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Abstract

We consider the problem of deep neural net compression by quantization: given a large, reference net,
we want to quantize its real-valued weights using a codebook with K entries so that the training loss of
the quantized net is minimal. The codebook can be optimally learned jointly with the net, or fixed, as
for binarization or ternarization approaches. Previous work has quantized the weights of the reference
net, or incorporated rounding operations in the backpropagation algorithm, but this has no guarantee of
converging to a loss-optimal, quantized net. We describe a new approach based on the recently proposed
framework of model compression as constrained optimization (Carreira-Perpiñán, 2017). This results in a
simple iterative “learning-compression” algorithm, which alternates a step that learns a net of continuous
weights with a step that quantizes (or binarizes/ternarizes) the weights, and is guaranteed to converge
to local optimum of the loss for quantized nets. We develop algorithms for an adaptive codebook or
a (partially) fixed codebook. The latter includes binarization, ternarization, powers-of-two and other
important particular cases. We show experimentally that we can achieve much higher compression rates
than previous quantization work (even using just 1 bit per weight) with negligible loss degradation.

1 Introduction

The widespread application of deep neural nets in recent years has seen an explosive growth in the size of
the training sets, the number of parameters of the nets, and the amount of computing power needed to train
them. At present, very deep neural nets with upwards of many million weights are common in applications
in computer vision and speech. Many of these applications are particularly useful in small devices, such
as mobile phones, cameras or other sensors, which have limited computation, memory and communication
bandwidth, and short battery life. It then becomes desirable to compress a neural net so that its memory
storage is smaller and/or its runtime is faster and consumes less energy.

Neural net compression was a problem of interest already in the early days of neural nets, driven for
example by the desire to implement neural nets in VLSI circuits. However, the current wave of deep
learning work has resulted in a flurry of papers by many academic and particularly industrial labs proposing
various ways to compress deep nets, some new and some not so new (see related work). Various standard
forms of compression have been used in one way or another, such as low-rank decomposition, quantization,
binarization, pruning and others. In this paper we focus on quantization, where the ordinarily unconstrained,
real-valued weights of the neural net are forced to take values within a codebook with a finite number of
entries. This codebook can be adaptive, so that its entries are learned together with the quantized weights,
or (partially) fixed, which includes specific approaches such as binarization, ternarization or powers-of-two
approaches.

Among compression approaches, quantization is of great interest because even crudely quantizing the
weights of a trained net (for example, reducing the precision from double to single) produces considerable
compression with little degradation of the loss of the task at hand (say, classification). However, this ignores
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the fact that the quantization is not independent of the loss, and indeed achieving a really low number of
bits per weight (even just 1 bit, i.e., binary weights) would incur a large loss and make the quantized net
unsuitable for practical use. Previous work has applied a quantization algorithm to a previously trained,
reference net, or incorporated ad-hoc modifications to the basic backpropagation algorithm during training
of the net. However, none of these approaches are guaranteed to produce upon convergence (if convergence
occurs at all) a net that has quantized weights and has optimal loss among all possible quantized nets.

In this paper, our primary objectives are: 1) to provide a mathematically principled statement of the
quantization problem that involves the loss of the resulting net, and 2) to provide an algorithm that can
solve that problem up to local optima in an efficient and convenient way. Our starting point is a recently
proposed formulation of the general problem of model compression as a constrained optimization problem
(Carreira-Perpiñán, 2017). We develop this for the case where the constraints represent the optimal weights
as coming from a codebook. This results in a “learning-compression” (LC) algorithm that alternates SGD
optimization of the loss over real-valued weights but with a quadratic regularization term, and quantization
of the current real-valued weights. The quantization step takes a form that follows necessarily from the
problem definition without ad-hoc decisions: k-means for adaptive codebooks, and an optimal assignment
for fixed codebooks such as binarization, ternarization or powers-of-two (with possibly an optimal global
scale). We then show experimentally that we can compress deep nets considerably more than previous
quantization algorithms—often, all the way to the maximum possible compression, a single bit per weight,
without significant error degradation.

2 Related work on quantization of neural nets

Much work exists on compressing neural nets, using quantization, low-rank decomposition, pruning and other
techniques, see Carreira-Perpiñán (2017) and references therein. Here we focus exclusively on work based on
quantization. Quantization of neural net weights was recognized as an important problem early in the neural
net literature, often with the goal of efficient hardware implementation, and has received much attention
recently. The main approaches are of two types. The first one consists of using low-precision, fixed-point or
other weight representations through some form of rounding, even single-bit (binary) values. This can be
seen as quantization using a fixed codebook (i.e., with predetermined values). The second approach learns
the codebook itself as a form of soft or hard adaptive quantization. There is also work on using low-precision
arithmetic directly during training (see Gupta et al., 2015 and references therein) but we focus here on work
whose goal is to quantize a neural net of real-valued, non-quantized weights.

2.1 Quantization with a fixed codebook

Work in the 1980s and 1990s explored binarization, ternarization and general powers-of-two quantization
(Fiesler et al., 1990; Marchesi et al., 1993; Tang and Kwan, 1993). These same quantization forms have
been revisited in recent years (Hwang and Sung, 2014; Courbariaux et al., 2015; Rastegari et al., 2016;
Hubara et al., 2016; Li et al., 2016; Zhou et al., 2016; Zhu et al., 2017), with impressive results on large
neural nets trained on GPUs, but not much innovation algorithmically. The basic idea in all these papers
is essentially the same: to modify backpropagation so that it encourages binarization, ternarization or some
other form of quantization of the neural net weights. The modification involves evaluating the gradient of
the loss L(w) at the quantized weights (using a specific quantization or “rounding” operator that maps a
continuous weight to a quantized one) but applying the update (gradient or SGD step) to the continuous
(non-quantized) weights. Specific details vary, such as the quantization operator or the type of codebook.
The latter has recently seen a plethora of minor variations: {−1, 0,+1} (Hwang and Sung, 2014), {−1,+1}
(Courbariaux et al., 2015), {−a,+a} (Rastegari et al., 2016; Zhou et al., 2016), {−a, 0,+a} (Li et al., 2016)
or {−a, 0,+b} (Zhu et al., 2017).

One important problem with these approaches is that their modification of backpropagation is ad-hoc,
without guarantees of converging to a net with quantized weights and low loss, or of converging at all.
Consider binarization to {−1,+1} for simplicity. The gradient is computed at a binarized weight vector
w ∈ {−1,+1}P , of which there are a finite number (2P , corresponding to the hypercube corners), and none
of these will in general have gradient zero. Hence training will never stop, and the iterates will oscillate
indefinitely. Practically, this is stopped after a certain number of iterations, at which time the weight
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distribution is far from binarized (see fig. 2 in Courbariaux et al., 2015), so a drastic binarization must
still be done. Given these problems, it is surprising that these techniques do seem to be somewhat effective
empirically in quantizing the weights and still achieve little loss degradation, as reported in the papers above.
Exactly how effective they are, on what type of nets and why this is so is an open research question.

In our LC algorithm, the optimization essentially happens in the continuous weight space by minimizing
a well-defined objective (the penalized function in the L step), but this is regularly corrected by a quantiza-
tion operator (C step), so that the algorithm gradually converges to a truly quantized weight vector while
achieving a low loss (up to local optima). The form of both L and C steps, in particular of the quantization
operator (our compression function Π(w)), follows in a principled, optimal way from the constrained form
of the problem (1). That is, given a desired form of quantization (e.g. binarization), the form of the C step
is determined, and the overall algorithm is guaranteed to converge to a valid (binary) solution.

Also, we emphasize that there is little practical reason to use certain fixed codebooks, such as {−1,+1}
or {−a,+a}, instead of an adaptive codebook such as {c1, c2} with c1, c2 ∈ R. The latter is obviously
less restrictive, so it will incur a lower loss. And its hardware implementation is about as efficient: to
compute a scalar product of an activation vector with a quantized weight vector, all we require is to sum
activation values for each centroid and to do two floating-point multiplications (with c1 and c2). Indeed, our
experiments in section 5.3 show that using an adaptive codebook with K = 2 clearly beats using {−1,+1}.

2.2 Quantization with an adaptive codebook

Quantization with an adaptive codebook is, obviously, more powerful than with a fixed codebook, even though
it has to store the codebook itself. Quantization using an adaptive codebook has also been explored in the
neural nets literature, using approaches based on soft quantization (Nowlan and Hinton, 1992; Ullrich et al.,
2017) or hard quantization (Fiesler et al., 1990; Marchesi et al., 1993; Tang and Kwan, 1993; Gong et al.,
2015; Han et al., 2015), and we discuss this briefly.

Given a set of real-valued elements (scalars or vectors), in adaptive quantization we represent (“quantize”)
each element by exactly one entry in a codebook. The codebook and the assignment of values to codebook
entries should minimize a certain distortion measure, such as the squared error. Learning the codebook
and assignment is done by an algorithm, possibly approximate (such as k-means for the squared error).
Quantization is related to clustering and often one can use the same algorithm for both (e.g. k-means),
but the goal is different: quantization seeks to minimize the distortion rather than to model the data as
clusters. For example, a set of values uniformly distributed in [−1, 1] shows no clusters but may be subject
to quantization for compression purposes. In our case of neural net compression, we have an additional
peculiarity that complicates the optimization: the quantization and the weight values themselves should be
jointly learned to minimize the loss of the net on the task.

Two types of clustering exist, hard and soft clustering. In hard clustering, each data point is assigned
to exactly one cluster (e.g. k-means clustering). In soft clustering, we have a probability distribution over
points and clusters (e.g. Gaussian mixture clustering). Likewise, two basic approaches exist for neural net
quantization, based on hard and soft quantization. We review each next.

In hard quantization, each weight is assigned to exactly one codebook value. This is the usual meaning
of quantization. This is a difficult problem because, even if the loss is differentiable over the weights, the
assignment makes the problem inherently combinatorial. Previous work (Gong et al., 2015; Han et al., 2015)
has run a quantization step (k-means) as a postprocessing step on a reference net (which was trained to
minimize the loss). This is suboptimal in that it does not learn the weights, codebook and assignment jointly.
We call this “direct compression” and discuss it in more detail in section 3.4. Our LC algorithm does learn
the weights, codebook and assignment jointly, and converges to a local optimum of problem (1).

In soft quantization, the assignment of values to codebook entries is based on a probability distribution.
This was originally proposed by Nowlan and Hinton (1992) as a way to share weights softly in a neural
net with the goal of improving generalization, and has been recently revisited with the goal of compres-
sion (Ullrich et al., 2017). The idea is to penalize the loss with the negative log-likelihood of a Gaussian
mixture (GM) model on the scalar weights of the net. This has the advantage of being differentiable and
of coadapting the weights and the GM parameters (proportions, means, variances). However, it does not
uniquely assign each weight to one mean, in fact the resulting distribution of weights is far from quantized;
it simply encourages the creation of Gaussian clusters of weights, and one has to assign weights to means
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as a postprocessing step, which is suboptimal. The basic problem is that a GM is a good model (better
than k-means) for noisy or uncertain data, but that is not what we have here. Quantizing the weights for
compression implies a constraint that certain weights must take exactly the same value, without noise or
uncertainty, and optimize the loss. We seek an optimal assignment that is truly hard, not soft. Indeed,
a GM prior is to quantization what a quadratic prior (i.e., weight decay) is to sparsity: a quadratic prior
encourages all weights to be small but does not encourage some weights to be exactly zero, just as a GM
prior encourages weights to form Gaussian clusters but not to become groups of identical weights.

3 Neural net quantization as constrained optimization and the
“learning-compression” (LC) algorithm

As noted in the introduction, compressing a neural net optimally means finding the compressed net that
has (locally) lowest loss. Our first goal is to formulate this mathematically in a way that is amenable
to nonconvex optimization techniques. Following Carreira-Perpiñán (2017), we define the following model
compression as constrained optimization problem:

min
w,Θ

L(w) s.t. w = ∆(Θ) (1)

where w ∈ R
P are the real-valued weights of the neural net, L(w) is the loss to be minimized (e.g. cross-

entropy for a classification task on some training set), and the constraint w = ∆(Θ) indicates that the
weights must be the result of decompressing a low-dimensional parameter vector Θ. This corresponds to
quantization and will be described in section 4. Problem (1) is equivalent to the unconstrained problem
“minΘ L(∆(Θ))”, but this is nondifferentiable with quantization (where ∆ is a discrete mapping), and
introducing the auxiliary variable w will lead to a convenient algorithm.

Our second goal is to solve this problem via an efficient algorithm. Although this might be done in
different ways, a particularly simple one was proposed by Carreira-Perpiñán (2017) that achieves separability
between the data-dependent part of the problem (the loss) and the data-independent part (the weight
quantization). First, we apply a penalty method to solve (1). We consider here the augmented Lagrangian
method (Nocedal and Wright, 2006), where λ ∈ R

P are the Lagrange multiplier estimates1:

LA(w,Θ,λ;µ) = L(w)− λ
T (w −∆(Θ)) +

µ

2
‖w−∆(Θ)‖2 (2)

= L(w) +
µ

2

∥

∥

∥
w −∆(Θ)− 1

µ
λ

∥

∥

∥

2

− 1

2µ
‖λ‖2. (3)

The augmented Lagrangian method works as follows. For fixed µ ≥ 0, we optimize LA(w,Θ,λ;µ) over
(w,Θ) accurately enough. Then, we update the Lagrange multiplier estimates as λ ← λ − µ(w −∆(Θ)).
Finally, we increase µ. We repeat this process and, in the limit as µ → ∞, the iterates (w,Θ) tend to a
local KKT point (typically, a local minimizer) of the constrained problem (1). A simpler but less effective
penalty method, the quadratic penalty method, results from setting λ = 0 throughout; we do not describe
it explicitly, see Carreira-Perpiñán (2017).

Finally, in order to optimize LA(w,Θ,λ;µ) over (w,Θ), we use alternating optimization. This gives rise
to the following two steps:

• L step: learning

min
w

L(w) +
µ

2

∥

∥

∥
w −∆(Θ)− 1

µ
λ

∥

∥

∥

2

. (4)

This involves optimizing a regularized version of the loss, which pulls the optimizer towards the cur-
rently quantized weights. For neural nets, it can be solved with stochastic gradient descent (SGD).

• C step: compression (here, quantization)

min
Θ

∥

∥

∥
w − 1

µ
λ −∆(Θ)

∥

∥

∥

2

⇐⇒ Θ = Π
(

w − 1

µ
λ

)

. (5)

1All norms are ‖·‖
2
throughout the paper unless indicated otherwise.
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We describe this in section 4. Solving this problem is equivalent to quantizing optimally the current
real-valued weights w− 1

µ
λ, and can be seen as finding their orthogonal projection Π

(

w− 1
µ
λ
)

on the
feasible set of quantized nets.

This algorithm was called the “learning-compression” (LC) algorithm by Carreira-Perpiñán (2017).
We note that, throughout the optimization, there are two weight vectors that evolve simultaneously and

coincide in the limit as µ→∞: w (or, more precisely, w− 1
µ
λ) contains real-valued, non-quantized weights

(and this is what the L step optimizes over); and ∆(Θ) contains quantized weights (and this is what the C
step optimizes over). In the C step, ∆(Θ) is the projection of the current w on the feasible set of quantized
vectors. In the L step, w optimizes the loss while being pulled towards the current ∆(Θ).

The formulation (1) and the LC algorithm have two crucial advantages. The first one is that we get
a convenient separation between learning and quantization which allows one to solve each step by reusing
existing code. The data-dependent part of the optimization is confined within the L step. This part is the
more computationally costly, requiring access to the training set and the neural net, and usually implemented
in a GPU using SGD. The data-independent part of the optimization, i.e., the compression of the weights
(here, quantization), is confined within the C step. This needs access only to the vector of current, real-valued
weights (not to the training set or the actual neural net).

The second advantage is that the form of the C step is determined by the choice of quantization form
(defined by ∆(Θ)), and the algorithm designer need not worry about modifying backpropagation or SGD
in any way for convergence to a valid solution to occur. For example, if a new form of quantization were
discovered and we wished to use it, all we have to do is put it in the decompression mapping form ∆(Θ)
and solve the compression mapping problem (5) (which depends only on the quantization technique, and for
which a known algorithm may exist). This is unlike much work in neural net quantization, where various,
somewhat arbitrary quantization or rounding operations are incorporated in the usual backpropagation
training (see section 2), which makes it unclear what problem the overall algorithm is optimizing, if it does
optimize anything at all.

In section 4, we solve the compression mapping problem (5) for the adaptive and fixed codebook cases.
For now, it suffices to know that it will involve running k-means with an adaptive codebook and a form of
rounding with a fixed codebook.

3.1 Geometry of the neural net quantization problem

Problem (1) can be written as minw,Θ L(w) s.t. w,Θ ∈ F , where the objective function is the loss L(w) on
the real-valued weights and the feasible set on w and the low-dimensional parameters Θ is:

F = {(w,Θ) ∈ R
P × R

Q: w = ∆(Θ)}. (6)

We also define the feasible set in w-space:

Fw = {w ∈ R
P : w = ∆(Θ) for Θ ∈ R

Q} (7)

which contains all high-dimensional models w that can be obtained by decompressing some low-dimensional
model Θ. Fig. 1 (plots 1–3) illustrates the geometry of the problem in general.

Solving the C step requires minimizing (where we write w instead of w− 1
µ
λ for simplicity of notation):

Π(w) = argmin
Θ

‖w −∆(Θ)‖2. (8)

We call ∆: Θ ∈ R
Q → w ∈ R

P the decompression mapping and Π: w ∈ R
P → Θ ∈ R

Q the compression
mapping. In quantization, this has the following meaning:

• Θ = {C,Z} consists of the codebook (if the codebook is adaptive) and the assignments of weight-to-
codebook-entries. The assignments can be encoded as 1-of-K vectors ZT = (z1, . . . , zP ) or directly as
P indices in {1, . . . ,K} for a codebook with K entries.

• The decompression mapping wC = ∆(C,Z) uses the codebook and assignments as a lookup table to
generate a real-valued but quantized weight vectorwC . This vector is used in the L step as a regularizer.
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Figure 1: Schematic representation of the idea of model compression by constrained optimization, in general
(top 3 plots) and in particular for quantization (bottom 2 plots). The top of this figure is adapted from
Carreira-Perpiñán (2017).
Plots 1–3 (top row): illustration of the uncompressed model space (w-space = R

P ), the contour lines of
the loss L(w) (green lines), and the set of compressed models (the feasible set Fw = {w ∈ R

P : w =
∆(Θ) for Θ ∈ R

Q}, grayed areas), for a generic compression technique ∆. The Θ-space is not shown. w
optimizes L(w) but is infeasible (no Θ can decompress into it). The direct compression wDC = ∆(ΘDC) is
feasible but not optimal compressed (not optimal in the feasible set). w∗ = ∆(Θ∗) is optimal compressed.
Plot 2 shows two local optima w1 and w2 of the loss L(w), and their respective DC points (the contour
lines are omitted to avoid clutter). Plot 3 shows several feasible sets, corresponding to different compression
levels (F1

w
is most compression).

Plots 4–5 (bottom row): illustration when ∆ corresponds to quantization, in the particular case of a codebook
of size K = 1 and a 2-weight net, so w = (w1, w2) ∈ R

2, Θ = c ∈ R and ∆(Θ) =
(

c
c

)

∈ R
2. Plot 4 is the joint

space (w, c) and plot 5 is its projection in w-space (as in plot 1). In plot 4, the black line is the feasible set
F = {(w,Θ) ∈ R

P × R
Q: w = ∆(Θ)}, corresponding to the constraints w1 = w2 = c. In plot 5, the black

line is the feasible set Fw = {w ∈ R
P : w = ∆(Θ) for Θ ∈ R

Q}, corresponding to the constraint w1 = w2.
The red line is the quadratic-penalty method path (w(µ), c(µ)), which for this simple case is a straight line
segment from the point (w, cDC) to the solution (w∗, c∗). We mark three points: blue + represents the
reference net w at the DC codebook Θ = cDC (the beginning of the path); red ∗ is the solution (w∗, c∗) (the
end of the path); and white ◦ is the direct compression point (∆(ΘDC),ΘDC) =

((

cDC

cDC

)

, cDC
)

.
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• The compression mapping {C,Z} = Π(w) learns optimally a codebook and assignments given a real-
valued, non-quantized weight vector w (using k-means or a form of rounding, see section 4). All the
C step does is solve for the compression mapping.

As shown by Carreira-Perpiñán (2017), the compression mapping Π(w) finds the orthogonal projection of
w on the feasible set Fw, which we call wC .

For quantization, the geometry of the constrained optimization formulation is as follows. The feasible
set F can be written as the union of a combinatorial number of linear subspaces Sj (containing the origin),
where Sj is of the form {wi = ck, ∀i = 1, . . . , P, k ∈ {1, . . . ,K}}. Each such subspace defines a particular
assignment of the P weights to the K centroids C = {c1, . . . , cK}. There are KP assignments. If we knew the
optimal assignment, the feasible set would be a single linear subspace, and the weights could be eliminated
(using wi = ck) to yield an unconstrained objective L(C) of K tunable vectors (shared weights in neural net
parlance), which would be simple to optimize. What makes the problem hard is that we do not know the
optimal assignment. Depending on the dimensions P and K, these subspaces may look like lines, planes,
etc., always passing through the origin in (w, C) space. Geometrically, the union of these KP subspaces is
a feasible set with both a continuous structure (within each subspace) and a discrete one (the number of
subspaces is finite but very large).

Fig. 1 (plots 4–5) shows the actual geometry for the case of a net with P = 2 weights and a codebook
with K = 1 centroid. This can be exactly visualized in 3D (w1, w2, c) because the assignment variables
z11 = z21 = 1 are redundant and can be eliminated: minw1,w2,c L(w1, w2) s.t. w1 = c, w2 = c. The
compression mapping is easily seen to be Π(w) = w1+w2

2 = c, and ∆(Π(w)) = w1+w2

2

(

1
1

)

is indeed the
orthogonal projection of w onto the diagonal line w1 = w2 in w-space (the feasible set). This particular
case is, however, misleading in that the constraints involve a single linear subspace rather than the union
of a combinatorial number of subspaces. It can be solved simply and exactly by setting w1 = w2 = c and
eliminating variables into L(w1, w2) = L(c, c).

3.2 Convergence of the LC algorithm

Convergence of the LC algorithm to a local KKT point (theorem 5.1 in Carreira-Perpiñán, 2017) is guaranteed
for smooth problems (continuously differentiable loss L(w) and decompression mapping ∆(Θ)) if µ → ∞
and optimization of the penalty function (2) is done accurately enough for each µ. However, in quantization
the decompression mapping ∆(Θ) is discrete, given by a lookup table, so the theorem does not apply.

In fact, neural net quantization is an NP-complete problem even in simple cases. For example, consider
least-squares linear regression with weights in {−1,+1}. This corresponds to binarization of a single-layer,
linear neural net. The loss L(w) is quadratic, so the optimization problem is a binary quadratic problem
over the weights, which is NP-complete (Garey and Johnson, 1979). However, the LC algorithm will still
converge to a “local optimum” in the same sense that the k-means algorithm is said to converge to a local
optimum: the L step cannot improve given the C step, and vice versa. While this will generally not be the
global optimum of problem (1), it will be a good solution in that the loss will be low (because the L step
continuously minimizes it in part), and the LC algorithm is guaranteed to converge to a weight vector w that
satisfies the quantization constraints (e.g. weights in {−1,+1} for binarization). Our experiments confirm
the effectiveness of the LC algorithm for quantization, consistently outperforming other approaches over a
range of codebook types and sizes.

3.3 Practicalities of the LC algorithm

We give pseudocode for three representative cases of the resulting LC algorithms: adaptive codebook (fig. 2),
fixed codebook (fig. 3) and binarization with global scale (fig. 4).

As usual with path-following algorithms, ideally one would follow the path of iterates (w(µ),Θ(µ)) closely
until µ→∞, by increasing the penalty parameter µ slowly. In practice, in order to reduce computing time,
we increase µ more aggressively by following a multiplicative schedule µk = µ0a

k for k = 0, 1, 2 . . . where
µ0 > 0 and a > 1. However, it is important to use a small enough µ0 that allows the algorithm to explore
the solution space before committing to specific assignments for the weights.

The L step with a large training set typically uses SGD. As recommended by Carreira-Perpiñán (2017),
we use a clipped schedule {η′t}∞t=0 for the learning rates of the form η′t = min

(

ηt,
1
µ

)

, t = 0, 1, 2 . . . , where t
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input K ≥ 1 (codebook size),
training data and neural net architecture with weights w

w← w = argminw L(w) reference net

(C,Z)← k-means(w) learn codebook and assignments

wC ←∆(C,Z) quantized reference net

λ← 0
for µ = µ0 < µ1 < · · · <∞
w← argminw L(w) + µ

2 ‖w −wC − 1
µ
λ‖2 L step: learn net

(C,Z)← k-means
(

w − 1
µ
λ
)

C step: learn codebook and assignments. . .

wC ←∆(C,Z) . . . and quantize reference net

λ← λ− µ(w −wC) Lagrange multipliers

if ‖w −wC‖ is small enough then exit the loop
return wC , C,Z

Figure 2: Pseudocode for the LC algorithm for quantization of scalar weights with an adaptive codebook,
augmented-Lagrangian version. When ran on the reference net w, k-means is initialized from k-means++;
when ran in the C step, k-means is initialized from the previous iteration’s codebook C. The C step com-
pression mapping Θ = Π(w) is (C,Z) = k-means(w), where C = {c1, . . . , cK} ⊂ R is the codebook and
Z = (zik) ∈ {0, 1}PK the assignments, satisfying

∑K
k=1 zik = 1 for each i = 1, . . . , P (i.e., we use a 1-of-K

representation). The quantized (compressed) weights wC = ∆(C,Z) ∈ R
P result from setting the ith weight

to its assigned codebook entry, cκ(i) where κ(i) = k if zik = 1.

is the epoch index and {ηt}∞t=0 is a schedule for the reference net (i.e., for µ = 0). This ensures convergence
and avoids erratic updates as µ becomes large.

We initialize λ = 0 and (w,Θ) = (w,ΘDC), i.e., to the reference net and direct compression, which is the
exact solution for µ→ 0+, as we show in the next section. We stop the LC algorithm when ‖w −∆(C,Z)‖
is smaller than a set tolerance, i.e., when the real-valued and quantized weights are nearly equal. We take
as solution wC = ∆(C,Z), i.e., the quantized weights using the codebook C and assignments Z.

The runtime of the C step is negligible compared to that of the L step. With a fixed codebook, the C
step is a simple assignment per weight. With an adaptive codebook, the C step runs k-means, each iteration
of which is linear on the number of weights P . The number of iterations that k-means runs is a few tens in
the first k-means (initialized by k-means++, on the reference weights) and just about one in subsequent C
steps (because k-means is warm-started), as seen in our experiments. So the runtime is dominated by the L
steps, i.e., by optimizing the loss.

3.4 Direct compression and iterated direct compression

The quadratic-penalty and augmented-Lagrangian methods define a path of iterates (w(µ),Θ(µ)) for µ ≥ 0
that converges to a local solution as µ → ∞. The beginning of this path is of special importance, and was
called direct compression (DC) by Carreira-Perpiñán (2017). Taking the limit µ→ 0+ and assuming an initial
λ = 0, we find that w(0+) = argminw L(w) ≡ w and Θ(0+) = Π(w) = argminΘ ‖w −∆(Θ)‖2 ≡ ΘDC.
Hence, this corresponds to training a reference, non-quantized net w and then quantizing it regardless of the
loss (or equivalently projecting w on the feasible set). As illustrated in fig. 1, this is suboptimal (i.e., it does
not produce the compressed net with lowest loss), more so the farther the reference is from the feasible set.
This will happen when the feasible set is small, i.e., when the codebook size K is small (so the compression
level is high). Indeed, our experiments show that for large K (around 32 bits/weight) then DC is practically
identical to the result of the LC algorithm, but as K decreases (e.g. 1 to 4 bits/weight) then the loss of DC
becomes larger and larger than that of the LC algorithm.

A variation of direct compression consists of “iterating” it, as follows. We first optimize L(w) to obtain w
and then quantize it with k-means intoΘDC. Next, we optimize L(w) again but initializing w from∆(ΘDC),
and then we compress it; etc. This was called “iterated direct compression (iDC)” by Carreira-Perpiñán
(2017). iDC should not improve at all over DC if the loss optimization was exact and there was a single
optimum: it simply would cycle forever between the reference weights w and the DC weights ∆(ΘDC).
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input C = {c1, . . . , cK} ⊂ R (codebook),
training data and neural net architecture with weights w

w← w = argminw L(w) reference net

κ(i)← argmink=1,...,K |wi − ck|, i = 1, . . . , P assignments

wC ←∆(C, κ) quantized reference net

λ← 0
for µ = µ0 < µ1 < · · · <∞
w← argminw L(w) + µ

2 ‖w −wC − 1
µ
λ‖2 L step: learn net

κ(i)← argmink=1,...,K |wi − 1
µ
λi − ck|, i = 1, . . . , P C step: assignments. . .

wC ←∆(C, κ) . . . and quantized net

λ← λ− µ(w −wC) Lagrange multipliers

if ‖w −wC‖ is small enough then exit the loop
return wC , C, κ

Figure 3: Pseudocode for the LC algorithm for quantization of scalar weights with a fixed codebook,
augmented-Lagrangian version. For simplicity of notation, we now represent the assignments (of weights
to codebook entries) directly by an index κ(i) ∈ {1, . . . ,K} for each i = 1, . . . , P . The quantized weights
wC = ∆(C, κ) ∈ R

P result from setting the ith weight to its assigned codebook entry, cκ(i).

input training data and neural net architecture with weights w
w← w = argminw L(w) reference net

a← 1
P

∑P
i=1 |wi| scale

wC ← a sgn (w) binarized reference net

λ← 0
for µ = µ0 < µ1 < · · · <∞
w← argminw L(w) + µ

2 ‖w −wC − 1
µ
λ‖2 L step: learn net

a← 1
P

∑P
i=1 |wi| C step: scale. . .

wC ← a sgn (w) . . . and binarized net

λ← λ− µ(w −wC) Lagrange multipliers

if ‖w −wC‖ is small enough then exit the loop
return wC , a

Figure 4: Pseudocode for the LC algorithm for binarization of scalar weights into {−1,+1} with an adaptive
scale a > 0, augmented-Lagrangian version. The sign function applies elementwise to compute the binarized
weights wC .

However, in practice iDC may improve somewhat over DC, for two reasons. 1) With local optima of L(w),
we might converge to a different optimum after the quantization step (see fig. 1 plot 2). However, at some
point this will end up cycling between some reference net (some local optimum of L(w)) and its quantized
net. 2) In practice, SGD-based optimization of the loss with large neural nets is approximate; we stop
SGD way before it has converged. This implies the iterates never fully reach w, and keep oscillating forever
somewhere in between w and ∆(ΘDC).

DC and iDC have in fact been proposed recently for quantization, although without the context that our
constrained optimization framework provides. Gong et al. (2015) applied k-means to quantize the weights
of a reference net, i.e., DC. The “trained quantization” of Han et al. (2015) tries to improve over this by
iterating the process, i.e., iDC. In our experiments, we verify that neither DC not iDC converge to a local
optimum of problem (1), while our LC algorithm does.

9



4 Solving the C step: compression by quantization

The C step consists of solving the optimization problem of eq. (8): Π(w) = argminΘ ‖w−∆(Θ)‖2, where
w ∈ R

P is a vector of real-valued weights. This is a quadratic distortion (or least-squares error) problem,
and this was caused by selecting a quadratic penalty in the augmented Lagrangian (2). It is possible to
use other penalties (e.g. using the ℓ1 norm), but the quadratic penalty gives rise to simpler optimization
problems, and we focus on it in this paper. We now describe how to write quantization as a mapping ∆ in
parameter space and how to solve the optimization problem (8).

Quantization consists of approximating real-valued vectors in a training set by vectors in a codebook.
Since in our case the vectors are weights of a neural net, we will write the training set as {w1, . . . ,wP }.
Although in practice with neural nets we quantize scalar weight values directly (not weight vectors), we de-
velop the formulation using vector quantization for generality. Hence, if we use a codebook C = {c1, . . . , cK}
with K ≥ 1 entries, the number of bits used to store each weight vector wi is ⌈log2 K⌉.

We consider two types of quantization: using an adaptive codebook, where we learn the optimal codebook
for the training set; and using a fixed codebook, which is then not learned (although we will consider learning
a global scale).

4.1 Adaptive codebook

The decompression mapping is a table lookup wi = cκ(i) for each weight vector i = 1, . . . , P in the codebook
C = {c1, . . . , cK}, where κ: {1, . . . , P} → {1, . . . ,K} is a discrete mapping that assigns each weight vector
to one codebook vector. The compression mapping results from finding the best (in the least-squares sense)
codebook C and mapping κ for the “dataset” w1, . . . ,wP , i.e., from solving the optimization problem

min
C,κ

P
∑

i=1

∥

∥wi − cκ(i)
∥

∥

2 ≡ min
C,Z

P,K
∑

i,k=1

zik‖wi − ck‖2 s.t.

{

Z ∈ {0, 1}P×K

∑K
k=1 zik = 1, i = 1, . . . , P

(9)

which we have rewritten equivalently using binary assignment variables ZT = (z1, . . . , zP ). This follows by
writing cκ(i) =

∑K
k=1 zikck where zik = 1 if k = κ(i) and 0 otherwise, and verifying by substituting the zik

values that the following holds:

∥

∥wi − cκ(i)
∥

∥

2
=

∥

∥

∥
wi −

K
∑

k=1

zikck

∥

∥

∥

2

=
K
∑

k=1

zik‖wi − ck‖2.

So in this case the low-dimensional parameters are Θ = {C,Z}, the decompression mapping can be written
elementwise as wi = cκ(i) =

∑K
k=1 zikck for i = 1, . . . , P , and the compression mapping {C,Z} = Π(w)

results from running the k-means algorithm. The low-dimensional parameters are of two types: the as-
signments z1, . . . , zP are “private” (each weight wi has its own zi), and the codebook C is “shared” by all
weights. In the pseudocode of fig. 2, we write the optimally quantized weights as wC = ∆(C,Z).

Problem (9) is the well-known quadratic distortion problem (Gersho and Gray, 1992). It is NP-complete
and it is typically solved approximately by k-means using a good initialization, such as that of k-means++
(Arthur and Vassilvitskii, 2007). As is well known, k-means is an alternating optimization algorithm that
iterates the following two steps: in the assignment step we update the assignments z1, . . . , zP independently
given the centroids (codebook); in the centroid step we update the centroids c1, . . . , cK independently by
setting them to the mean of their assigned points. Each iteration reduces the distortion or leaves it unchanged.
The algorithm converges in a finite number of iterations to a local optimum where Z cannot improve given
C and vice versa.

In practice with neural nets we quantize scalar weight values directly, i.e., each wi is a real value.
Computationally, k-means is considerably faster with scalar values than with vectors. If the vectors have
dimension D, with P data points and K centroids, each iteration of k-means takes O(PKD) runtime because
of the assignment step (the centroid step is O(PD), by scanning through the P points and accumulating
each mean incrementally). But in dimension D = 1, each iteration can be done exactly in O(P logK), by
using a binary search over the sorted centroids in the assignment step, which then takes O(K logK) for
sorting and O(P logK) for assigning, total O(P logK).
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4.1.1 Why k-means?

The fact that we use k-means in the C step is not an arbitrary choice of a quantization algorithm (among
many possible such algorithms we could use instead). It is a necessary consequence of two assumptions:
1) The fact that we want to assign weights to elements of a codebook, which dictates the form of the
decompression mapping w = ∆(C,Z). This is not really an assumption because any form of quantization
works like this. 2) That the penalty used in the augmented Lagrangian is quadratic, so that the C step is a
quadratic distortion problem.

We could choose a different penalty instead of the quadratic penalty ‖w −∆(C,Z)‖22, as long as it is zero
if the constraint w = ∆(C,Z) is satisfied and positive otherwise (for example, the ℓ1 penalty). In the grand
scheme of things, the choice of penalty is not important, because the role of the penalty is to enforce the
constraints gradually, so that in the limit µ→∞ the constraints are satisfied and the weights are quantized:
w = ∆(C,Z). Any penalty satisfying the positivity condition above will achieve this. The choice of penalty
does have two effects: it may change the local optimum we converge to (although it is hard to have control
on this); and, more importantly, it has a role in the optimization algorithm used in the L and C steps: the
quadratic penalty is easier to optimize. As an example, imagine we used the ℓ1 penalty ‖w −∆(C,Z)‖1.
This means that the L step would have the form:

min
w

L(w) +
µ

2

∥

∥

∥
w−∆(Θ)− 1

µ
λ

∥

∥

∥

1

,

that is, an ℓ1-regularized loss. This is a nonsmooth problem. One can develop algorithms to optimize it, but
it is harder than with the quadratic regularizer. The C step would have the form (again we write w instead
of w− 1

µ
λ for simplicity of notation):

min
Θ

‖w −∆(Θ)‖1 ⇐⇒ min
C,Z

P,K
∑

i,k=1

zik‖wi − ck‖1 s.t.

{

Z ∈ {0, 1}P×K

∑K
k=1 zik = 1, i = 1, . . . , P.

With scalar weights w1, . . . , wP , this can be solved by alternating optimization as in k-means: the assignment
step is identical, but the centroid step uses the median instead of the mean of the points assigned to
each centroid (k-medians algorithm). There are a number of other distortion measures developed in the
quantization literature (Gersho and Gray, 1992, section 10.3) that might be used as penalty and are perhaps
convenient with some losses or applications. With a fixed codebook, as we will see in the next section, the
form of the C step is the same regardless of the penalty.

On the topic of the choice of penalty, a possible concern one could raise is that of outliers in the data.
When used for clustering, k-means is known to be sensitive to outliers and nonconvexities of the data
distribution. Consider the following situations, for simplicity using just K = 1 centroid in 1D. First, if the
dataset has an outlier, it will pull the centroid towards it, away from the rest of the data (note this is not
a local optima issue; this is the global optimum). For compression purposes, it may seem a waste of that
centroid not to put it where most of the data is. With the ℓ1 penalty, the centroid would be insensitive to the
outlier. Second, if the dataset consists of two separate groups, the centroid will end up in the middle of both,
where there is no data, for both k-means and the ℓ1 penalty. Again, this may seem a waste of the centroid.
Other clustering algorithms have been proposed to ensure the centroids lie where there is distribution mass,
such as the k-modes algorithm (Carreira-Perpiñán and Wang, 2013; Wang and Carreira-Perpiñán, 2014).
However, these concerns are misguided, because neural net compression is not a data modeling problem:
one has to consider the overall LC algorithm, not the C step in isolation. While in the C step the centroids
approach the data (the weights), in the L step the weights approach the centroids, and in the limit µ→∞
both coincide, the distortion is zero and there are no outliers. It is of course possible that the LC algorithm
converge to a bad local optimum of the neural net quantization, which is an NP-complete problem, but this
can happen for various reasons. In section 5.2 of the experiments we run the LC algorithm in a model whose
weights contain clear outliers and demonstrate that the solution found makes sense.

11



4.2 Fixed codebook

Now, we consider quantization using a fixed codebook2, i.e., the codebook entries C = {c1, . . . , cK} are fixed
and we do not learn them, we learn only the weight assignments ZT = (z1, . . . , zP ). In this way we can
derive algorithms for compression of the weights based on approaches such as binarization or ternarization,
which have been also explored in the literature of neural net compression, implemented as modifications to
backpropagation (see section 2.1).

The compression mapping Π(w) of eq. (8) now results from solving the optimization problem

min
Z

P,K
∑

i,k=1

zik‖wi − ck‖2 s.t.

{

Z ∈ {0, 1}P×K

∑K
k=1 zik = 1, i = 1, . . . , P.

(10)

This is not NP-complete anymore, unlike in the optimization over codebook and assignments jointly in (9).
It has a closed-form solution for each zi separately where we assign wi to κ(i) = argmink=1,...,K ‖wi − ck‖2,
with ties broken arbitrarily, for i = 1, . . . , P . That is, each weight wi is compressed as its closest codebook
entry cκ(i) (in Euclidean distance). Therefore, we can write the compression mapping Θ = Π(w) explicitly
as Π(wi) = cκ(i) separately for each weight wi, i = 1, . . . , P .

So in this case the low-dimensional parameters are Θ = Z (or Θ = {κ(1), . . . , κ(P )}), the decompression
mapping can be written elementwise as wi = cκ(i) =

∑K
k=1 zikck for i = 1, . . . , P (as with the adaptive

codebook), and the compression mapping Z = Π(w) can also be written elementwise as zi = Π(wi) (or
κ(i) = Π(wi)) for i = 1, . . . , P . The low-dimensional parameters are all private (the assignments z1, . . . , zP
or κ(1), . . . , κ(P )). The codebook C is shared by all weights, but it is not learned. In the pseudocode of
fig. 3, we use the notation wC = ∆(C, κ) = (cκ(1), . . . , cκ(P )) to write the optimally quantized weights.

This simplifies further in the scalar case, i.e., when the weights wi to be quantized are scalars. Here, we
can write the codebook C = {c1, c2, . . . , cK} as an array of scalars sorted increasingly, −∞ < c1 < c2 < · · · <
cK < ∞. The elementwise compression mapping Π(wi) = κ(i) = argmink=1,...,K |wi − ck| can be written
generically for t ∈ R as:

Π(t) =



















1, if t < 1
2 (c1 + c2)

2, if 1
2 (c1 + c2) ≤ t < 1

2 (c2 + c3)

. . .

K, if 1
2 (cK−1 + cK) ≤ t

(11)

since the codebook defines Voronoi cells that are the intervals between midpoints of adjacent centroids. This
can be written more compactly as Π(t) = κ where κ ∈ {1, . . . ,K} satisfies 1

2 (cκ−1 + cκ) ≤ t < 1
2 (cκ + cκ+1)

and we define c0 = −∞ and cK+1 = ∞. Computationally, this can be done in O(logK) using a binary
search, although in practice K is small enough that a linear search in O(K) makes little difference. To
use the compression mapping Π(t) in the C step of the LC algorithm given in section 3, t equals either a
scalar weight wi for the quadratic-penalty method, or a shifted scalar weight wi − 1

µ
λi for the augmented

Lagrangian method. The L step of the LC algorithm always takes the form given in eq. (4).
Again, this quantization algorithm in the C step is not an arbitrary choice, it follows necessarily from

the way any codebook-based quantization works. Furthermore, and unlike the adaptive codebook case, with
scalar weights the solution (11) is independent of the choice of penalty, because the order of the real numbers
is unique (so using a quadratic or an ℓ1 penalty will result in the same step).

Application to binarization, ternarization and powers-of-two Some particular cases of the codebook
are of special interest because their implementation is very efficient: binary {−1,+1}, ternary {−1, 0,+1}
and general powers-of-two {0,±1,±2−1, . . . ,±2−C}. These are all well known in digital filter design, where
one seeks to avoid floating-point multiplications by using fixed-point binary arithmetic and powers-of-two or
sums of powers-of-two multipliers (which result in shift or shift-and-add operations instead). This accelerates
the computation and requires less hardware.

We give the solution of the C step for these cases in fig. 5 (see proofs in the appendix). Instead of giving
the compression mapping Π(t), we give directly a quantization operator q: R → C that maps a real-valued

2We can also achieve pruning together with quantization by having one centroid be fixed to zero. We study this in more

detail in a future paper.
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weight to its optimal codebook entry. Hence, q corresponds to compressing then decompressing the weights,
elementwise: q(t) = ∆(C,Π(t)), where t ∈ R is a scalar weight. In the expressions for q(t), we define the
floor function for t ∈ R as ⌊t⌋ = i if i ≤ t < i+ 1 and i is integer, and the sign function as follows:

sgn (t) =

{

−1, if t < 0

+1, if t ≥ 0.
(12)

Note that the generic k-means algorithm (which occurs in the C step of our LC algorithm) solves problem (11),
and hence its particular cases, exactly in one iteration: the centroid step does nothing (since the centroids
are not learnable) and the assignment step is identical to the expressions for Π(t) in eq. (11) or for q(t) in
fig. 5. However, the expressions in fig. 5 are more efficient, especially for the powers-of-two case, which runs
in O(1) (while the generic k-means assignment step would run in O(logC)).

4.2.1 Fixed codebook with adaptive scale

Fixed codebook values such as {−1,+1} or {−1, 0,+1}may produce a large loss because the good weight val-
ues may be quite bigger or quite smaller than ±1. One improvement is to rescale the weights, or equivalently
rescale the codebook elements, by a scale parameter a ∈ R, which is itself learned. The low-dimensional
parameters now are Θ = {a,Z}, where a is a shared parameter and the z1, . . . , zP are private. The de-
compression mapping can be written elementwise as wi = a cκ(i) = a

∑K
k=1 zikck for i = 1, . . . , P . The

compression mapping {a,Z} = Π(w) results from solving the optimization problem

min
Z,a

P,K
∑

i,k=1

zik‖wi − a ck‖2 s.t.

{

Z ∈ {0, 1}P×K

∑K
k=1 zik = 1, i = 1, . . . , P.

(13)

In general, this can be solved by alternating optimization over Z and a:

• Assignment step: assign wi to κ(i) = argmink=1,...,K ‖wi − a ck‖2 for i = 1, . . . , P .

• Scale step: a =
(
∑P,K

i,k=1 zikw
T
i ck

)

/
(
∑P,K

i,k=1 zik‖ck‖
2).

Like k-means, this will stop in a finite number of iterations, and may converge to a local optimum. With
scalar weights, each iteration is O(P logK) by using binary search in the assignment step and incremental
accumulation in the scale step.

Application to binarization and ternarization with scale For some special cases we can solve prob-
lem (13) exactly, without the need for an iterative algorithm. We give the solution for binarization and
ternarization with scale in fig. 5 (see proofs in the appendix). Again, we give directly the scalar quantization
operator q: R→ C. The form of the solution is a rescaled version of the case without scale, where the optimal
scale a > 0 is the average magnitude of a certain set of weights. Note that, given the scale a, the weights
can be quantized elementwise by applying q, but solving for the scale involves all weights w1, . . . , wP .

Some of our quantization operators are equal to some rounding procedures used in previous work on
neural net quantization: binarization (without scale) by taking the sign of the weight is well known, and our
formula for binarization with scale is the same as in Rastegari et al. (2016). Ternarization with scale was
considered by (Li et al., 2016), but the solution they give is only approximate; the correct, optimal solution
is given in our theorem A.3. As we have mentioned before, those approaches incorporate rounding in the
backpropagation algorithm in a heuristic way and the resulting algorithm does not solve problem (1). In the
framework of the LC algorithm, the solution of the C step (the quantization operator) follows necessarily;
there is no need for heuristics.

It is possible to consider more variations of the above, such as a codebook C = {−a,+b} or {−a, 0,+b}
with learnable scales a, b > 0, but there is little point to it. We should simply use a learnable codebook
C = {c1, c2} or {c1, 0, c2} without restrictions on c1 or c2 and run k-means in the C step.

Computing the optimal scale a with P weights has a runtime O(P ) in the case of binarization with scale
and O(P logP ) in the case of ternarization with scale. In ternarization, the sums can be done cumulatively
in O(P ), so the total runtime is dominated by the sort, which is O(P logP ). It may be possible to avoid the
sort using a heap and reduce the total runtime to O(P ).
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−2 −1 0 1 2

−1

−0.5

0

0.5

1

t

q(t)

binarization

ternarization

powers of two
(C = 5)

Name codebook C scalar quantization operator
q(t) = α(t) sgn (t)

Binarization {−1,+1} α(t) = 1
Binarization with scale† {−a,+a} α(t) = a

Ternarization {−1, 0,+1} α(t) =

{

0, |t| < 1
2

1, |t| ≥ 1
2 .

Ternarization with scale† {−a, 0,+a} α(t) =

{

0, |t| < 1
2a

a, |t| ≥ 1
2a.

Powers of two
{0,±1,±2−1, . . . ,±2−C}
where C ≥ 0 is integer

α(t) =



















0, f > C + 1

1, f ≤ 0

2−C , f ∈ (C,C + 1]

2−⌊f+log2
3
2 ⌋, otherwise

where f = − log2 |t|.

†The scale is a =
1

j∗

j∗
∑

i=1

|wi| with j∗ =











P, for binarization

argmax
1≤j≤P

1√
j

j
∑

i=1

|wi|, for ternarization.

Figure 5: Scalar quantization operator q: R → C using a fixed codebook C = {c1, . . . , cK} ⊂ R for some
particular cases of interest (the general case without scale is given by eq. (11)). The input to the quantization
is a set of P real-valued weights; for the ternarization with scale these weights must be sorted in decreasing
magnitude: |w1| ≥ |w2| ≥ · · · ≥ |wP |. In q(t), t represents any weight wi, and q(wi) gives the optimally
quantized wi. This solves the C step in the LC algorithm for quantization. See proofs in the appendix.
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5 Experiments

We evaluate our learning-compression (LC) algorithm for quantizing neural nets of different sizes with
different compression levels (codebook sizes K), in several tasks and datasets: linear regression on MNIST
and classification on MNIST and CIFAR10. We compare LC with direct compression (DC) and iterated
direct compression (iDC), which correspond to the previous works of Gong et al. (2015) and Han et al. (2015),
respectively. By using K = 2 codebook values, we also compare with BinaryConnect (Courbariaux et al.,
2015), which aims at learning binary weights. In summary, our experiments 1) confirm our theoretical
arguments about the behavior of (i)DC, and 2) show that LC achieves comparable loss values (in training
and test) to those algorithms with low compression levels, but drastically outperforms all them at high
compression levels (which are the more desirable in practice). We reach the maximum possible compression
(1 bit/weight) without significant error degradation in all networks we describe (except in the linear regression
case).

We used the Theano (Theano Development Team, 2016) and Lasagne (Dieleman et al., 2015) libraries.
Throughout we use the augmented Lagrangian, because we found it not only faster but far more robust than
the quadratic penalty, in particular in setting the SGD hyperparameters. We initialize all algorithms from
a reasonably (but not necessarily perfectly) well-trained reference net. The initial iteration (µ = 0) for LC
gives the DC solution. The C step (also for iDC) consists of k-means ran till convergence, initialized from the
previous iteration’s centroids (warm-start). For the first compression, we use the k-means++ initialization
(Arthur and Vassilvitskii, 2007). This first compression may take several tens of k-means iterations, but
subsequent ones need very few, often just one (figs. 7 and 10).

We report the loss and classification error in training and test. We only quantize the multiplicative
weights in the neural net, not the biases. This is because the biases span a larger range than the multiplicative
weights, hence requiring higher precision, and anyway there are very few biases in a neural net compared to
the number of multiplicative weights.

We calculate compression ratios as

ρ(K) = #bits(reference) / #bits(quantized) (14)

where:

• #bits(reference) = (P1 + P0)b;

• #bits(quantized) = P1⌈log2 K⌉+ (P0 +K)b, where Kb is the size of the codebook;

• P1 and P0 are the number of multiplicative weights and biases, respectively;

• K is the codebook size;

• and we use 32-bit floats to represent real values (so b = 32). Note that it is important to quote the
base value of b or otherwise the compression ratio is arbitrary and can be inflated. For example, if we
set b = 64 (double precision) all the compression ratios in our experiments would double.

Since for our nets P0 ≪ P1, we have ρ(K) ≈ b/ log2 K.

5.1 Interplay between loss, model complexity and compression level

Firstly, we conduct a simple experiment to understand the interplay between loss, model complexity and
compression level, here given by classification error, number of hidden units and codebook size, respectively.
One important reason why compression is practically useful is that it may be better to train a large, accurate
model and compress it than to train a smaller model and not compress it in the first place (there has been
some empirical evidence supporting this, e.g. Denil et al., 2013). Also, many papers show that surprisingly
large compression levels are possible with some neural nets (in several of our experiments with quantization,
we can quantize all the way to one bit per weight with nearly no loss degradation). Should we expect very
large compression levels without loss degradation in general?

The answer to these questions depends on the relation between loss, model complexity and compression.
Here, we explore this experimentally in a simple setting: a classification neural net with inputs of dimension
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Figure 6: Relation between loss, model complexity and quantization level in a single-layer neural net for
MNIST classification. We train nets of different complexity (number of hidden units H ∈ {2, . . . , 40}) and
compress them with our LC algorithm using different codebook sizes (log2 K ∈ {1, . . . , 8}, with “∞” meaning
no compression, i.e., the reference net). Left plot : the resulting loss L(K,H). We show in color four level
sets Lmax ∈ {0.005, 0.01, 0.05, 0.3} of L, i.e., the points (K,H) satisfying L(K,H) ≤ Lmax. Middle plot : the
net size C(K,H), with the same level sets over L. The color markers × identify the best operational point
(K∗, H∗) within each level set, i.e., the point (K,H) having smallest size C(K,H) such that L(K,H) ≤ Lmax.
Right plot : like the left plot but with the contours of C(K,H) superimposed.

D, outputs of dimension d (number of classes) and H hidden, tanh units, fully connected, trained to minimize
the average cross-entropy. We use our LC algorithm to quantize the net using a codebook of size K. The
size C(K,H) in bits of the resulting nets is as follows (assuming floating-point values of b = 32 bits).
For the reference (non-quantized net, “K = ∞”), C(∞, H) = (D + d)Hb (multiplicative weights) plus
(H + d)b (biases), total C(∞, H) ≈ (D + d)Hb. For a quantized net, this is the sum of (D + d)H log2 K
(for the quantized weights), (H + d)b (for the non-quantized biases) and Kb (for the codebook), total
C(K,H) ≈ (D + d)H log2 K.

We explore the space of optimal nets over H and K in order to determine what the best operational
point (K∗, H∗) is in order to achieve a target loss Lmax with the smallest net, that is, we want to solve the
following optimization problem:

min
K,H

C(K,H) s.t. L(K,H) ≤ Lmax.

We use the entire MNIST training set of 60 000 handwritten digit images, hence D = 784 and d = 10.
We train a reference net of H units for H ∈ {2, . . . , 40} and compress it using a codebook of size K for
log2 K ∈ {1, . . . , 8}. The training procedure is exactly as for the LeNet300 neural net discussed later. Fig. 6
plots the loss L(K,H) and size C(K,H) for each resulting net using (K,H), and the best operational point
(K∗, H∗) for target loss values Lmax ∈ {0.005, 0.01, 0.05, 0.3}.

Within a given level set, the points with large H and log2 K = 1 (top left in the plot) correspond to the
regime “train a large reference net and compress it maximally”; the points with small H and log2 K = ∞
(bottom right in the plot) correspond to the regime “train a small reference net and do not compress it”;
and intermediate points (K,H) correspond to intermediate model sizes and moderate compression levels. As
the plot shows, if the target loss is large (i.e., we do not require high classification accuracy) then maximal
compression is optimal; but as the target loss increases (i.e., we require more accurate models), then the
optimal point (K∗, H∗) moves towards intermediate compression levels. If we require no loss degradation
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whatsoever, this might be only achievable without compression. Therefore, in general it is not clear what
the optimal regime will be, and solving this model selection problem in practice will involve some trial and
error of model sizes and compression levels. However, it will be often be the case that significant compression
is achievable if we can tolerate a minor loss degradation. Compression also simplifies model selection: the
neural net designer can simply overestimate the size of the net required to achieve a target loss, and let the
compression find a smaller net with a similar loss. So it seems clear that a good approximate strategy is to
take a large enough model and compress it as much as possible.

5.2 Quantizing linear regression, with a non-gaussian weight distribution

This experiment has two goals: 1) to verify in a controlled setting without local optima and with exact L
and C steps that DC and iDC are identical to each other and significantly worse than LC. 2) To test our LC
algorithm with a weight distribution that is far from Gaussian (unlike the weight distributions that typically
arise with deep nets, which look zero-mean Gaussian). The problem is a simulated “super-resolution” task,
where we want to recover a high-resolution image from a low-resolution one, by training a linear regression on
pairs (xn,yn) = (low-res, high-res), i.e., the loss is L(W,b) = 1

N

∑N
n=1 ‖yn −Wxn − b‖2, with weights W

and biases b. We construct each low-resolution image x by bicubic interpolation (using Matlab) of the high-
resolution image y. Ignoring border effects and slight nonlinearities, this means that each pixel (component)
of x is approximately a linear combination with constant coefficients of its corresponding pixels in y. Hence,
we can write the mapping from high to low resolution approximately as a linear mapping y = Ax+a, where
a = 0 and the ith row of A contains a few nonzero weights (the coefficients of the linear combination for
pixel xi). The ground-truth recovery matrix that optimizes the loss is then W = A+, and it has a similar
structure: roughly, each row contains only a few nonzeros, whose values are about the same across rows. We
also add Gaussian noise when generating each low-resolution image xn, which spreads the optimal weights
wij around the ideal values above and also spreads the biases around zero. In summary, this means that
the reference model weights have a clustered distribution, with a large cluster around zero, and a few small
clusters at positive values.

To construct the dataset, we randomly selected N = 1 000 MNIST images yn of 28 × 28, resized them
as above to 14× 14 and added Gaussian noise to generate the xn, so that W is of 784× 196 (P1 = 153664
weights) and b of 784 × 1 (P0 = 784). We compress W using a codebook of size K = 2 (1 bit per weight
value, ρ ≈ ×32) or K = 4 (2 bits per weight value, ρ ≈ ×16). The reference model and the L step have
a single closed-form solution given by a linear system. For the LC algorithm, we increase µk = akµ0 with
µ0 = 10 and a = 1.1 for 30 iterations.

Fig. 7 shows the results for codebook sizes K = 2 and 4. Firstly, as expected, DC and iDC do not
change past the very first iteration, while LC achieves a much lower loss. The reference weight distribution
(blue curve) shows a large cluster at zero and small clusters around 0.25 and 0.75 (see the inset). The small
clusters correspond to the (inverse) bicubic interpolation coefficients, and it is crucial to preserve them in
order to achieve a low loss. The LC algorithm indeed does a good job at this: with K = 2 it places one
centroid at zero and the other around 0.4 (striking a balance between the small clusters); with K = 4 it
places one centroid at zero, two near the small clusters, and a fourth around −0.1. Note that the location
of these centroids does not correspond to the reference model (the reference model quantization are the red
+ markers), because the LC algorithm optimizes the centroids and the weights to achieve the lowest loss.

5.3 Quantizing LeNet neural nets for classification on MNIST

We randomly split the MNIST training dataset (60k grayscale images of 28 × 28, 10 digit classes) into
training (90%) and test (10%) sets. We normalize the pixel grayscales to [0,1] and then subtract the mean.
We compress all layers of the network but each layer has its own codebook of size K. The loss is the average
cross-entropy. To train a good reference net, we use Nesterov’s accelerated gradient method (Nesterov, 1983)
with momentum 0.9 for 100k minibatches, with a carefully fine-tuned learning rate 0.02 · 0.99j running 2k
iterations for every j (each a minibatch of 512 points). The jth L step parameters are given below for each
net. For LC we also update µ and λ at the end of the C step. Our LC algorithm uses a multiplicative
schedule for the penalty parameter µj = µ0a

j with µ0 = 9.76 · 10−5 and a = 1.1, for 0 ≤ j ≤ 30. The batch
size is 512 points for all methods.
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L(W,b) =
1

N

N
∑

n=1

‖yn −Wxn − b‖2

yn: MNIST image (28× 28)
xn: MNIST image (14× 14), resized

codebook compression . . . . . . . . . . . . . . loss L . . . . . . . . . . . . . .
size K ratio ρ DC iDC LC reference

4 (2 bits/weight) ≈ ×16 21.531 21.531 10.666 7.779
2 (1 bit/weight) ≈ ×32 23.721 23.721 15.026 7.779

Figure 7: Regression problem using a codebook of size K = 4 (row 1) and K = 2 (row 2), and training loss for
each method (table). Column 1 : loss over iterations. Column 2 : weight distribution of the reference model
(iteration 0, before quantization), direct compression DC (iteration 1), and the LC algorithm (iteration
30), using a kernel density estimate with manually selected bandwidth. The inset enlarges vertically the
distributions to show the small cluster structure. The locations of the codebook centroids are shown below
the distributions as markers: + are the centroids fitted to the reference model and × the centroids at the
end of the LC algorithm. Column 3 : number of k-means iterations in each C step of the LC algorithm.
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LeNet300

Layer Connectivity

Input 28× 28 image
1 fully connected, 300 neurons,

followed by tanh
2 fully connected, 100 neurons,

followed by tanh
3
(output)

fully connected, 10 neurons,
followed by softmax

P1 = 266200 weights, P0 = 410 biases

LeNet5

Layer Connectivity

Input 28× 28 image
1 convolutional, 20 5× 5 filters (stride=1),

total 11 520 neurons, followed by ReLU
2 max pool, 2× 2 window (stride=2),

total 2 280 neurons
3 convolutional, 50 5× 5 filters (stride=1),

total 3 200 neurons, followed by ReLU
4 max pool, 2× 2 window (stride=2),

total 800 neurons
5 fully connected, 500 neurons and dropout

with p = 0.5, followed by ReLU
6
(output)

fully connected, 10 neurons and dropout
with p = 0.5, followed by softmax

P1 = 430500 weights, P0 = 580 biases

Table 1: Structure of the LeNet300 and LeNet5 neural nets trained on the MNIST dataset.

We use the following neural nets, whose structure is given in table 1:

LeNet300 This is a 3-layer densely connected feedforward net (LeCun et al., 1998) with tanh activations,
having 266 610 learnable parameters (P1 = 266200 weights and P0 = 410 biases). The jth L step (for
LC and for iDC) runs 2k SGD iterations with momentum 0.95 and learning rate 0.1 · 0.99j. We also
trained a BinaryConnect net using the code of Courbariaux et al. (2015) with deterministic rounding
(without batch normalization), with α = 0.001 and β = 0.98 after every 2k minibatch iterations,
initialized from the reference net and trained for 120k minibatch iterations.

LeNet5 This is a variation of the original LeNet5 convolutional net described in LeCun et al. (1998). It
is included in Caffe3 (Jia et al., 2014) and was used by Han et al. (2015). It has ReLU activations
(Nair and Hinton, 2010), dropout (Srivastava et al., 2014) with p = 0.5 on the densely connected
layers, and softmax outputs, total 431 080 trainable parameters (P1 = 430 500 weights and P0 = 580
biases). The jth L step (for LC and for iDC) runs 4k SGD iterations with momentum 0.95 and learning
rate α · 0.99j, where α = 0.02 for codebook sizes K = 2, 4, 8 and α = 0.01 for K = 16, 32, 64. This is
because α = 0.02 lead to divergence on iDC, even though LC was still able to converge.

The following figures and tables show the results. Fig. 8 shows the learning curves and fig. 9 the error
vs compression tradeoff. The runtime for iDC and LC is essentially the same, as is their loss and error at
low compression levels. But for high compression LC is distinctly superior. When using K = 2 (1 bit per
weight), LC also outperforms BinaryConnect, as shown in table 2. Note the two weight values found by
LC considerably differ from ±1 and depend on the layer, namely {0.089,−0.091} in layer 1, {0.157,−0.155}
in layer 2 and {0.726,−0.787} in layer 3. Indeed, forcing weights to be ±1 is more limiting, and does not
have a practical advantage over using two arbitrary values in terms of storage or runtime when applying the
compressed net to an input.

Note how the LC training loss need not decrease monotonically (fig. 8). This is to be expected: the
augmented Lagrangian minimizes eq. (9) for each µ, not the actual loss, but it does approach a local
optimum in the limit when µ→∞. Also note how some compressed nets actually beat the reference. This
is because the latter was close but not equal to a local optimum, due to the long training times required by
SGD-type algorithms. Since the compressed nets keep training, they gain some accuracy over the reference.

Figs. 11–12 show the evolution of weights and codebook centroids for K = 4 for iDC and LC, for
LeNet300. While LC converges to a feasible local optimum (note the delta-like weight distribution centered
at the centroids), iDC does not. As we argued earlier, this is likely because iDC oscillates in a region half way

3https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
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containing 2 000 or 4 000 SGD iterations), with different compression ratios (codebook sizes K), on the LeNet
neural nets. Reference: dashed black horizontal line, LC: thick lines with markers, iDC: thin lines.
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LC algorithm direct compression, DC iterated DC, iDC
ρ K logL Etrain Etest logL Etrain Etest logL Etrain Etest

reference -3.87 0 2.28
×5.3 64 -4.33 0 2.25 -3.85 0 2.28 -4.41 0 2.25
×6.3 32 -4.29 0 2.25 -3.79 0 2.24 -4.37 0 2.24

L
eN

et
3
0
0

×7.9 16 -4.20 0 2.25 -3.50 0 2.26 -4.18 0 2.20
×10.5 8 -3.99 0 2.29 -2.48 0.07 2.46 -3.31 0.004 2.34
×15.6 4 -3.62 0 2.44 -1.18 2.21 4.58 -1.77 0.543 3.23
×30.5 2 -3.10 0.009 2.42 -0.13 23.02 23.68 -0.61 5.993 7.98

reference -4.58 0 0.54
×5.3 64 -5.38 0 0.47 -4.54 0 0.52 -5.31 0 0.52
×6.3 32 -5.38 0 0.48 -4.47 0 0.49 -5.22 0 0.49

L
eN

et
5

×7.9 16 -5.26 0 0.54 -4.24 0 0.49 -4.87 0 0.49
×10.5 8 -5.19 0 0.45 -3.42 0 0.58 -4.56 0 0.54
×15.7 4 -4.58 0 0.53 -1.94 0.29 0.94 -2.45 0.05 0.66
×30.7 2 -3.26 0.006 0.57 -0.00 15.77 15.62 -1.09 1.92 2.56

←−−−− compression ratio ρ −−−−→ ←−−−− compression ratio ρ −−−−→

2 4 8 16 32 64

10-4

10-2

30.5 15.6 10.5 7.9 6.3 5.3

tr
a
in
in
g
lo
ss

L

←−−−− codebook size K −−−−→
2 4 8 16 32 64

0

5

10

15

20

30.5 15.6 10.5 7.9 6.3 5.3

DC

iDC

LC

LeNet300

LeNet5

te
st

er
ro
r
E

te
st

(%
)

←−−−− codebook size K −−−−→

Figure 9: Compression results for the LeNet neural nets using different algorithms, for different codebook
sizes K and corresponding compression ratio ρ, in two forms: tabular (top) and graph (bottom). We report
the training loss log10 L and training and test classification error Etrain and Etest (%). The curves show the
tradeoff between error vs compression ratio. Each LeNet neural net is shown in a different color, and each
algorithm is shown in a different line type (LC: thick solid, iDC: thin dashed, DC: thin dotted).
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Figure 10: Number of iterations ran within k-means over training for LeNet300 with a K = 4 codebook.

between the reference net and its direct compression. These oscillations are very noticeable in the weight
trajectories (right plots) for iDC in layers 1–2: the weights do not change their centroid assignment but
oscillate around the centroid’s value. In contrast, in LC some weights do change their centroid assignment
(this happens because the L step moves the weights jointly in P -dimensional space), and robustly converge
to a centroid. The weight distribution of BinaryConnect (not shown) is also far from the values ±1 to which
the weights should tend.

Fig. 13 shows the final locations of the centroids for iDC and LC, for codebook sizes K = 2 to 64, for
LeNet300. Although the general distribution of the centroids is similar for both methods, there are subtle
differences (particularly for small K) which, as seen in fig. 9, translate into a significantly lower error for LC.
For large enough K, the centroid distribution resembles that of the reference net. This is to be expected,
because, with enough centroids, the optimally quantized network will be very similar to the reference and all
3 algorithms (DC, iDC and LC) will give the same result, namely quantizing the reference weights directly
(regardless of the loss). Hence the centroid distribution will be the optimal quantization of the reference’s
weight distribution. Since the latter is roughly Gaussian for the LeNet300 net, the centroids will reflect this,
as seen in fig. 13 for the larger K. However, for compression purposes we are interested in the small-K
region, and here the final weight distribution can significantly differ from the reference. For all values of
K, the distribution of the centroids for LC is usually symmetric around zero (but sometimes its mean is
significantly different from zero, as in layer 3), and its spread increases from layer 1 to layer 2 to layer 3 in
range but not in standard deviation. Although some of these observations may carry over to other types of
neural nets, we emphasize that the reference weight distribution and hence the centroid distribution strongly
depend on the problem (dataset, model and even particular local optimum found). Indeed, the clustered
distribution for the regression problem of fig. 7 was very different from Gaussian. Therefore, it seems risky
to anticipate what the optimal codebook distribution may be. Finding a really accurate net must be done

method logL Etrain Etest

reference -3.87 0% 2.28%
LC algorithm -3.10 0.009% 2.42%
BinaryConnect -2.33 0.14% 3.76%

layer codebook values for LC

1 C = {0.089,−0.091}
2 C = {0.157,−0.155}
3 C = {0.726,−0.787}

Table 2: Binarization results in LeNet300 using the LC algorithm and BinaryConnect. LC uses a codebook
of size K = 2 (1 bit per weight) and the resulting codebook values are shown on the right (the BinaryConnect
values are always ±1). The compression ratio is ρ ≈ ×30.5 for all methods.
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for each particular problem with a careful optimization using a good algorithm, and the same is true for
finding a really well compressed net.

Figs. 14–15 show the reference and final weights for LeNet300 compressed by the LC algorithm using
a codebook of size K = 2 (a separate codebook for each of the 3 layers), which gives binary weights. For
many of the weights, the sign of the quantized weight in LC equals the sign of the corresponding reference
net weight. However, other weights change side during the optimization, specifically 5.04%, 3.22% and 1%
of the weights for layers 1, 2 and 3, respectively.

5.4 Quantizing a large deep net for classification on CIFAR10

We randomly split the CIFAR10 training dataset (60k color images of 32 × 32 × 3, 10 object classes) into
training (90%) and test (10%) sets. We normalize the pixel colors to [0,1] and then subtract the mean.
We train a 12-layer convolutional neural network inspired by the VGG net (Simonyan and Zisserman, 2015)
and described by Courbariaux et al. (2015), with the structure shown in table 3. All convolutions are
symmetrically padded with zero (padding size 1). The network has 14 million parameters (P1 = 14 022016
weights and P0 = 3850 biases). Because of time considerations (each experiment takes 18 hours) we only
report performance of LC with respect to the reference net. The reference net achieves 13.15% error on
the test set and a training loss of 1.1359 · 10−7. Compressing with a K = 2 codebook (compression ratio
ρ ≈ ×31.73), LC achieves a lower test error of 13.03% and a training loss of 1.6242 · 10−5.

Layer Connectivity

Input 3× 32× 32 image
1 convolutional, 128 (3×3) filters (stride=1),

zero padding with size 1, total 131 072 neurons, followed by ReLU
2 convolutional, 128 (3×3) filters (stride=1),

zero padding with size 1, total 131 072 neurons, followed by ReLU
3 max pool, 2× 2 window (stride=2),

total 32 768 neurons
4 convolutional, 256 (3×3) filters (stride=1),

zero padding with size 1, total 65 536 neurons, followed by ReLU
5 convolutional, 256 (3×3) filters (stride=1),

zero padding with size 1, total 65 536 neurons, followed by ReLU
6 max pool, 2× 2 window (stride=2),

total 16 384 neurons
7 convolutional, 512 (3×3) filters (stride=1),

zero padding with size 1, total 32 768 neurons, followed by ReLU
8 convolutional, 512 (3×3) filters (stride=1),

zero padding with size 1, total 32 768 neurons, followed by ReLU
9 max pool, 2× 2 window (stride=2),

total 8 192 neurons
10 fully connected, 1024 neurons and dropout

with p = 0.5, followed by ReLU
11 fully connected, 1024 neurons and dropout

with p = 0.5, followed by ReLU
12
(output)

fully connected, 10 neurons and dropout
with p = 0.5, followed by softmax

P1 = 14022 016 weights, P0 = 3850 biases

Table 3: Structure of the 12-layer deep net trained on the CIFAR dataset.
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Figure 11: Evolution of the centroid distribution over iterations for the LC algorithm for each layer of
LeNet300 (K = 4). Left : weight distribution for LC iterations 0, 1 and 30, using a kernel density estimate
with manually selected bandwidth. The locations of the codebook centroids are shown below the distributions
as markers: + are the centroids fitted to the reference net and × the centroids at the end of the LC algorithm.
Right : codebook centroids ck (blue) and 40 randomly chosen weights wi (red).
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Figure 12: Like fig. 11 but for iDC.
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Figure 13: Distribution of the centroids learnt by the LC and iDC algorithms, for layers 1–3 of LeNet300,
for codebook sizes K = 2 to 64. Top row : actual centroid locations ck, k = 1, . . . ,K. The distribution of
the weights of the reference net is shown at the top as a kernel density estimate. Bottom row : mean and
standard deviation of the centroid set C = {c1, . . . , cK} (“∞” corresponds to no quantization, i.e., the mean
and standard deviation of the reference net).
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Figure 14: Weight vector of the 300 neurons of layer 1 for LeNet300 for the reference net (left image of each
horizontal pair, or odd-numbered columns) and for the net compressed with the LC algorithm using K = 2
(right image of each pair, or even-numbered columns). We show each weight vector as a 28× 28 image. All
images have been globally normalized to the interval [−3.5σ1, 3.5σ1], where σ1 is the standard deviation of
the layer–1 reference weights (weights outside this interval are mapped to the respective end of the interval).
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. . . . . . . . . . . . . . . . . . . Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . Layer 3 . . . . . . .
reference LC algorithm reference LC algorithm

Figure 15: Weights of layers 2 and 3 of LeNet300 for the reference net and for the net compressed with the
LC algorithm using K = 2. We show layer 2 as a matrix of 300× 100 and layer 3 as a matrix of 100× 10.
The normalization is as in fig. 14, i.e., to the interval [−3.5σi, 3.5σi], where σi is the standard deviation of
the ith layer reference weights, for i = 2 or 3.
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6 Conclusion

Neural net quantization involves minimizing the loss over weights taking discrete values, which makes the
objective function nondifferentiable. We have reformulated this as optimizing the loss subject to quantization
constraints, which is a mixed discrete-continuous problem, and given an iterative “learning-compression”
(LC) algorithm to solve it. This alternates two steps: a learning step that optimizes the usual loss with
a quadratic regularization term, which can be solved by SGD; and a compression step, independent of the
loss and training set, which quantizes the current real-valued weights. The compression step takes the
form of k-means if the codebook is adaptive, or of an optimal assignment and rescaling if the codebook is
(partially) fixed, as for binarization. The algorithm is guaranteed to converge to a local optimum of the
quantization problem, which is NP-complete. Experimentally, this LC algorithm beats previous approaches
based on quantizing the reference net or on incorporating rounding into backpropagation. It often reaches
the maximum possible compression (1 bit/weight) without significant loss degradation.
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A Theorems and proofs

We prove several results concerning quantization with a fixed codebook (section 4.2) and give an alternative
formulation for the case of binarization.

A.1 Optimal quantization using a fixed codebook with or without scale

We prove the optimal quantization results for binarization, ternarization and powers-of-two of section 4.2.
The formulas for binarization and ternarization without scale follow from eq. (11). The formulas for the
powers-of-two and binarization and ternarization with scale are given in the theorems below. Define the sign
function sgn () as in eq. (12), and the floor function for t ∈ R as ⌊t⌋ = i if i ≤ t < i+ 1 and i is integer.

Theorem A.1 (powers of two). Let w ∈ R and C ≥ 0 integer. The solution θ∗ of the problem

min
θ

E(θ) = (w − θ)2 s.t. θ ∈ {0,±1,±2−1, . . . ,±2−C} (15)

is θ∗ = α sgn (w) where

α =



















0, f > C + 1

1, f ≤ 0

2−C , f ∈ (C,C + 1]

2−⌊f+log2
3
2 ⌋, otherwise

(16)

and f = − log2 |w|.

Proof. The sign of θ∗ is obviously equal to the sign of w, so consider w > 0 and call f = − log2 w. The
solution can be written as a partition of R+ in four intervals [0, 2−C−1), [2−C−1, 2−C), [2−C , 1) and [1,∞) for
w, or equivalently (C +1,∞), (C,C +1], (0, C] and (−∞, 0] for f . These intervals are optimally assigned to

centroids 0, 2−C , 2−⌊f+log2
3
2 ⌋ and 1, respectively. The solutions for the first, second and fourth intervals are

obvious. The solution for the third interval w ∈ [2−C , 1)⇔ f ∈ (0, C] is as follows. The interval of R+ that
is assigned to centroid 2−i for i ∈ {0, 1, . . . , C} is w ∈ (3 · 2−i−2, 3 · 2−i−1], given by the midpoints between
centroids (and breaking ties as shown), or equivalently f + log2

3
2 ∈ [i, i+ 1), and so i = ⌊f + log2

3
2⌋.

Theorem A.2 (binarization with scale). Let w1, . . . , wP ∈ R. The solution (a∗, θ∗) of the problem

min
a,θ

E(a, θ) =

P
∑

i=1

(wi − a θi)
2 s.t. a ∈ R, θ1, . . . , θP ∈ {−1,+1} (17)
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is

a∗ =
1

P

P
∑

i=1

|wi| θ∗i = sgn (wi) =

{

−1, if wi < 0

+1, if wi ≥ 0
for i = 1, . . . , P. (18)

Proof. For any a ∈ R, the solution θ
∗(a) for θ results from minimizing E(a, θ) over θ (breaking the ties as

shown in (18)). Substituting this into the objective function:

E(a, θ∗(a)) =
P
∑

i=1

(wi − a sgn (wi))
2 =

P
∑

i=1

(

w2
i + a2(sgn (wi))

2 − 2awi sgn (wi)
)

=

( P
∑

i=1

w2
i

)

+ Pa2 − 2a

P
∑

i=1

|wi|.

The result for a∗ follows from differentiating wrt a and equating to zero.

Theorem A.3 (ternarization with scale). Let w1, . . . , wP ∈ R and assume w.l.o.g. that |w1| ≥ |w2| ≥ · · · ≥
|wP |. The solution (a∗, θ∗) of the problem

min
a,θ

E(a, θ) =

P
∑

i=1

(wi − a θi)
2 s.t. a ∈ R, θ1, . . . , θP ∈ {−1, 0,+1} (19)

is

j∗ = argmax
1≤j≤P

1√
j

j
∑

i=1

|wi| a∗ =
1

j∗

j∗
∑

i=1

|wi| θ∗i =

{

0, if |wi| < a∗/2

sgn (wi) , if |wi| ≥ a∗/2
for i = 1, . . . , P. (20)

Proof. For any a ∈ R, the solution θ
∗(a) for θ results from minimizing E(a, θ) over θ (breaking the ties as

shown in (20)). Substituting this into the objective function:

E(a, θ∗(a)) =
∑

i∈S

w2
i +

∑

i∈S

(wi − a sgn (wi))
2 =

( P
∑

i=1

w2
i

)

+ |S|a2 − 2a
∑

i∈S

|wi|

where S = {i ∈ {1, . . . , P}: |wi| ≥ a}, S = {1, . . . , P} \ S and |S| is the cardinality of S. Differentiating wrt
a keeping S fixed and equating to zero yields a = 1

|S|

∑

i∈S |wi|. It only remains to find the set S∗ that is

consistent with the previous two conditions on θ and a. Since the wi are sorted in decreasing magnitude,
there are P possible sets that S can be and they are of the form Si = {w1, . . . , wi} = {wj : |wj | ≥ wi} for
i = 1, . . . , P , and S∗ = Sj∗ is such that the objective function is maximal. Hence, calling aj =

1
|Sj |

∑

i∈Sj
|wi|

and noting that

E(aj , θ
∗(aj)) =

( P
∑

i=1

w2
i

)

− |Sj |a2j =

( P
∑

i=1

w2
i

)

− j a2j

we have

j∗ = argmin
1≤j≤P

E(aj , θ
∗(aj)) = argmax

1≤j≤P

j a2j = argmax
1≤j≤P

√

j aj = argmax
1≤j≤P

1√
j

j
∑

i=1

|wi|.

Finally, let us prove that the set Sj∗ is consistent with aj∗ and θ(aj∗), i.e., that Sj∗ = {i ∈ {1, . . . , P}: |wi| ≥
1
2aj∗}. Since the wi are sorted in decreasing magnitude, it suffices to prove that |wj∗ | > 1

2aj∗ > |wj∗+1|.
Since j∗ = argmax1≤j≤P

√
j aj , we have (in the rest of the proof we write j instead of j∗ to avoid clutter):

√

j aj ≥
√

j + 1 aj+1 =
√

j + 1

(

1

j + 1

j+1
∑

i=1

|wi|
)

=
1√
j + 1

(|wj+1|+ j aj)⇔ |wj+1| ≤ aj

(

√

j(j + 1)− j
)

.

Now
√

j(j + 1)− j < 1
2 (since j(j + 1) < (j + 1

2 )
2 = j2 + 1

4 + j ∀j), hence |wj+1| < 1
2aj . Likewise:

√

j aj ≥
√

j − 1 aj−1 =
1√
j + 1

(j aj − |wj |)⇔ |wj | ≥ aj

(

j −
√

j(j − 1)
)

.

Now j −
√

j(j − 1) > 1
2 (since j(j − 1) < (j − 1

2 )
2 = j2 + 1

4 − j ∀j), hence |wj | > 1
2aj .

30



A.2 An equivalent formulation for binarization

We show that, in the binarization case (with or without scale), our constrained optimization formulation
“minw,Θ L(w) s.t. w = ∆(Θ)” of eq. (1) can be written equivalently without using assignment variables Z,
as follows:

Binarization: min
w,b

L(w) s.t. w = b, b ∈ {−1,+1}P

Binarization with scale: min
w,b,a

L(w) s.t. w = ab, b ∈ {−1,+1}P , a > 0.

We can write an augmented-Lagrangian function as (for the quadratic-penalty function, set λ = 0):

LA(w,b,λ;µ) = L(w)− λ
T (w − b) +

µ

2
‖w − b‖2 s.t. b ∈ {−1,+1}P

LA(w,b, a,λ;µ) = L(w)− λ
T (w − ab) +

µ

2
‖w − ab‖2 s.t. b ∈ {−1,+1}P , a > 0.

And applying alternating optimization gives the steps:

• L step: minw L(w) + µ
2 ‖w − b− 1

µ
λ‖2 or minw L(w) + µ

2 ‖w − ab− 1
µ
λ‖2, respectively.

• C step: b = sgn (w) or b = a sgn (w) and a = 1
P

∑P
i=1 |wi|, respectively, an elementwise binarization

and global rescaling.

This is identical to our LC algorithm.
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