
PASA Lab

Improving Performance

of Machine Learning

Workloads

Dong Li

Parallel Architecture, System, and Algorithm Lab

Electrical Engineering and Computer Science

School of Engineering

University of California, Merced

PASA Lab

Outline

• Running machine learning workloads on CPU

• Running machine learning workloads on GPU

• Recent new hardware to run machine learning workloads

– Google TPU

– NVIDIA Volta

PASA Lab

Running Machine Learning

Workloads on CPU

PASA Lab

Running ML on CPU: performance

improvement tips

• Code vectorization for SIMD vector instructions

– Ensure that all the key primitives, such as convolution, matrix

multiplication, and batch normalization are vectorized to the latest

SIMD instructions

• NUMA performance problem

– Improve data locality and avoid data access bottleneck

• Manage thread-level parallelism

– Improve system throughput

PASA Lab

SIMD (Single Instruction Multiple Data)

vector instructions in a nutshell

• What are these instructions?

– Extension of the ISA  Data types and instructions for parallel
computation on short (2-16) vectors of integers and floats

– One operation produces multiple results

• An example

Vectorization not enabled Vectorization enabled

//a, b and c are integer arrays

PASA Lab

Evolution of Intel vector instructions

• MMX: Multimedia Extensions (1996)

• SSE: Streaming SIMD Extensions

• AVX: Advanced Vector Extension (2010)
– Intel Xeon Phi (co-processor): 512 bit wide SIMD vector

• SIMD architectures can exploit significant data-level parallelism for:
– matrix-oriented scientific computing

– media-oriented image and sound processors

• SIMD is more energy efficient than MIMD
– Only needs to fetch one instruction per data operation

– Makes SIMD attractive for personal mobile devices

• SIMD allows programmer to continue to think sequentially

PASA Lab

Obstacles to vectorization

• Non-contiguous Memory Accesses

PASA Lab

Obstacles to vectorization

• Data dependencies Read after write

Write after read

The above loop cannot be vectorized

The above loop can be vectorized

PASA Lab

Obstacles to vectorization

• The loop trip count is not known at entry to the loop at
runtime

• Data-dependent exit condition

PASA Lab

Obstacles to vectorization

• Not straight-line code

– There is control flow

PASA Lab

Code transformation to enable vectorization

• An example: dimension-lifted Transformation (DLT)

a[i]= b[i-1] + b[i] + b[i+1]

PASA Lab

NUMA performance problem

• NUMA = Non-uniform memory access

Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078

PASA Lab

NUMA performance problem

• Two different common NUMA memory-allocation policies

– First-touch

• Memory is allocated on the same node as the thread that first accesses the
memory

– Interleave

• Distributes memory allocations equally on all nodes regardless of which
threads access it

• Good for memory allocation balance

PASA Lab

NUMA performance problem:

locality and congestion

• No one policy is best
for all applications

• NUMA effects beyond
the remote-access
penalty can indeed
severely affect
performance

– e.g., streamcluster

Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078

PASA Lab

NUMA performance problem:

locality and congestion

• For streamcluster, the
first-touch policy creates
sever congestion

– The average memory
latency with the first-touch
policy is more than double
the latency of the
interleave policy

Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078

PASA Lab

Manage thread-level parallelism

• Many machine learning frameworks are based on fine-
grained operations

– e.g., tensorflow, caffe2, theano, MXNet, and CNTK

• An example from inception_v3

Figure courtesy: tensorflow github

PASA Lab

Manage thread-level parallelism

• Intra-op parallelism

– Using maximum number of threads does not necessarily lead to
best performance

0.499492

0.49894 0.499048 0.498948

0.501045 0.501045

0.497

0.498

0.499

0.5

0.501

0.502

1 2 3 4 5 6

E
xe

cu
tio

n
tim

e
(s

)

Number of threads

conv2d_backprop_filter

PASA Lab

Manage thread-level parallelism

• Inter-op parallelism

– Co-run multiple operations to improve system throughput

Number of threads

P
e
rf

o
rm

a
n
c
e
 (

s
)

3216

5% performance

loss

PASA Lab

Running Machine Learning

Workloads on GPU

PASA Lab

Running ML on GPU: performance

improvement tips

• Optimize memory usage for maximum bandwidth

• Maximize occupancy to hide latency

• Control flow divergence

PASA Lab

Optimize memory usage: basic strategies

• Processing data is cheaper than moving it around

– Especially for GPUs as they devote many more transistors to ALUs than
memory

• And will be increasingly so

– The less memory bound a kernel is, the better it will scale with future GPUs

• So you want to:

– Maximize use of low-latency, high-bandwidth memory

– Optimize memory access patterns to maximize bandwidth

– Leverage parallelism to hide memory latency by overlapping memory
accesses with computation as much as possible

• Kernels with high arithmetic intensity (ratio of math to memory transactions)

• Sometimes recompute data rather than cache it

PASA Lab

Minimize CPU ↔ GPU data transfers

• CPU ↔ GPU memory bandwidth much lower than GPU
memory bandwidth

• Minimize CPU ↔ GPU data transfers by moving more code
from CPU to GPU
– Even if that means running kernels with low parallelism computations

– Intermediate data structures can be allocated, operated on, and
deallocated without ever copying them to CPU memory

• Group data transfers
– One large transfer much better than many small ones

– Kernel fusion

PASA Lab

Optimize memory access patterns

• Effective bandwidth can vary by an order of magnitude

depending on access pattern

• Optimize access patterns to get:

– Coalesced global memory accesses

– Shared memory accesses with no or few bank conflicts

– Cache-efficient texture memory accesses

PASA Lab

Coalesced global memory accesses

• Memory coalescing refers to combining multiple memory
accesses into a single transaction

– An example: 32 consecutive threads access 32 consecutive words

Sequential and aligned access:

Coalesced memory accesses

PASA Lab

Coalesced global memory accesses

• Aligned but non-sequential access

Coalesced memory accesses

PASA Lab

Coalesced global memory accesses

• Unaligned Memory Access

Non-coalesced memory accesses

PASA Lab

Bank conflicts on shared memory

PASA Lab

Bank conflicts on shared memory

PASA Lab

Cache-efficient texture memory accesses

• Read-only object

• Texture fetches are cached

– Optimized for 2D locality

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling

(Wrap, clamp)

PASA Lab

Maximize occupancy to hide latency

• Sources of latency:

– Global memory access: 400-600 cycle latency

– Read-after-write register dependency

• Instruction’s result can only be read 11 cycles later

• Latency blocks dependent instructions in the same thread, but

instructions in other threads are not blocked

– Hide latency by running as many threads per multiprocessor as possible!

• Choose execution configuration to maximize

occupancy = (# of active warps) / (maximum #of active warps)

PASA Lab

Maximize occupancy to hide latency

• occupancy = (# of active warps) / (maximum #of active warps)

• Remember: resources are allocated for the entire block

– Resource are finite

– Utilizing too many resources per thread may limit the occupancy

• Potential occupancy limiters

– Register usage

– Shared memory usage

– Block size

PASA Lab

Occupancy limiters: registers

• Register usage: compile with --ptxas-options=-v

• Fermi has 32K registers per SM
– Fermi can have up to 48 active warps per SM (1536 threads)

• Example 1
– Kernel uses 20 registers per thread (+1 implicit)

– Active threads = 32K/21 = 1560 threads

– > 1536 thus an occupancy of 1

• Example 2
– Kernel uses 63 registers per thread (+1 implicit)

– Active threads = 32K/64 = 512 threads

– 512/1536 = .3333 occupancy

PASA Lab

Occupancy limiters: registers

• Use –maxrregcount=N flag to nvcc to control register usage

– N = desired maximum registers / kernel

– At some point “spilling” into local memory may occur

– Reduces performance –-- local memory is slow

– Check for LMEM usage

• Compiler output

– nvcc option: –Xptxas, –v, –abi=no

– Will print the number of lmem bytes for each kernel

• Profiler: e.g, CUPTI

PASA Lab

Occupancy limiters: shared memory

• Shared memory usage: compile with --ptxas-options=-v
– Reports shared memory per block

• Fermi has either 16K or 48K shared memory

• Example 1, 48K shared memory
– Kernel uses 32 bytes of shared memory per thread

– 48K/32 = 1536 threads

– occupancy=1

• Example 2, 16K shared memory
– Kernel uses 32 bytes of shared memory per thread

– 16K/32 = 512 threads

– occupancy=.3333

• Don’t use too much shared memory

• Choose L1/Shared config appropriately.

PASA Lab

Occupancy limiter: block size

• Each SM can have up to 8 active blocks

• A small block size will limit the total number of threads

PASA Lab

Control flow instructions

• Main performance concern with branching is divergence

• Avoid divergence when branch condition is a function of thread
ID
– Example with divergence:

• If (threadIdx.x > 2) { }

• Branch granularity < warp size

– Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }

• Branch granularity is a whole multiple of warp size

PASA Lab

Control flow instructions

• New change to SIMT model in Volta reduces the negative

impact of control flow divergence a little

Old model

New model

PASA Lab

Google Tensorflow Processing

Unit (TPU)

PASA Lab

Motivation for TPU

PASA Lab

Tensor Processing Unit (TPU)

PASA Lab

TPU is “simple”

• It has none of the sophisticated microarchitectural features

– Cache, branch prediction, out-of-order execution, multiprocessing,
speculative prefetching, address coalescing, multithreading,
context switching

• It uses less transistors and consumes less energy than
regular CPU

• Aims to improve the average case but not the 99th-
percentile case

PASA Lab

Application testbed

PASA Lab

“Patterson” Discussion

• Fallacy: NN inference applications in data centers value throughput as
much as response time.
– 10ms in 2014  7ms in 2015-2016

• Fallacy: The K80 GPU architecture is a good match to NN inference
– GPU is a high thoughput architecture that relies on high-bandwidth memory and

thousands of threads

• Pitfall: Architects have neglected important NN tasks

PASA Lab

“Patterson” Discussion

• Pitfall: For NN hardware, Inferences Per Second (IPS) is an
inaccurate summary performance metric.

– IPS is more of a function of NN than of the underlying hardware

– For example, the TPU runs the 4-layer MLP at 360,000 IPS but the
89-layer CNN at only 4,700 IPS

• Fallacy: The K80 GPU results would be much better if boost
mode were enabled

– Improvement in performance/Watt is only 1.1x

• Fallacy: After two years of software tuning, the only path left
to increase TPU performance is hardware upgrades.

PASA Lab

NVIDIA’s Rebuttal to the TPU

PASA Lab

NVIDIA New GPU for Machine

Learning: Volta GV100 GPU

Figure courtesy: Nividia Volta architecture

white paper

PASA Lab

Key features

• New tensor cores

– Eight tensor cores per streaming multiprocessor

• Each tensor core performs 64 floating point FMA operations per clock

– Each tensor core operatates on 4x4 matrix, and performs

D= A x B + C

PASA Lab

Key features

• NVLink 2.0

– High bandwidth between CPU and GPU and between GPU and
GPU: 300GB/s

– CPU to regular main memory bandwidth on Intel Xeon Phil
(knights landing): ~90 GB/s

• High-bandwidth memory

– Memory stacks located on the same physical package as GPU

– 900GB/s, 1.5x delivered memory bandwidth versus Pascal GP100
(the last version)

– CPU to high bandwidth memory on Intel Xeon Phil (Knights
Landing): ~475-490 GB/s

PASA Lab

Key features

• Multi-Process Service

– Allow multiple applications to simultaneously share GPU execution
resources

• Permitting many individual inference jobs to be submitted concurrently to
GPU and improve overall GPU utilization

PASA Lab

Key features

• Maximum Performance and Maximum Efficiency Modes

– A not-to-exceed power cap can be set

• Cooperative Groups and New Cooperative Launch APIs

– Pascal and Volta include support for new cooperative launch APIs
that support synchronization amongst CUDA thread blocks

PASA Lab

References

• A Guide to Vectorization with Intel® C++ Compilers,

– https://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-
compilers

• TPU slides on ISCA’17

– https://homes.cs.washington.edu/~cdel/presentations/TPUPaperISCA2017.pdf

• NVIDIA white paper (NVIDIA Tesla V100 GPU architecture)

– http://www.nvidia.com/object/volta-architecture-whitepaper.html

• B. Wilkinson, “GPU Memories”, ITCS 6/8010 CUDA programming, UNC-Charlotte, 2011

• Justin Luitjens and Steven Rennich, “CUDA Warps and Occupancy”, GPU Computing
Webinar, July 12, 2011

https://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers

