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Outline

* Running machine learning workloads on CPU

* Running machine learning workloads on GPU

* Recent new hardware to run machine learning workloads

— Google TPU
— NVIDIA Volta
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Running Machine Learning
Workloads on CPU
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Running ML on CPU: performance
improvement tips

* Code vectorization for SIMD vector instructions

— Ensure that all the key primitives, such as convolution, matrix
multiplication, and batch normalization are vectorized to the latest
SIMD instructions

* NUMA performance problem
— Improve data locality and avoid data access bottleneck

» Manage thread-level parallelism
— Improve system throughput
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SIMD (Single Instruction Multiple Data)
vector instructions in a nutshell

* What are these instructions?

— Extension of the ISA - Data types and instructions for parallel
computation on short (2-16) vectors of integers and floats

— One operation produces multiple results
* An example

for (i=0; 1<=MAX; i++)
cl[il=al[il+b[i]l; [la, bandc are integer arrays

e.g. 3 x 32-bit unused integers

—
~— —

not used not used not used

+

+ + + +

not used not used not used C[3] C[2] C[1] C[0]

Vectorization not enabled Vectorization enabled
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Evolution of Intel vector instructions

MMX: Multimedia Extensions (1996)
SSE: Streaming SIMD Extensions

AVX: Advanced Vector Extension (2010)
— Intel Xeon Phi (co-processor): 512 bit wide SIMD vector

SIMD architectures can exploit significant data-level parallelism for:
— matrix-oriented scientific computing
— media-oriented image and sound processors

SIMD is more energy efficient than MIMD
— Only needs to fetch one instruction per data operation
— Makes SIMD attractive for personal mobile devices

SIMD allows programmer to continue to think sequentially
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Obstacles to vectorization

* Non-contiguous Memory Accesses

/1

/1

//

arrays accessed with stride 2
for (int i=0; i<SIZE; i+=2) DbI[i] += a[i] * x[i];

inner loop accesses a with stride SIZE
for (int j=0; J<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[il[]] * x[]];

indirect addressing of x using index array
for (int i=0; i<SIZE; i+=2) Db[i] += a[i] * x[index[i]];

PASA Lab
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Obstacles to vectorization

» Data dependencies Read after write

A[0]=0;
for (j=1, j<MBX; j++) A[j]=A[j-1]+1;
/[ this is equivalent to

A[1]=A[0]+1; A[2]=A[1]+1; A[3]=A[2]+1, A[4]=A[3]4],

The above loop cannot be vectorized

Write after read

for (j=1; J<MAX; j++) A[j-1]=R[j]+1;
/| this is equivalent to:

A[O]=A[1]+1; A[1]=A[2]+1; A[2]=A[3]+1; A[3]=A[4]+]1;

The above loop can be vectorized UCCA
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Obstacles to vectorization

* The loop trip count is not known at entry to the loop at
runtime

» Data-dependent exit condition

void no_vec(float a[], float b[], float c[])
{

int i = 0. ;
while (i < 100) {
ali]l] = b[i] * c[i]~

// this is a data-dependent exit condition:
if (a[i]l] < 0.0)
break;
++1i;
}

UNIVERSITY O
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Obstacles to vectorization

» Not straight-line code
— There is control flow

#include <math.h>
void quad(int length, float *a, float *b,
float *c, float *restrict x1, float *restrict x2)

{
for (int i=0; i<length; i++) {
float s = b[i]l*b[i] - 4*a[il*c[i];
if (s >= 0 ) {
s = sqrt(s) ;
x2[1i] = (-b[il+s)/(2.*a[i]);
x1[i] = (-b[il-s)/(2.*a[i]);
}
else {
x2[1i] = 0. ;
x1[i] = 0. ;
}
}
}
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Code transformation to enable vectorization

* An example: dimension-lifted Transformation (DLT)
a[i]= b[i-1] + b[i] + b[i+1]

!!!!!!!!!!!!!!!!!!!!! 16
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DLT+
R vector intr- |
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ot autovec
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NUMA performance problem

* NUMA = Non-uniform memory access

FIGURE 1: A MODERN NUMA SYSTEM
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Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078
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NUMA performance problem

* Two different common NUMA memory-allocation policies

— First-touch
» Memory is allocated on the same node as the thread that first accesses the
memory

— Interleave

* Distributes memory allocations equally on all nodes regardless of which
threads access it

* Good for memory allocation balance

FIGURE 1: A MODERN NUMA SYSTEM
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NUMA performance problem:
locality and congestion

FIGURE 2: PERFORMANCE DIFFERENCES

a. Local vs. remote differences for single-threaded applications

* No one policy is best z0
for all applications
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the remote-access

penalty Can i ndeed b. First-touch vs. interleave differences for multithreaded applications
severely affect i
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performance
— e.g., streamcluster
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performance difference (%)
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Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078
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NUMA performance problem:
locality and congestion

* For StreamChJSter’ the FIGURE 3: TRAFFIC IMBALANCE UNDER FIRST-TOUCH AND INTERLEAVE i
first-touch policy creates L
sever congestion

— The average memory
latency with the first-touch
policy is more than double
the latency of the
interleave policy
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Manage thread-level parallelism

 Many machine learning frameworks are based on fine-
grained operations

— e.g., tensorflow, caffe2, theano, MXNet, and CNTK

 An example from inception_v3

Convolution
AvgPool
MaxPool
Concat
Dropout
@» Fully connected
@ Softmax

Category

Examples

Element-wise mathematical operations
Array operations

Matrix operations

Stateful operations

Neural-net building blocks
Checkpointing operations

Queue and synchronization operations
Control flow operations

Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...

MatMul, MatrixInverse, MatrixDeterminant, ...
Variable, Assign, AssignAdd, ...

SoftMax, Sigmoid, ReLLU, Convolution2D, MaxPool, ...

Save, Restore

Enqueue, Dequeue, MutexAcquire, MutexRelease, ...

Merge, Switch, Enter, Leave, Nextlteration

Figure courtesy: tensorflow github
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Manage thread-level parallelism

* Intra-op parallelism

— Using maximum number of threads does not necessarily lead to
best performance

conv2d_backprop_filter
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Manage thread-level parallelism

* Inter-op parallelism
— Co-run multiple operations to improve system throughput

- 5% performance
loss

Performance (s)

16 32

Number of threads
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Running Machine Learning
Workloads on GPU
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Running ML on GPU: performance
improvement tips

* Optimize memory usage for maximum bandwidth
 Maximize occupancy to hide latency

» Control flow divergence

PASA Lab



Optimize memory usage: basic strategies

* Processing data is cheaper than moving it around

— Especially for GPUs as they devote many more transistors to ALUs than
memory

* And will be increasingly so
— The less memory bound a kernel is, the better it will scale with future GPUs

* S0 you want to:
— Maximize use of low-latency, high-bandwidth memory
— Optimize memory access patterns to maximize bandwidth

— Leverage parallelism to hide memory latency by overlapping memory
accesses with computation as much as possible

« Kernels with high arithmetic intensity (ratio of math to memory transactions)

» Sometimes recompute data rather than cache it

NIVERSITY OF CALIFORNIA
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Minimize CPU — GPU data transfers

* CPU <« GPU memory bandwidth much lower than GPU
memory bandwidth

 Minimize CPU <« GPU data transfers by moving more code
from CPU to GPU

— Even if that means running kernels with low parallelism computations

— Intermediate data structures can be allocated, operated on, and
deallocated without ever copying them to CPU memory

* Group data transfers

— One large transfer much better than many small ones
— Kernel fusion

PASA Lab



Optimize memory access patterns

» Effective bandwidth can vary by an order of magnitude
depending on access pattern

* Optimize access patterns to get:
— Coalesced global memory accesses
— Shared memory accesses with no or few bank conflicts
— Cache-efficient texture memory accesses

PASA Lab



Coalesced global memory accesses

» Memory coalescing refers to combining multiple memory
accesses into a single transaction

— An example: 32 consecutive threads access 32 consecutive words

Sequential and aligned access:

Address _ 128 256

Threadip L] L] L
Coalesced memory accesses

——UNIVE OF CALIFORNIA——
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Coalesced global memory accesses

- Aligned but non-sequential access

Address 128 256

ThreadID o 31

Coalesced memory accesses

—— UNIVERSITY OF CALIFORNIA——
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Coalesced global memory accesses
* Unaligned Memory Access

Address _'I?_E 256 257

W

Thread ID o 31

Non-coalesced memory accesses
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Bank conflicts on shared memory

® No bank conflicts
® Random 1:1 permutation

® No bank conflicts

® Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

PASA Lab

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

/]
o
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Bank conflicts on shared memory

® 2-way bank conflicts ® 8-way bank conflicts

® Linear addressing ® Linear addressing
stride == stride ==

Thread O
Thread 1
Thread 2

Thread O

Thread 1 7

Thread 2 g

Thread 3

Thread 4 "\
Thread 5

Thread 6 »
Thread 7

Thread 8 x8

Thread 9
Thread 10

Thread 11 Thread 15

Thread 4
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Cache-efficient texture memory accesses

* Read-only object Texture Addressing rﬁ%
(]0 1234
» Texture fetches are cached 1. (010
— Optimized for 2D locality i
Wrap Clamp
« Addressable as 1D, 2D or 3D " wnopsd (oo arimet) . rephcsdoth ot

boundary

(5.9, 1.9)

» Out-of-bounds address handling
(Wrap, clamp)
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Maximize occupancy to hide latency

* Sources of latency:
— Global memory access: 400-600 cycle latency

— Read-after-write register dependency

* Instruction’s result can only be read 11 cycles later

« Latency blocks dependent instructions in the same thread, but
instructions in other threads are not blocked

— Hide latency by running as many threads per multiprocessor as possible!

» Choose execution configuration to maximize
occupancy = (# of active warps) / (maximum #of active warps)

OF CALIFORNIA——
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Maximize occupancy to hide latency

* occupancy = (# of active warps) / (maximum #of active warps)

 Remember: resources are allocated for the entire block

— Resource are finite
— Utilizing too many resources per thread may limit the occupancy

» Potential occupancy limiters
— Register usage
— Shared memory usage
— Block size

PASA La b School of Engineering



Occupancy limiters: registers
* Register usage: compile with --ptxas-options=-v

* Fermi has 32K registers per SM

— Fermi can have up to 48 active warps per SM (1536 threads)

« Example 1
— Kernel uses 20 registers per thread (+1 implicit)
— Active threads = 32K/21 = 1560 threads
— > 1536 thus an occupancy of 1

* Example 2
— Kernel uses 63 registers per thread (+1 implicit)
— Active threads = 32K/64 = 512 threads
— 512/1536 = .3333 occupancy

—— UNIVERSITY OF CALIFORNIA
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Occupancy limiters: registers

» Use —maxrregcount=N flag to nvcc to control register usage
— N = desired maximum registers / kernel
— At some point “spilling” into local memory may occur

— Reduces performance —- local memory is slow
— Check for LMEM usage

 Compiler output

— nvcce option: —Xptxas, —v, —abi=no

— Will print the number of Imem bytes for each kernel
* Profiler: e.g, CUPTI

UNIVERSITY O
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Occupancy limiters: shared memory

 Shared memory usage: compile with --ptxas-options=-v
— Reports shared memory per block

Fermi has either 16K or 48K shared memory

Example 1, 48K shared memory
— Kernel uses 32 bytes of shared memory per thread
— 48K/32 = 1536 threads
— occupancy=1

Example 2, 16K shared memory

— Kernel uses 32 bytes of shared memory per thread
— 16K/32 = 512 threads
— occupancy=.3333

Don’t use too much shared memory

Choose L1/Shared config appropriately.

—— UNIVERSITY OF CALIFORNIA——
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Occupancy limiter: block size

 Each SM can have up to 8 active blocks

* A small block size will limit the total number of threads

Block Size | Active Threads | Occupancy ___
32 256 .1666

64 512 3333

128 1024 .6666

192 1536 1

256 2048 (1536) 1

UNIVERSITY O
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Control flow instructions

» Main performance concern with branching is divergence

» Avoid divergence when branch condition is a function of thread
ID

X; ¥;

« Branch granularity < warp size "

Y,

— Example with divergence: if (:hreadIdX-x <4 { )
« If (threadldx.x > 2) { } B: ;

} else { 2

0

¢

}
L,

— Example without divergence:  Time
* If (threadldx.x / WARP_SIZE > 2) { }
* Branch granularity is a whole multiple of warp size

—— UNIVERSITY OF CALIFORNIA——
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Control flow instructions

* New change to SIMT model in Volta reduces the negative
impact of control flow divergence a little

X; Y;
if (threadIdx.x < 4) {
Aj
B,
} else {
X3
Y,
}
Z;

Old model

Q
on
=
o
>
c
(=]
J
w
—

Time

if (threadidx.x < 4) { . . .
Aj

} eloe { New model
X;
Y;

Time

—— UNIVERSITY OF CALIFORNIA

UcC

PASA La b School of Engineering



Google Tensorflow Processing
Unit (TPU)
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Motivation for TPU

- 2006: “Just run DNNSs
on our CPU datacenter.
t's basically free.”

- 2013: "3 minutes of
DNN-based voice
search == 2x more
datacenter compute.”

Speak now

PASA Lab
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Tensor Processing Unit (TPU)

30-80x TOPS/watt vs.
2015 CPUs and GPUs.

8 GiB DRAM.

8-bit fixed point.

2560x256 MAC unit.
Support for data g R 5
reordering, matrix C Jhoes AEHEHEREHE NS HEHEHET g

mult! ply' activation, Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
poollng, and for an SATA disk in a server, but the card uses PCle Gen3 x16.

normalization.
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TPU is “simple”

* |t has none of the sophisticated microarchitectural features

— Cache, branch prediction, out-of-order execution, multiprocessing,
speculative prefetching, address coalescing, multithreading,
context switching

* It uses less transistors and consumes less energy than
regular CPU

* Aims to improve the average case but not the 99th-
percentile case

RSITY OF C.
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Application testhed

Layers Nonlinear . TPU Ops / TPU Batch| % of Deployed

Name | LOC FC | Conv Victor Pool |Total |  function Weights Weightgyte Size TPUsfin Jﬁly};()] 6
MLPO | 100 | 5 5 ReLU 20M 200 200 61%
MLP1 |1000| 4 4 ReLU SM 168 168

LSTMO | 1000 | 24 34 58 |sigmoid, tanh | 52M 64 64 20%
LSTM1 | 1500 | 37 19 56 |sigmoid, tanh | 34M 96 96

CNNO | 1000 16 16 ReLU §M 2888 8 5%

CNNI1 |1000| 4 72 13 | 89 ReLU 100M 1750 32

Table 1. Six NN applications (two per NN type) that represent 95% of the TPU’s workload. The columns are the NN name; the number of
lines of code; the types and number of layers in the NN (FC is fully connected, Conv is convolution, Vector is self-explanatory, Pool is
pooling, which does nonlinear downsizing on the TPU; and TPU application popularity in July 2016. One DNN is RankBrain [Clal5]; one
LSTM is a subset of GNM Translate [Wul6]; one CNN is Inception; and the other CNN is DeepMind AlphaGo [Sil16][Joul5].

"The unexpected desire for TPUs by many Google services combined with
the preference for low response time changed the equation, with
application writers often opting for reduced latency over waiting for
bigger batches to accumulate.”

UCM
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“Patterson” Discussion

» Fallacy: NN inference applications in data centers value throughput as
much as response time.

— 10ms in 2014 = 7ms in 2015-2016

» Fallacy: The K80 GPU architecture is a good match to NN inference

— GPU is a high thoughput architecture that relies on high-bandwidth memory and
thousands of threads

« Pitfall: Architects have neglected important NN tasks

"CNNs constitute only about 5% of the representative NN workload for
Google. More attention should be paid to MLPs and LSTMs. Repeating
history, it's similar to when many architects concentrated on floating-
point performance when most mainstream workloads turned out to
be dominated by integer operations.”

OF CALIFORNIA——
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“Patterson” Discussion

» Pitfall: For NN hardware, Inferences Per Second (IPS) is an
inaccurate summary performance metric.

— IPS is more of a function of NN than of the underlying hardware

— For example, the TPU runs the 4-layer MLP at 360,000 IPS but the
89-layer CNN at only 4,700 IPS

» Fallacy: The K80 GPU results would be much better if boost
mode were enabled

— Improvement in performance/Watt is only 1.1x

» Fallacy: After two years of software tuning, the only path left
to increase TPU performance is hardware upgrades.

VERSITY OF CALIFORNIA
School of Engineering
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NVIDIA’s Rebuttal to the TPU

Inferences/Sec /13X
<10ms latency
Training TOPS 6 FP32
Inference TOPS 6 FP32
On-chip Memory 16 MB
Power 300W
Bandwidth 320 GB/S

PASA Lab

X

NA
90 INT8

24 MB
75W

34 GB/S

2X
12 FP32
48 INT8
11 MB
250W
350 GB/S
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NVIDIA New GPU for Machine
Learning: Volta GV100 GPU

Figure courtesy: Nividia Volta architecture

white paper

Figure 1. NVIDIA Tesla V100 SXM2 Module with Volta GV100 GPU
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Key features

* New tensor cores

— Eight tensor cores per streaming multiprocessor
« Each tensor core performs 64 floating point FMA operations per clock

— Each tensor core operatates on 4x4 matrix, and performs

D=AxB+C

Aot Acz Ags

D —_— Ao A Az A

Ao Azq Ay Ay

Ao Asy Az Agg
FP16 or FP32 FP16

Figure 8.
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r Boop Bos1 Bpa Bogs

Bio By1 Bz Bys

Byo By Bzz Bys

k Bso Bs, Biz Bss
FP16

Coo Co1 Coz Cos

Cio €1 Ci2 Cia

Co Gy Gy Gy

Cso G GCia Gy
FP16 or FP32

Tensor Core 4x4 Matrix Multiply and Accumulate
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Key features

* NVLink 2.0

— High bandwidth between CPU and GPU and between GPU and
GPU: 300GB/s

— CPU to regular main memory bandwidth on Intel Xeon Phil
(knights landing): ~90 GB/s

* High-bandwidth memory

— Memory stacks located on the same physical package as GPU

— 900GB/s, 1.5x delivered memory bandwidth versus Pascal GP100
(the last version)

— CPU to high bandwidth memory on Intel Xeon Phil (Knights
Landing): ~475-490 GB/s

PASA Lab



Key features

* Multi-Process Service

— Allow multiple applications to simultaneously share GPU execution
resources

* Permitting many individual inference jobs to be submitted concurrently to
GPU and improve overall GPU utilization

oo

CUDA MULTI-PROCESS SERVICE CONTROL

GPU Execution

-
\
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Key features

» Maximum Performance and Maximum Efficiency Modes
— A not-to-exceed power cap can be set

* Cooperative Groups and New Cooperative Launch APIs

— Pascal and Volta include support for new cooperative launch APIs
that support synchronization amongst CUDA thread blocks

PASA La b School of Engineering
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