiency and improving reliability, MARS is optimizing throughput and latency. To the best of
our knowledge, MARS is the first to explore multi-radio architecture for mesoscale applications ranging between
100-1000m from the gateway. Two closely related works are Lymberopoulos et al. [34] and Gummeson et al. [27]. We
made our best effort to adopt the threshold-based algorithm of Lymberopoulos et al. [34] for comparison with MARS.
The sophisticated RL-based radio switching protocol of Gummeson et al. [27] suffers from the below-described problems:
Manuscript submitted to ACM



MARS: Multi-radio Architecture with Radio Selection using Decision Trees
for emerging mesoscale CPS/IoT applications 5

Fig. 1. MARS System Overview

(i) During data transfer between two radios in the communication range, the radio switching protocol, designed for
energy efficiency, does a three-way handshake to switch radios. This incurs additional latency which will heavily
degrade the throughput. (ii) A well-known issue of model-free RL is that it requires heavy training data to converge to
an acceptable performance [23] and the amount of data used for training their model-free RL model is obscure. We
compared the training data requirements of Q-learning and Decision Tree models in §7.2. Since Gummeson et al. [27]
developed custom hardware for energy efficiency, we made our best effort to adapt their work to compare with MARS.

3 MARS System Overview

In this section, we provide an overview of MARS. Figure 1 shows the system overview with all the components. MARS
consists of a network of nodes using multiple radios, chosen using the methodology explained in § 5. Multi-hop Zigbee
network uses a distance-vector routing [19] protocol for multi-hop routing. The control plane of both radios constantly
feeds the link quality estimators. LoRa link quality estimator directly feeds the Radio selector with RSSI. The DT-based
path-quality estimator takes input from the Zigbee LQ estimator to estimate path qualities RNP and PRR. The specific
path quality metrics used are not completely end-to-end. The analysis and determination of those metrics are explained
in § 8.2, where we show that a partial path quality is sufficient to provide inputs to the ML model to achieve acceptable
radio-selection accuracy, while at the same time being able to gather this data in a fast enough manner as to preserve
the temporal correlations in the RF channel. The ML model uses an input feature vector composed of multiple path and
link quality metrics explained in § 7.1. The reason for using an ML model is provided in § 5.2, and it is related to the
temporal dynamics in the gray-region explained in §5.2. Taking these inputs, the radio selector powered by an ML
model, explained in § 7, chooses the high throughput radio at the time of transmission.

4 Factors affecting mesoscale IoT applications

A mesoscale IoT environment ranges anywhere between 100-1500m [22, 46, 62]. The factors affecting the performance
of mesoscale IoT applications are three-fold: (i) Environmental obstacles, (ii) Vagarious IoT radios, and (iii) Applications
demanding different communication paradigms and Quality of Service (QoS).

Firstly, a mesoscale IoT environment will be very dynamic in nature. Mesoscale IoT environment comprises buildings,
heavy human influx, and vehicle movements. The buildings are made of materials like steel, glass, concrete, physical
firewalls, etc. Wireless signals passing through these objects get attenuated to a fixed level that can be approximated
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Table 2. A comparison of different IoT radios in the context of city-scale smart environments showing that Zigbee and LoRa are the
better-suited radios.

SigFox WiFi HaLow BLE Zigbee LoRa
Open-source? No Yes Yes Yes Yes

Link Budget (dB) 158 [2] 24.5 [37] 108 [35] 103 [1] 150 [40]
Topology Type LPWAN LPWAN PAN PAN/LAN LPWAN

Communication Range (m) 5000 1000 100 125 [38] 5000
Max bitrate (bps) 600 upto 4M up to 1M 250K upto 27K

with a mathematical model. Whereas, humans and moving objects, like vehicles, attenuate the wireless signals in an
erratic manner. Capturing these erratic variations through a mathematical model is complicated and overwhelming.

Secondly, radios developed for IoT applications are designed to be very cheap with low energy consumption so
that they can be deployed in thousands of IoT devices. These low-cost IoT radios are vagarious. For example, a LoRa
radio slightly deviates from its central frequency during transmission [43]. These vagarious IoT radios, deployed in
a mesoscale IoT environment that causes various levels of signal attenuation, will fluctuate the performance of IoT
networks in an unpredictable manner.

Thirdly, with the rise of multi-tenancy [11] in IoT networks, where each end-node serve multiple applications, each
application may need different communication paradigms. For example, In an asset monitoring application, a node
reports the status of an asset to the base station periodically. A single-hop link to the base station is more suitable for this
application than the multi-hop paradigm. Applications like target-tracking need multi-hop inter-node communications
to coordinate with other devices for efficiently tracking the target and actuating necessary functions. LoRa works better
for applications like asset monitoring and Zigbee works better for applications like target tracking.

Furthermore, for applications requiring high data rate bi-directional communications, WiFi-HaLow will achieve
higher performance than LoRa as LoRa is precisely designed for up-link oriented applications [61]. Since each radio has
its own merits and demerits, using single-radio networks to cater to all the applications in the above-described dynamic
mesoscale IoT environment is debatable. Hence, it is crucial to analyze the characteristics and performance of different
IoT radios for mesoscale IoT applications.

5 LP-Radios for mesoscale applications

In pursuit of finding a radio for mesoscale IoT applications, we first qualitatively compare the suitability of different
IoT radios for mesoscale IoT applications. On identifying suitable radio candidates, we further conduct quantitative
performance analysis to understand their strengths and pitfalls.

A qualitative comparison. A comparison of different IoT radios is tabulated in Table 2. SigFox is not an open-
source technology. Hence, it cannot be used for deploying private networks. WiFi HaLow’s (802.11ah) low link budget
won’t allow the signals to penetrate through the environmental obstacles. Hence, SigFox and WiFi-HaLow do not
suit mesoscale IoT applications. Zigbee is a multi-hop, high-bit rate radio with a moderate link budget to penetrate
environmental obstacles. Single-Hop LoRa is also a better fit as it has a strong link budget satisfying all the requirements
of mesoscale IoT applications. Zigbee and LoRa are chosen for further quantitative analysis.
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Table 3. Throughput and packet loss rate of Zigbee 2.4GHz, Zigbee 915 MHz and LoRa 915 MHz showing that Zigbee 2.4GHz is better
for short-range communications and LoRa 915MHz is better for long-range communications in smart-neighborhood environment.

Radio candidate Throughput (bps) PLR (%)
Zigbee 2.4 GHz in free space 77,634 0

Zigbee 2.4 GHz in smart environment 56,530 33.40
Zigbee 915 MHz in free space 9,530 0

Zigbee 915 MHz in smart environment 6,777 24.60
LoRa 915 MHz in free space 4,579 0

LoRa 915 MHz in smart environment 4,579 0

5.1 A quantitative comparison of IoT radios

Zigbee and LoRa are identified as potential radio candidates for further quantitative analysis to choose a suitable
radio for mesoscale IoT applications. In this analysis, the performance of both radio candidates is compared by their
throughput and Packet Loss Ratio (PLR) in free space and an urban-like mesoscale environment. This analysis is done
for both single and multi-hop topologies for a Zigbee radio.

5.1.1 Single-hop experiments. A sender and receiver of both the radio candidates are placed in both free space and
an urban-like mesoscale environment at a distance of 20m from each other. The latter spans multiple wooden walls,
a glass door, and three humans in between the nodes. One thousand packets are transmitted from the sender to the
receiver to average the achieved throughput and PLR.

Throughput of Zigbee 2.4GHz. One thousand 29-byte-sized packets are sent back-to-back without any delay.
Another receiving mote logs the received packets. CSMA and link-layer acknowledgments are disabled in TinyOS.
There is no reliable mechanism for the retransmission of packets. Zigbee achieves a 100% packet reception ratio with an
average throughput of 77,634 bps in free space. The theoretical maximum of 250 Kbps is not achieved as throughput
heavily depends on packet size [26]. In an urban-like environment, 56,530 bps throughput was achieved with 33.40 %
PLR. Our experiments closely matched the results by Opal [31], Hamdy et al. [30] and Yousuf et al. [47]. The difference
between free-space and urban-like environments is the increase in packet loss ratio and a reduction in throughput.
Heavy packet loss is due to the fact that the signals are either lost or corrupted because of the urban-like environment.
The reduction in throughput is because the signals are penetrating through the obstacles in an urban-like environment.
Any retransmission mechanism incorporated will reduce the overall network throughput. This packet loss is due to
the fact that signals transmitted in 2.4GHz have moderate penetration capacity and were not received/decoded by the
receiver. An intuitive idea would be to utilize Zigbee radio at a lower frequency of 915 MHz for an increased signal
penetration capacity.

Throughput of Zigbee 915MHz and LoRa 915MHz. Zigbee915 achieves a packet reception ratio of 100% in free
space with an average throughput of 9530 bps. An average throughput of 6777 bps is achieved with 24.60% PLR in a
mesoscale environment. As the loss is higher in Zigbee 915 MHz, we wanted to compare a relatively newer LoRa radio
working in 915 MHz with Zigbee 915 MHz. Two LoStik [55] LoRa USB nodes using SF7 in 125KHz bandwidth are placed
in free-space and urban-like environments at a distance of 20m in between them. One thousand 29-byte-sized packets
were sent from one node to another. LoRa was able to achieve 4579 bps average throughput with a 100% reception ratio
in both free-space and smart-neighborhood environments. The penetration capacity of Zigbee 915MHz cannot match
LoRa’s penetration capacity as LoRa generates higher link-budget signals. From the above single-hop experiments, it is
evident that Zigbee 2.4 GHz achieves higher throughput than Zigbee 915MHz. This high throughput characteristic is
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highly desirable for mesoscale applications despite the higher loss rate since the throughput will degrade further in
multi-hop communications owing to queuing and channel sensing delays [10]. If we choose Zigbee 915 MHz because
of a lower loss rate, its lower throughput will further degrade when employed in a multi-hop fashion. So, we choose
Zigbee 2.4GHz over Zigbee 915MHz. Comparing LoRa 915MHz and Zigbee 915MHz, LoRa 915 MHz achieves lower PLR
than Zigbee 915 MHz as LoRa signals are robust owing to its CSS modulation scheme [43]. Hence, it is identified that
Zigbee 2.4GHz is the better radio for mesoscale IoT apps demanding short-range, multi-hop communications while
LoRa is better for mesoscale IoT applications demanding long range, single-hop communications.

5.1.2 Multi-hop experiments. The next step is to test the performance of Zigbee and LoRa in a simple multi-hop line
topology. Multi-hop line topology might affect the throughput of Zigbee due to channel sensing (CSMA) and queuing
(forwarding) delays. The multi-hop experiments are conducted in two folds. First, an analytic performance analysis is
conducted using the available models. Second, the result of this analytic performance analysis is compared with the
real-world experimental performance analysis.

Topology setup. A simple line topology is used for this analysis. One gateway and fifteen nodes are placed in line
topology in free space such that each hop spans approximately 100m. Packets of size 29 bytes are generated according
to an Independent Poisson Process at the rate of 1 packet every 3 seconds. Each node has both LoRa and Zigbee radios.
All generated packets are destined for the gateway. LoRa can reach the gateway in a single hop whereas Zigbee takes
multiple hops. LoRa nodes transmit in a 125KHz channel with an SF7 spreading factor. LoRa gateway is capable of
receiving eight packets concurrently [43]. This highly reduces collision.

Analytic throughput analysis. LoRa uses ALOHA where nodes can transmit at their will. Packets are transmitted
at the Poisson rate 𝜆 packets/second assuming that each packet occupies the channel for 𝜏 seconds. Then the normalized
traffic G = 𝜆 × 𝜏 . A packet will be corrupted due to channel noise or when two packets are transmitted at the same time.
The former case is ignored in this analysis. The occurrence of the correctly received packets can be defined as 𝜆′ < 𝜆.
Then the normalized channel throughput is given by S = 𝜆′ × 𝜏 . Packet reception is successful only if there is no other
transmission in the interval [−𝜏, 𝜏]. Since the Poisson process defines all the transmission times, the probability that
two packets won’t collide is 𝑒−2𝜆.𝜏 = 𝑒−2𝐺 . The throughput is given by multiplying the normalized channel throughput
and the probability of successful packets [3]. Therefore the throughput of LoRa is given by 𝑆 = 𝐺𝑒−2𝐺 .

Zigbee network employs CSMA. Each node schedules packets to its neighbors according to an independent Poisson
point process. By assuming an independent Poisson process, relaying and queuing delays can be ignored. This network
can be modeled using a Continuous Time Markov Chain with a set of nodes transmitting at any time instant [10]. Let i
be a node. 𝑁𝑖 be the set of all neighbors of i. Let 𝑔𝑖 𝑗 and 𝑠𝑖 𝑗 be the scheduled and desired packet rates when a packet is
transmitted from node i to j. Let P(A) be the probability that all nodes in set A are silent at any given instant of time.
According to CSMA, a node can transmit only when its neighbors are not actively receiving or transmitting. This gives
us

𝑠𝑖 𝑗

𝑔𝑖 𝑗
= 𝑃 (𝑁𝑖 ∪ 𝑁 𝑗 ) (1)

The network state for given 𝑔𝑖 𝑗 is defined by the set of nodes D that are in the transmitting state. Using steady-state
probabilities and global balance equations P(A) can be given as

𝑃 (𝐴) = 𝑆𝑃 (𝐴𝑐 )
𝑆𝑃 (𝑉 ) (2)
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(a) Multi-radio architecture node that contains both USB-
based LoRa and Zigbee radios hosted by a Raspberry Pi.
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Fig. 2. Hardware used and multi-hop line topology results.

where SP is the sum-of-products, 𝐴𝑐 is the set of nodes that are not in set A, and SP(V) is the sum-of-products of all
the nodes in the network. At any given time, there will be D independent sets containing i nodes that can transmit
concurrently in a CSMA network. SP can be calculated as follows: First, calculate the product of all the scheduled rates
of all the nodes in set i. Then, the product of all these independent sets is summed. SP can be expressed as:

𝑆𝑃 (𝐴) =
∑︁
𝐷∈𝐴

∏
𝑖∈𝐷

𝑔𝑖 𝑗 (3)

Now, substituting 2 in equation 1 gives,

𝑠𝑖 𝑗

𝑔𝑖 𝑗
=
𝑆𝑃 (( [(𝑁𝑖 ∪ 𝑁 𝑗 )])𝑐 )

𝑆𝑃 (𝑉 ) , 𝑗 ∈ 𝑁𝑖 (4)

The above equation 4 can be written for all the transmit/receive pairs in the network to form a system of linear
equations that can be solved iteratively for 𝑠𝑖 𝑗 with given 𝑔𝑖 𝑗 which gives the end-to-end throughput of a multi-hop
CSMA network [10].

Experimental throughput analysis is conducted with a multi-radio hardware node shown in Figure 2a. This is a
Raspberry Pi 3B hosting a USB-based TelosB [64] Zigbee mote and a USB-based LoStik LoRa [55] nodes. The Raspberry
Pi unit is powered by a portable external Power Bank and protected by a PVC casing. TelosB [64] and LoStik nodes [55]
are programmed to transmit a 29-byte packet on receiving a command from the Raspberry Pi. During this experiment,
link-level acknowledgments are disabled and CSMA is enabled in the TelosB motes. ALOHA MAC is enabled in LoRa
radios. The nodes are placed in a line topology to have connected links [18] to the neighboring nodes. While it is tedious
to find the spots with a high packet reception ratio at longer distances, multiple iterative efforts helped to identify them.

5.1.3 Multi-hop result analysis. Figure 2b depicts the End-to-End (E2E) throughput as the function of distance.
This end-to-end throughput at a specific distance is the average of one thousand packets. The reason for a drastic
difference in E2E throughput between LoRa and Zigbee at 100m is the fact that only one node is transmitting without
any contention. A considerable drop in Zigbee throughput is seen from 100m-300m because it uses a single channel with
three contenders. CSMA mechanism blocks two other links from transmitting to avoid collisions, allowing only 1 of 3
links to transmit at any given time until 300m. One could argue to use multi-channel Zigbee, but this will be detrimental
for MARS (refer §10 for more details). After 300m, Zigbee’s throughput steadily decreases with distance because of CSMA
blocking delay and queuing delay. LoRa’s throughput does not show any drastic decrease but slightly decreases with
distance. This is because the LoRa signals are robust enough to pass through the mesoscale IoT application environment
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Fig. 3. Throughput Fluctuations (TF) at different distances from the gateway

as the Chirp Spread Spectrum used by LoRa for modulation makes the signal highly resistant to attenuation. Also, the
LoRa gateway can receive and decode eight packets concurrently. Figure 2b shows that Zigbee wins until 500m and
LoRa wins after 1200m. LoRa and Zigbee achieve competitive throughput between 500m-1200m from the gateway,
henceforth referred as the gray region. If a LoRa gateway is placed at the center of the deployed environment, the
gray-region will cover an area of 3,738,495𝑚2.

5.2 E2E Throughput fluctuations in gray region

Fig. 2b shows that LoRa and Zigbee provide competitive throughput between 500m-1200m from the gateway. The
end-to-end throughput at different distances from the gateway depicted in Fig. 2b is the average E2E throughput of a
thousand packets. This does not depict the end-to-end throughput fluctuations of different packets over time. So, we
take a deeper look into the end-to-end throughput fluctuations over time at different distances from the gateway.

Figs.3a - 3e show the throughput fluctuations for 30 minutes between 100m to 1400m from the gateway. Zigbee
wins at 100m (Fig.3a) and LoRa wins at 1400m (Fig.3e). At 500m from the gateway (Fig. 3b), Zigbee achieves higher
throughput most of the time. Whenever Zigbee’s throughput is falling, LoRa is able to back up Zigbee to provide better
throughput. The difference in throughput of Zigbee and LoRa is considerably higher at 500m.

Fig. 3c shows the throughput fluctuations at 800m. Zigbee mostly wins but the throughput of Zigbee is highly
fluctuating as packets are experiencing multiple hops. The average throughput of Zigbee and LoRa is very close to each
other. Fig. 3d shows that Zigbee experiences low E2E throughput. So, it mostly underperforms at this longer distance of
1200m from the gateway.
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Fig. 4. Location A Mesh topology - nodes populated at the gray region.

The fundamentally surprising information here is that two radios with an order of magnitude difference in theoret-
ical throughput, are achieving competitive throughput performance in the gray region. From the above throughput
fluctuations, it is evident that using a single radio IoT network leads to throughput loss even on a simple line topology.
While most of the real-world IoT applications will employ the more complex mesh topology, this throughput loss will
get further amplified in real-world mesh topology applications.

Key observations:

(1) There are no dedicated radios for mesoscale IoT applications.
(2) Qualitative analysis identified Zigbee 2.4GHz and LoRa 915MHz as radio candidates. Quantitative multi-hop

experiments showed that Zigbee and LoRa radio achieve competitive throughput from 500-1200m from the
gateway, called the gray region.

(3) Erratic end-to-end throughput fluctuations were observed in the gray region. Predicting these throughput
fluctuations will help to select a higher throughput radio at the time of transmission.

(4) Employing radios in a multi-hop fashion, heavily reduces end-to-end throughput.

6 Why multi-radio for mesoscale IoT networks?

The above key observations made on a simple line topology suggest that Zigbee and LoRa together will provide higher
throughput for mesoscale IoT applications. Line topology is seldom used in real-world applications. Hence, it will be
interesting to explore the throughput fluctuations of LoRa and Zigbee in a mesh topology.

Experimental setup. In this preliminary motivation experiment, nodes are populated in the gray region to form a
mesh topology as shown in Figure 4. The hardware setup explained in section 5.1.2 is utilized. A total of one thousand
29-byte packets are transmitted by each node in the network destined for the gateway. The R Pi host commands both
radios every 3 seconds to transmit a packet concurrently. The LoRa radios use ALOHA MAC. The Zigbee radios use
CSMA MAC and link-level acknowledgments are enabled in TinyOS. After multiple iterative efforts, every Zigbee node
is placed in a position that provides a connected link [18] to its immediate neighbors.

MAC protocol. Although concurrent communications [25] and TDMA [29, 51] approaches may outperform CSMA,
we considered CSMAMAC since the mesoscale applications will generate different payloads at different times, that needs
to be transmitted immediately. This is better suited for CSMA than TDMA/Concurrent communications. Concurrent
communications requires time-synchronized nodes to leverage constructive interference. In mesoscale IoT applications,
like P2P energy trade, two IoT nodes may not be tightly time-synchronized. If an IoT end-node wants to send an inquiry
for energy trade, it has to send the message immediately without waiting for its next time slot for transmission. Hence,
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Fig. 5. Multi-radio system with Zigbee+LoRa radios achieves higher throughput than single-radio systems.

Table 4. Latency of different radio systems

Average Required
Latency

Zigbee+
LoRa

Zigbee
Only

LoRa
Only

55ms 50.62ms 62.32ms 66.55ms

CSMA MAC is the right MAC choice for mesoscale IoT applications. The Zigbee radios employ a Distance-Vector
protocol [19] for multi-hop routing.

Results. The throughput achieved by both the radios of the network is plotted as a CDF in Fig. 5. This figure shows
that LoRa achieves higher throughput for 59% of the transmissions and Zigbee achieves higher throughput for 41% of the
transmissions. The throughput is calculated as the fraction of total bits sent over the latency incurred. Throughput has
an inverse relationship with latency. According to 5G America’s report [6], the average required latency for mesoscale
IoT applications is 55ms. The average latency achieved by Zigbee-only and LoRa-only radios is 62.32 ms and 66.55 ms
respectively. This is higher than the average required latency, 55ms.

Based on the above observations, a trace-driven simulation is conducted on the multi-radio network containing both
Zigbee and LoRa radios. This trace-driven simulation mimics the performance of multi-radio networks that can choose
higher throughput radio for every transmission. This is plotted as the dashed golden line in figure 5. This dashed golden
line perfectly traces LoRa radio until the first 59% of the transmissions and follows Zigbee radio for the next 41% of
the transmissions. The average latency achieved by this simulated multi-radio network maximizing for throughput,
50.62ms, falls within the bounds of the average required latency. This shows the necessity of an intelligent multi-radio
system for mesoscale IoT applications that can choose a higher throughput radio at the time of transmission.

While it is convenient to choose a high-throughput radio based on traces, it is tedious to predict a high-throughput
radio in real-world deployments. The end-to-end throughput fluctuates over time as shown in Figures 3a - 3e. If an end
node is able to predict these throughput fluctuations, a high-throughput radio can be predicted during transmission.

7 Building a machine learning model

This section explains the process of building a Machine-Learning (ML) model for instantaneously selecting a high-
throughput radio at the time of transmission. This radio selection problem is formulated as a classification problem in
§7.1. Data is collected on three different topologies. "Location A - Line" is the Line topology described in § 5.1.2 and
"Location A - Mesh" is the mesh topology described in § 6. "Location B - Mesh" is the mesh topology mentioned in § 9.
Manuscript submitted to ACM
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We develop separate ML models for each topology because our efforts for Model Retraining did not yield fruitful results
since the signal attenuation, fixed, and moving obstacles are different at each location (refer §10 for more details).

Each topology consists of 15 end nodes and one gateway. Since our region of interest is in the gray region, nodes are
populated in this region to form a mesh topology. Data packets transmitted by the nodes in the gray region are considered
for model training and testing. During this data collection experiment, the host Raspberry Pi will command both radios
to transmit a 29-byte data packet concurrently. A total of 25,500 data packets were recorded. This comprehensive data
set covers all the different dynamics of the deployed environment. The throughput of each transmitted data packet is
recorded. This data set is manually labeled by a human to identify the high-throughput radio for each transmitted data
packet. LoRa radios recorded the RSSI of the ACK sent by the gateway to acknowledge the previous data packet (refer
§7.1 for more details). Zigbee radios sent beacon packets every 30ms to estimate and record local link qualities at
each end node. These local link qualities were utilized to manually calculate the path quality metrics. This manually
calculated path quality metric is then fed as an input to the ML models.

Three widely used classification models, Support Vector Machine (SVM), Logistic Regression (LR), and CART Decision
Trees (DT) are trained and tested using the SKLearn library. In addition to these three models, the CART is further
optimized with the Tree Alternating Optimization (TAO) algorithm [21]. The TAO-optimized CART model outperforms
all the other models. The TAO-optimized CART model is deployed as IF...ELSE statements in IoT end devices. This
model gets the input features from path quality estimations (see §7.1 and §8.2).

7.1 Problem formulation

The classification model takes the input features E2E path quality of LoRa radios (E2E-𝑃𝑄𝐿𝑜𝑅𝑎), and the E2E path
quality of Zigbee radios (E2E-𝑃𝑄𝑍𝑖𝑔𝑏𝑒𝑒 ) to output a high throughput radio. The input feature vector can be expressed
as:

𝐼𝑛𝑝𝑢𝑡𝑖 = [𝐸2𝐸 − 𝑃𝑄𝐿𝑜𝑅𝑎, 𝐸2𝐸 − 𝑃𝑄𝑍𝑖𝑔𝑏𝑒𝑒 ] (5)

The output of the machine learning model is the radio predicted to have higher instantaneous throughput. This can
be expressed as:

𝑂𝑢𝑡𝑝𝑢𝑡𝑖 = [𝑍𝑖𝑔𝑏𝑒𝑒 |𝐿𝑜𝑅𝑎] (6)

Feature selection and engineering. The classification problem formulated above needs E2E-𝑃𝑄𝐿𝑜𝑅𝑎 , E2E-𝑃𝑄𝑍𝑖𝑔𝑏𝑒𝑒

to predict the instantaneous high throughput radio. Traditional path-quality estimation in multi-hop Zigbee networks
utilizes the link quality estimations of all the links along a path. The most common E2E path quality metrics used
for multi-hop Zigbee networks are 𝐻𝑜𝑝_𝑁𝑢𝑚𝑏𝑒𝑟 (HN), Packet Reception Ratio (PRR), Expected Transmission Count
(ETX) [24], and Required Number of Packets (RNP) [20]. HN is the node’s distance from the gateway in terms of hops. It
is a discrete value ranging from [5,12] inclusively. It is obtained via the distance vector routing protocol run by Zigbee
radios. The high data rate Zigbee Radio frequently transmits short beacon packets to estimate the path quality metrics.
PRR is a well-known metric calculated as the ratio of the total number of packets received over the total number of
packets sent by an end device. We calculate PRR, RNP and ETX over a window of size 𝛼 . 𝛼=10 gave us better results in
our experiments, although this may vary for different deployments. ETX considers both forward and backward link
qualities to calculate the metric. In our case, only the forward link quality is required to estimate E2E path quality
estimation from an end device toward the gateway. So, the ETX becomes 1/𝑃𝑅𝑅, making this a redundant metric in the
presence of PRR. RNP has the unique characteristic of capturing the underlying distribution of packet losses [20]. So
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Fig. 6. RSSI auto-correlation of LoRa links

the HN, E2E PRR, and E2E RNP path quality metrics are considered for E2E-𝑃𝑄𝑍𝑖𝑔𝑏𝑒𝑒 . These metrics are calculated
with frequent beacon packets since Zigbee is a high-data-rate radio.

On the other hand, the communication channels of low data-rate LoRa radio will be clogged if frequent beacon
packets are sent. Hence the RSSI of the ACK sent by the gateway for the previous data packet is considered for estimating
the end-to-end path quality of the LoRa radios (E2E-𝑃𝑄𝐿𝑜𝑅𝑎). This might be counter-intuitive because of two reasons:

(1) How is it possible to predict the uplink channel quality based on a downlink packet? Quail [28] identifies and
utilizes Channel Reciprocity between LoRa’s uplink and downlink. This characteristic is leveraged to solve this
issue.

(2) How long is the uplink quality correlated?

How long is the uplink quality correlated? The inter-packet interval of data packets is 3 seconds. The time
interval between the ACK corresponding to a previous data packet and the next data packet will be at least 2.5 seconds.
If the metric related to a previous packet is utilized to predict the channel for the next data packet, it is not clear whether
the uplink quality will be the same during this time interval. This question is answered through experiments.

An end node transmits a 29-byte packet to the gateway every second. The RSSI value of these packets is recorded at
the gateway. The autocorrelation between the RSSI values of two packets is analyzed as the Conditional Probability of
two events: These two packets have (i) the same RSSI values, (ii) different RSSI values. This experiment is conducted in
both free space and built environments.

Figure 6 shows that the channel quality is correlated for 11.6 seconds in free space and 6.5 seconds in built en-
vironments during our experiments. So, if the packet generation interval between the data packets is less than the
above-mentioned duration for our deployed environment, this feature works well as the end-to-end path quality
indicator for LoRa. If no packet is sent for 6.5 seconds, we transmit a dummy packet to preserve this correlation.

After finalizing all the input features, the input feature vector eq. 5 becomes:

𝐼𝑛𝑝𝑢𝑡𝑖 = [𝐻𝑁, 𝐸2𝐸_𝑅𝑆𝑆𝐼𝐿𝑜𝑅𝑎, 𝐸2𝐸_𝑃𝑅𝑅𝑍𝑖𝑔𝑏𝑒𝑒 , 𝐸2𝐸_𝑅𝑁𝑃𝑍𝑖𝑔𝑏𝑒𝑒 ] (7)

7.2 Prediction methods and results

The three widely used classification models, namely Logistic Regression (LR), Support Vector Machine (SVM), and CART
Decision Trees (CART) were trained using the trace-driven data set obtained from large-scale real-world experiments
from different topologies. An ML model is built offline for each location. MARS will deploy the chosen ML model in
Manuscript submitted to ACM
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Table 5. Training and Testing accuracy of different ML models and optimizations for all the topologies

ML
Models
and

Optimizations

Location A Location B
Line Mesh Mesh

Training Accuracy
(in %)

Testing Accuracy
(in %)

Training Accuracy
(in %)

Testing Accuracy
(in %)

Training Accuracy
(in %)

Testing Accuracy
(in %)

SVM 83.59±1.60 83.37±2.51 82.15±0.89 80.87±3.50 78.31±1.90 76.62±4.65
LR 83.65±1.01 83.87±3.566 82.59±0.83 81.25±3.46 81.21±0.57 80.50±2.21

CART 93.00±0.49 88.00±3.40 92.53±0.52 83.75±1.97 90.56±0.25 82.37±2.94
TAO-CART 93.00±0.56 88.00±2.33 89.375±0.26 85.625±4.12 94.71±0.38 93.87±1.69
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Fig. 7. Training data requirements

all the nodes in that specific topology. Their training and testing accuracy are averaged over 5-fold cross-validation
on a data set based on real-world experiments. The testing and training accuracy tabulated in Table 5 shows that the
TAO-optimized CART (TAO-CART) is better for deployment than the other widely used models.

CART Decision Tree Classifier [60] is a classical and one of the most popular algorithms to train a DT. The TAO
algorithm [21], takes an initial tree, either generated randomly or induced by traditional algorithms (e.g. CART), and
optimizes it jointly over the parameters of all the nodes in the tree. TAO works in alternating optimization fashion by
cycling over different depths of a tree. At a given depth, TAO optimizes all nodes in that specific depth in parallel while
guaranteeing a monotonic decrease of the desired objective function, such as misclassification errors. This fact backed
with empirical evaluations [66] makes TAO an attractive algorithm.

The training and testing accuracy of the widely used classification models, namely SVM, LR, and CART, is tabulated
in Table 5. From these results, it is clear that CART can achieve higher accuracy than SVM and LR. Compared with CART,
TAO-CART achieves similar accuracy for the simple "Location A - Line topology" which are seldom used in real-world
applications, and higher accuracy than CART for the "Location B-Mesh" topology. Also, the difference between the
Training and Testing accuracy of TAO-CART is comparably smaller than that of CART for all the topologies. This
means that TAO-CART optimization highly generalizes the model for unseen data.

Training data requirements. A major concern of a data-driven approach is the data required to train a model.
Fig. 7 plots the accuracy of CART Decision Tree (DT) model and Q-Learning [27] (QL) as the function of required
training data samples. In Fig. 7, we can see that the DT can quickly reach over 93% (Location A) and 90% (Location B)
training accuracy with 1500 samples and show a gradual increase to 100% with 9000 (Location A) and 13500 (Location B)
samples. Since there is only a gradual increase in accuracy after 1500 samples, we trade off accuracy to reduce the data
collection effort. This trade-off reduces the deployment effort by 88.99%. So, all the models listed in Table 5 were trained
with 1200 samples and tested on 300 samples. Parametric details of this QL are given in §9. A well-known issue of QL
(model-free reinforcement learning) is the humongous training data requirement [23]. From Fig. 7, it is evident that
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Fig. 8. Traditional path quality propagation is not instantaneous at all distances from the gateway.

using a DT model achieves significantly higher accuracy than QL with 1500 data samples. It should also be noted that
QL needs an order of magnitude higher data samples to achieve the accuracy of DT. We optimized DT with TAO [21].

8 Realizing TAO-CART on IoT devices

The TAO-CART radio selector is found to achieve higher accuracy. However, realizing and deploying TAO-CART on an
IoT end device entails the following challenges:

(i) Instantaneous path quality estimations. The TAO-CART radio selector needs instantaneous end-to-end path quality
as an input to accurately predict the high-throughput radio. The models trained and tested in the previous section
used a trace-driven data set, whose multi-hop end-to-end path qualities of Zigbee radios were manually calculated.
In real-world deployments, the local link qualities should be propagated throughout the network for path quality
estimation. However, this network-wide multi-hop link quality propagation may not be instantaneous at all distances
from the gateway due to the chaotic link quality variations, queuing and propagation delays. We solve this challenge by
developing a DT-based instantaneous path quality estimator (refer §8.2).

(ii)Model size and Inference Latency.Deploying TAO-CARTwith a minimal memory footprint on resource-constrained
IoT devices is crucial. TAO-CART outputs a tree-like structure for predicting the high-throughput radio. This tree-like
model, converted as IF...ELSE statements, take 36KB of memory on disk. In Raspberry Pi, this model takes 0.008ms
for selecting the high-throughput radio. This deployment is highly feasible on resource-constrained IoT end devices
because of the lower time and space complexity, although we are certain that this has a larger margin for optimization.

8.1 Traditional path quality estimations are not instantaneous

An intuitive idea to identify end-to-end throughput fluctuations is to utilize the end-to-end Path Quality (PQ) metrics.
Since LoRa is a single-hop network, E2E PQ can be easily estimated. However, traditional PQ estimation for a multi-hop

ZigBee network may not be instantaneous at all distances from the gateway.
Traditional PQ estimations for a multi-hop ZigBee network need the link quality estimation of all the links along

the path. In section 7.2, TAO-CART was trained with a trace-driven data set, whose path qualities were manually
calculated based on the recorded local link qualities. In practice, the qualities of all the links along the path should be
propagated throughout the network so that they can be used to estimate the path quality. The packet in which these
link qualities are propagated will experience delays at different hops due to (i) wireless link quality variations and (ii)
packet processing delay. Packet processing delay includes read/write delays to append link quality sequences of the
intermediate nodes, link-layer Acknowledgment delay, CSMA delay, propagation and queuing delays along a multi-hop
network. So, the propagated local link quality may expire when it reaches a node estimating the metric.
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Fig. 9. DT-based PQ estimation. In figures 9a, 9b, the x-axis denotes the number of links considered to calculate PQ metrics.

The problem of traditional PQ estimation is depicted in Fig. 8. In this figure, Node 1 sends a beacon packet to Node
0 every 30ms. Node 0 stores the reception and loss of the beacons as a (1/0) binary bit-sequence respectively. It is
identified through experiments that propagating a packet containing this link quality sequence takes 33ms on average
for a single hop transmission accounting for all the above-mentioned delays while the network has fully functional
control and data planes. Figure 8 depicts that the link quality sequence of link 1-0 propagated by Node 0 becomes
invalid when it reaches Node 3. The bit-to-bit similarity of the link sequence of Node 0 at 199ms is not the same as
propagated by Node 0. The bit-to-bit similarity reduces to 70% at the third hop. This problem will further be amplified if
all the nodes along the path append their link quality sequence to this packet for network-wide advertisement. Since
the gray region is 500m-1200m from the gateway, estimating path quality with expired link quality sequences will not
be instantaneous, and this cannot act as an indicator of E2E throughput fluctuations.

8.2 DT-based path quality estimation

DT-based path quality estimation is developed to mitigate the problem of conventional path quality estimation for
multi-hop networks. While the conventional path quality is calculated with Link Quality(LQ) information from all the
links encompassed by the end-to-end path, DT-based path quality estimation requires LQ information only from a
portion of the entire end-to-end path to compute the PQ metrics. This will highly reduce the delay incurred to propagate
LQ information in a multi-hop Zigbee network. DT-based path quality estimation surfaces from the two important
observations listed below: (i) The link quality of each link in the path may independently change based on the deployed
environment and (ii) Each end node runs MARS to select a radio for transmitting the packet. A path from an end node
to the gateway consists of multiple links. While it is intuitive to understand that LQ information from a portion of the
entire end-to-end path is enough to compute PQ metrics, the challenge here is to identify the required path length, 𝑅𝑃𝑛 ,
so that the TAO-CART radio selector can accurately predict the high-throughput radio. For example, say a path from
the end node to the gateway consists of 10 links. Traditional PQ estimation will use LQ information from all these 10
links to compute PQ metrics, whereas DT-based PQ estimation requires LQ information only from 𝑅𝑃𝑛 (<10) links to
compute PQ metrics. The problem here is to define 𝑅𝑃𝑛 . We address this problem by training and testing decision trees
with PQ metrics computed from different partial path lengths (𝑅𝑃𝑛) to understand the prediction accuracy of Decision
Trees (DT).

A decision tree takes the end-to-end path quality metric of both the radios as input and chooses one radio for
transmitting the packet. The following test is conducted to identify this Required Path length 𝑅𝑃𝑛 : The path quality
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Fig. 10. Location B Mesh topology - nodes populated at the gray region.

Table 6. Thresholds identified to achieve higher throughput in the gray-region based on Lymberopoulos et al. [34]

500-700m 700-1000m 1000-1200m
Zigbee RR ≥77% ≥80% ≥83%
LoRa RSSI ≥-72 dBm ≥-71 dBm ≥-71 dBm

Fallback radio Zigbee LoRa LoRa

metrics are calculated with LQ information from the different number of links, from an end node towards the gateway.
The training and testing accuracy of the models using LQ information from the different number of links along the
path for mesh topologies at Locations A and B are depicted in Figures. 9a and 9b respectively. From these figures, it is
inferred that there is a very gradual increase in accuracy after the fourth and fifth hops for the "LocationA-mesh" and
"LocationB-mesh" topologies respectively. These decision trees are further optimized by the TAO algorithm. The above
values are set to 𝑅𝑃𝑛 for our large-scale experiments. Figure 9c shows that the bit-to-bit similarity of conventional PQ
estimation decreases with increase in hops while the bit-to-bit similarity of DT-based PQ estimation averages to 81%.

9 Large-scale experimental results

MARS is evaluated through large-scale real-world, mesh topology experiments conducted on our campus. Two mesh
topologies are set up in two different locations as shown in Figs. 4 and 10. These topologies are deployed at locations
with complex environments with different building materials and heavy human influx. Each node uses the hardware
setup explained in §5.1.2. A total of 10,400 data packets were transmitted at both locations for this evaluation.

Benchmarks. The performance of MARS is compared with the single radio systems formed by (i) Zigbee-only and
(ii) LoRa-only radios. MARS is also compared with two Multi-radio systems: (i) Q-learning-based radio selector [27]
and (ii) Threshold-based radio selector [34], optimizing for energy efficiency. We made our best effort to adopt these
works for throughput optimization. (i) The threshold-based algorithm [34] is based on the break-even points identified
through experiments similar to Fig. 2b. The thresholds are set based on a node’s distance from the gateway and the
instantaneous end-to-end path quality of the radios. End-to-end reception ratio and RSSI are used as the instantaneous
path-quality indicator for the multi-hop Zigbee and the single-hop LoRa radios respectively. These thresholds are
identified from the traces obtained from real-world experiments. This threshold-based algorithm divides the gray region
into three sub-regions 500-700m, 700-1000m, and 1000-1200m based on grouping similar indicators achieving higher
throughput. Thresholds are set based on these sub-regions for a fair comparison. Thresholds tabulated in Table 6 are
identified via experiments to achieve higher throughput in each sub-region. A radio having end-to-end reception ratio
greater than 77%, 80%, and 83% achieves higher throughput in the sub-regions 500-700m, 700-1000m, and 1000-1200m
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respectively while LoRa’s RSSI ≥-72 dBm, ≥-71 dBm and ≥-71 dBm achieve higher throughput in the sub-regions
500-700m, 700-1000m, and 1000-1200m respectively. So, in the case of one radio performing better than the other, it
will be indicated by the thresholds, eventually selected for transmitting the packet. From the experimental traces, the
fall-back radio is identified to achieve better throughput if either both radios fall inside or outside the defined threshold
region.

(ii) Q-learning-based radio selector [27] is trained with 1500 samples since the TAO-CART model of MARS is
also trained with 1500 samples. Comparing with the TAO-CART model of MARS, Q-Learning needs an order of
magnitude higher data to converge (refer Fig. 7). We still compare the performance of MARS and Q-learning-based
radio selector [27] to understand the overall throughput performance of the models trained with the same amount
of training data. We follow the same strategy devised by Gummeson et al. [27] to set Q-learning model parameters
except the changes described below. They optimize for lower energy consumption. Since energy is a cost, not a reward,
they consider their reward as ” − 𝑒𝑛𝑒𝑟𝑔𝑦”. In our case, we optimize for higher throughput, so our reward is 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 .
Gummeson et al. [27] initially has two states, one for each radio. Since the transmit power level is one of the factors
directly affecting energy consumption, this two-state model can be expanded to an n-state model where each state
represents a radio at a particular transmit power level. For example, four states are required for two radios, each with
two transmit power levels. They also identify that an increase in the number of states increases exploration overhead or
decreases exploration frequency. They solve this issue by considering only three states at a time.

In our case, throughput/latency is directly affected by the link/path quality. We represent the link/path quality using
the input feature vector described in §7.1. Unlike the countable/controllable transmit power levels of Gummeson et al.
[27], the link/path quality states are numerous and uncontrollable. This significantly increases the number of states
leading to an increase in exploration overhead. We optimized the model’s hyper-parameters through grid search. Also,
the sophisticated RL-based radio switching protocol of Gummeson et al. [27] suffers from the below-described problems:
(i) During data transfer between two radios in the communication range, the radio switching protocol, designed for
energy efficiency, does a three-way handshake to switch radios. This incurs additional latency which will heavily
degrade the throughput. (ii) A well-known issue of model-free RL is that it requires heavy training data to converge to
an acceptable performance [23] and the amount of data samples used by Gummeson et al. [27] for training is obscure.
We compared the training data requirements of Q-learning and TAO-CART Decision Tree models in §7.2.

One can argue that our design of Q-Learning for throughput maximization can still be optimized, although it will be
incremental. Our Q-Learning model provides the best results after multiple iterative efforts. Moreover, our ability to
optimize is also restricted in order to respect the originality of their work. It is to be noted that the above-mentioned
works optimize for energy consumption. In addition, Gummeson et al.[27] use custom hardware. The performance of
Gummeson et al. [27] without their custom hardware is obscure. However, we made our best effort to adopt Gummeson
et al. [27] for throughput optimization without custom hardware.

9.1 Performance evaluation

The throughput gain of MARS is shown in Figure 11. The Q-learning-based radio selector [27] achieves the least
throughput gain of all the Multi-radio systems because of the three-way handshake and limited training data.

The threshold-based radio selector [34] fails to identify LoRa as a high throughput radio for 19% of the transmissions.
Also, the threshold-based radio selector converges towards the high-throughput Zigbee only after 60% of the trans-
missions. This is because the threshold-based radio selector is not able to identify the high-throughput radio when
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Fig. 11. Throughput gain of MARS

both radios fall inside the threshold region. The identified fallback radios do not achieve higher throughput all the time
because of erratic link quality variations.

MARS closely follows the high-throughput radio as it instantaneously identifies the throughput fluctuations. In this
location, the threshold-based radio selector algorithm achieves an average throughput gain of 18.79% and 15.31% than
Zigbee-only and LoRa-only networks respectively. Whereas, MARS achieves an average throughput gain of 55.93%,
57.22%, and 36.32% than Zigbee-only, LoRa-only, and Threshold-based radio selector networks respectively.

Fig. 11b shows similar trends in Location B. In this location, all three multi-radio systems tend to cross the solid red
line unlike Fig. 5, where the optimal performance was obtained offline through a trace-based evaluation. Hence, the
simulated optimal multi-radio performance has to be chosen from any one of the available throughputs making the
golden dashed lines of Fig. 5 to stay within the solid lines. The performance evaluations were conducted in real-world
deployments. The channel conditions may not be identical when each system is evaluated. This change in channel
conditions led to a small difference in throughput making the multi-radio systems cross the solid line. In this location, the
threshold-based radio selector algorithm achieves an average throughput gain of 16.06%, and 19.57% than Zigbee-only
and LoRa-only networks respectively. MARS achieves an average throughput gain of 53.77%, 58.34%, and 32.49% than
Zigbee-only, LoRa-only, and Threshold-based multi-radio networks respectively.

MARS on different packet generation intervals. The performance ratio is calculated as the ratio of the average
per-packet throughput of MARS over the average per-packet throughput of the best radio. The Performance ratio for

different packet generation intervals is plotted in Fig. 12. We observed a slight decrease in the performance ratio
from packet generation interval 5s - 1.5s and a significant decrease in performance ratio for intervals 1.4s and 1.3s. This
directly reflects on the average latency. MARS is able to achieve the required latency for intervals 5-1.4s, while MARS
fails to achieve the required latency for interval 1.3s. This degradation in MARS’s performance is due to the increase in
packet generation rate leading to queuing delays in the network. This increase in queuing delay affects the beacon
packets used for local link quality and path quality estimations. This directly affects the required fine-grained link/path
quality estimations.
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Average required latency for mesoscale IoT. According to 5G America’s report [6], the average required latency
for mesoscale IoT applications is 55ms. Fig. 13 shows the average latency achieved by different radio systems at two
different locations. LoRa-only and Zigbee-only networks are not able to achieve the required latency in the gray region.
MARS is able to achieve an average latency of 51.48ms and 53.98ms in Locations A and B respectively. MARS achieves
the goal while the other radio systems fail.

10 Discussion

Energy Overhead: MARS relies on the neighbor discovery beacon packets sent every 30ms for local link quality
estimation. The reception/loss of a neighbor discovery beacon, stored as a bit array, is appended to the routing table
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when the distance vector protocol periodically broadcasts the routing table. We piggyback on neighbor discovery
beacons for local link quality estimation. This optimizes both energy consumption and queuing delays. However,
appending this bit array to routing table broadcast packets leads to transmission overhead. On average, the energy toll of
this additional transmission overhead per data packet is 13.60% of the energy consumed for a data packet transmission.
If the neighbor discovery beacons use Trickle timer [33], additional beacon packets would be needed for channel
estimation, significantly increasing energy consumption. In real-world mesoscale IoT applications like P2P energy
trading of smart meters in the smart neighborhood and Industrial/Factory automation, the IoT radio utilized here will
be a small component of a larger device. Unlike the typical IoT nodes powered by a smaller battery, these devices are
either grid-powered [57, 65] or have a large battery reserve to support the entire device [14–16] making this energy
overhead tolerable for these applications.

Model Retraining: We evaluated MARS at different seasons of the year. The above results were obtained by
deploying the ML model that was trained with data collected in the Summer and it was evaluated during the same
season. Several factors affect the dynamicity of link and path qualities that makes the input feature vector of the ML
model. For example, the node placement, the impact of temperature and pressure variations, and the effects of fleeting
reflectors. Through experiments, we were able to find that a model developed during one season was yielding poor
performance for a different season that has completely different temperatures and fleeting reflectors. A user should be
able to collect data required for MARS in 4 hours including topology setup and data collection. The TAO-trees used in
MARS can be trained with CPUs within a few minutes. Since the effort for deploying MARS is reasonable, it should be
easier to develop a model for each season, that can be used for the upcoming years. In future work, we plan to add a
more detailed analysis of the retraining gap and the quality of estimation.

If MARS is deployed in deserts where the temperature is very high during the day and very low during the night
with predictable temperature increases and decreases, MARS can be equipped with two models, one for day time and
another for night time. MARS can then adapt between these models based on the readings from a temperature sensor. If
MARS is deployed in a region where the temperature changes drastically, like the islands of Bora Bora and Maldives,
the data collection, training and deployment effort for any ML model will be significant, including MARS. It is hard to
design a robust ML-based system for such environments irrespective of the effort made for data collection, training and
deployment.

Model Adaptation: Model adaptation is a well-known technique for ML systems to utilize the ML model developed
for one location to build the ML model for the other location with reduced data collection and training effort. This is
inevitable for training large ML models like LLM’s or autonomous driving that require significant time and resources for
training a model. However, the effort and resources required for MARS are minimal. So, MARS does not require model
adaptation. Each location can train MARS’s model to accurately reflect the characteristics of the deployed environment.

Multi-channel Zigbee is detrimental for MARS. The drop in E2E throughput performance from 100-300m from
the gateway shown in Figure 2b happens because 3 nodes are contending in a single channel. One could argue that using
multi-channel Zigbee will improve the throughput. In general, using multi-channel Zigbee might reduce contention
delays and improve throughput for applications that does not focus on throughput and latency. The reason we did not
choose multi-channel Zigbee are two-folds: (i) Channel switching needs the transmitting radio to switch to another
channel and the receiving radio should also switch to the same channel to receive and process packets. This is could
lead to delays. In worst case, it will be similar to the three-way handshake during the radio switching of Gummeson et
al. [27] (refer §9). (ii) MARS needs fine-grained estimation for the multi-hop Zigbee radios and our deployments uses
the 𝛼=10. This means a node switching channels should send 10 beacon packets to obtain the fine-grained information
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of the channels quality, each and every time during a channel switch. The above-mentioned delays combined together
will cause a significant delay that will diminish the throughput performance significantly. For mesoscale applications
like P2P energy trade in smart-homes where multiple nodes has to bid and respond quickly to a bid, similar to a stock
market transaction, the above-mentioned delays will diminish the application performance. So, we decided not to use
multi-channel Zigbee.

11 Future Work and Conclusion

This work represents the initial foray into multi-radio architectures for mesoscale IoT applications. There are many
aspects we would like to continue developing. On the modeling aspect, we are experimenting with TAO-optimized
oblique trees for radio selection. While the accuracy could be further improved, the benefits are more related to tree
stability when adding additional training data since with axis-aligned trees the tree structure can change dramatically.
This can help gain an understanding of the fundamental properties of the system. In addition, we would also like
to explore different input features for the decision trees. In particular, we would like to try to feed raw data packet
sequences instead of path-quality estimation metrics, and let the model find patterns not easily detected by a human
designer on the raw data. We would also like to incorporate the latest LMAC [52] for LoRa to enhance the throughput.

To conclude, we presented MARS a Multi-radio Architecture with Radio Selection using Decision Trees. The system
deploys MARS’ nodes in a multi-hop network. Each of these nodes has two radios, a Zigbee and a LoRa RF transceiver
with different throughput/latency features that are optimized for different ranges. The final goal of MARS is to select
the best radio to be used at any point in the network, using different network paths and link-layer metrics gathered
from the radios, to maximize the end-to-end throughput of the data packets being transmitted. The radio selection is
done using novel TAO-optimized decision trees, which are easy to train with limited training data, and easy to deploy
in an IoT end device with limited computational power. In addition, we show that collecting local path metrics as input
to our decision trees provides sufficient information to identify the high-throughput radio over the entire path. MARS is
evaluated on a large-scale complex mesh topology at two different locations. The results show that MARS can identify
the high-throughput radio at the time of transmission. This leads to an average throughput gain of 48.2% and 49.79%
than the competing schemes, in both locations, while achieving the required latency.
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