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Outline

• Running  machine learning workloads on CPU

• Running  machine learning workloads on GPU

• Recent new hardware to run machine learning workloads

– Google TPU

– NVIDIA Volta
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Running Machine Learning 

Workloads on CPU
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Running ML on CPU: performance 

improvement tips

• Code vectorization for SIMD vector instructions

– Ensure that all the key primitives, such as convolution, matrix 

multiplication, and batch normalization are vectorized to the latest 

SIMD instructions

• NUMA performance problem

– Improve data locality and avoid data access bottleneck

• Manage thread-level parallelism

– Improve system throughput
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SIMD (Single Instruction Multiple Data) 

vector instructions in a nutshell

• What are these instructions?

– Extension of the ISA  Data types and instructions for parallel 
computation on short (2-16) vectors of integers and floats

– One operation produces multiple results

• An example

Vectorization not enabled Vectorization enabled

//a, b and c are integer arrays 
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Evolution of Intel vector instructions

• MMX: Multimedia Extensions (1996)

• SSE: Streaming SIMD Extensions

• AVX: Advanced Vector Extension (2010)
– Intel Xeon Phi (co-processor): 512 bit wide SIMD vector

• SIMD architectures can exploit significant data-level parallelism for:
– matrix-oriented scientific computing

– media-oriented image and sound processors

• SIMD is more energy efficient than MIMD
– Only needs to fetch one instruction per data operation

– Makes SIMD attractive for personal mobile devices

• SIMD allows programmer to continue to think sequentially
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Obstacles to vectorization

• Non-contiguous Memory Accesses 
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Obstacles to vectorization

• Data dependencies Read after write

Write after read

The above loop cannot be vectorized

The above loop can be vectorized
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Obstacles to vectorization

• The loop trip count is not known at entry to the loop at 
runtime 

• Data-dependent exit condition
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Obstacles to vectorization

• Not straight-line code

– There is control flow
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Code transformation to enable vectorization

• An example: dimension-lifted Transformation (DLT)

a[i]= b[i-1] + b[i] + b[i+1]
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NUMA performance problem

• NUMA = Non-uniform memory access

Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078 
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NUMA performance problem

• Two different common NUMA memory-allocation policies

– First-touch

• Memory is allocated on the same node as the thread that first accesses the 
memory

– Interleave

• Distributes memory allocations equally on all nodes regardless of which 
threads access it

• Good for memory allocation balance
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NUMA performance problem: 

locality and congestion

• No one policy is best 
for all applications 

• NUMA effects beyond 
the remote-access 
penalty can indeed 
severely affect 
performance

– e.g., streamcluster 

Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078 
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NUMA performance problem: 

locality and congestion

• For streamcluster, the 
first-touch policy creates 
sever congestion

– The average memory 
latency with the first-touch 
policy is more than double 
the latency of the 
interleave policy

Figure courtesy: http://queue.acm.org/detail.cfm?id=2852078 
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Manage thread-level parallelism

• Many machine learning frameworks are based on fine-
grained operations

– e.g., tensorflow, caffe2, theano, MXNet, and CNTK

• An example from inception_v3

Figure courtesy: tensorflow github



PASA Lab

Manage thread-level parallelism

• Intra-op parallelism

– Using maximum number of threads does not necessarily lead to 
best performance
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Manage thread-level parallelism

• Inter-op parallelism

– Co-run multiple operations to improve system throughput
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Running Machine Learning 

Workloads on GPU
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Running ML on GPU: performance 

improvement tips

• Optimize memory usage for maximum bandwidth

• Maximize occupancy to hide latency

• Control flow divergence
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Optimize memory usage: basic strategies

• Processing data is cheaper than moving it around

– Especially for GPUs as they devote many more transistors to ALUs than 
memory

• And will be increasingly so

– The less memory bound a kernel is, the better it will scale with future GPUs

• So you want to:

– Maximize use of low-latency, high-bandwidth memory

– Optimize memory access patterns to maximize bandwidth

– Leverage parallelism to hide memory latency by overlapping memory 
accesses with computation as much as possible

• Kernels with high arithmetic intensity (ratio of math to memory transactions)

• Sometimes recompute data rather than cache it
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Minimize CPU ↔ GPU data transfers

• CPU ↔ GPU memory bandwidth much lower than GPU 
memory bandwidth

• Minimize CPU ↔ GPU data transfers by moving more code 
from CPU to GPU
– Even if that means running kernels with low parallelism computations

– Intermediate data structures can be allocated, operated on, and 
deallocated without ever copying them to CPU memory

• Group data transfers
– One large transfer much better than many small ones

– Kernel fusion



PASA Lab

Optimize memory access patterns

• Effective bandwidth can vary by an order of magnitude 

depending on access pattern

• Optimize access patterns to get:

– Coalesced global memory accesses

– Shared memory accesses with no or few bank conflicts

– Cache-efficient texture memory accesses
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Coalesced global memory accesses

• Memory coalescing refers to combining multiple memory 
accesses into a single transaction

– An example: 32 consecutive threads access 32 consecutive words

Sequential and aligned access: 

Coalesced memory accesses
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Coalesced global memory accesses

• Aligned but non-sequential access

Coalesced memory accesses
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Coalesced global memory accesses

• Unaligned Memory Access

Non-coalesced memory accesses
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Bank conflicts on shared memory
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Bank conflicts on shared memory
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Cache-efficient texture memory accesses

• Read-only object

• Texture fetches are cached

– Optimized for 2D locality

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling

(Wrap, clamp)
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Maximize occupancy to hide latency

• Sources of latency:

– Global memory access: 400-600 cycle latency

– Read-after-write register dependency

• Instruction’s result can only be read 11 cycles later

• Latency blocks dependent instructions in the same thread, but 

instructions in other threads are not blocked

– Hide latency by running as many threads per multiprocessor as possible!

• Choose execution configuration to maximize

occupancy = (# of active warps) / (maximum #of active warps)
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Maximize occupancy to hide latency

• occupancy = (# of active warps) / (maximum #of active warps)

• Remember: resources are allocated for the entire block

– Resource are finite

– Utilizing too many resources per thread may limit the occupancy

• Potential occupancy limiters

– Register usage

– Shared memory usage

– Block size
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Occupancy limiters: registers

• Register usage: compile with --ptxas-options=-v

• Fermi has 32K registers per SM
– Fermi can have up to 48 active warps per SM (1536 threads) 

• Example 1 
– Kernel uses 20 registers per thread (+1 implicit)

– Active threads = 32K/21 = 1560 threads

– > 1536 thus an occupancy of 1

• Example 2
– Kernel uses 63 registers per thread (+1 implicit)

– Active threads = 32K/64 = 512 threads

– 512/1536 = .3333 occupancy
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Occupancy limiters: registers

• Use –maxrregcount=N flag to nvcc to control register usage

– N = desired maximum registers / kernel

– At some point “spilling” into local memory may occur

– Reduces performance –-- local memory is slow

– Check for LMEM usage

• Compiler output

– nvcc option: –Xptxas, –v, –abi=no

– Will print the number of lmem bytes for each kernel 

• Profiler: e.g, CUPTI
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Occupancy limiters: shared memory

• Shared memory usage: compile with --ptxas-options=-v 
– Reports shared memory per block

• Fermi has either 16K or 48K shared memory

• Example 1, 48K shared memory
– Kernel uses 32 bytes of shared memory per thread

– 48K/32 = 1536 threads 

– occupancy=1

• Example 2, 16K shared memory
– Kernel uses 32 bytes of shared memory per thread

– 16K/32 = 512 threads 

– occupancy=.3333

• Don’t use too much shared memory

• Choose L1/Shared config appropriately.
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Occupancy limiter: block size

• Each SM can have up to 8 active blocks

• A small block size will limit the total number of threads
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Control flow instructions

• Main performance concern with branching is divergence

• Avoid divergence when branch condition is a function of thread 
ID
– Example with divergence:

• If (threadIdx.x > 2) { }

• Branch granularity < warp size

– Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }

• Branch granularity is a whole multiple of warp size
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Control flow instructions

• New change to SIMT model in Volta reduces the negative 

impact of control flow divergence a little

Old model

New model
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Google Tensorflow Processing 

Unit (TPU)
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Motivation for TPU
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Tensor Processing Unit (TPU)
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TPU is “simple”

• It has none of the sophisticated microarchitectural features 

– Cache, branch prediction, out-of-order execution, multiprocessing, 
speculative prefetching, address coalescing, multithreading, 
context switching

• It uses less transistors and consumes less energy than 
regular CPU

• Aims to improve the average case but not the 99th-
percentile case
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Application testbed
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“Patterson” Discussion

• Fallacy: NN inference applications in data centers value throughput as 
much as response time. 
– 10ms in 2014  7ms in 2015-2016

• Fallacy: The K80 GPU architecture is a good match to NN inference
– GPU is a high thoughput architecture that relies on high-bandwidth memory and 

thousands of threads

• Pitfall: Architects have neglected important NN tasks
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“Patterson” Discussion

• Pitfall: For NN hardware, Inferences Per Second (IPS) is an 
inaccurate summary performance metric. 

– IPS is more of a function of NN than of the underlying hardware

– For example, the TPU runs the 4-layer MLP at 360,000 IPS but the 
89-layer CNN at only 4,700 IPS

• Fallacy: The K80 GPU results would be much better if boost 
mode were enabled

– Improvement in performance/Watt is only 1.1x

• Fallacy: After two years of software tuning, the only path left 
to increase TPU performance is hardware upgrades.
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NVIDIA’s Rebuttal to the TPU
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NVIDIA New GPU for Machine 

Learning: Volta GV100 GPU

Figure courtesy: Nividia Volta architecture 

white paper
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Key features

• New tensor cores

– Eight tensor cores per streaming multiprocessor

• Each tensor core performs 64 floating point FMA operations per clock

– Each tensor core operatates on 4x4 matrix, and performs 

D= A x B + C
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Key features

• NVLink 2.0

– High bandwidth between CPU and GPU and between GPU and 
GPU: 300GB/s

– CPU to regular main memory bandwidth on Intel Xeon Phil 
(knights landing): ~90 GB/s

• High-bandwidth memory

– Memory stacks located on the same physical package as GPU

– 900GB/s,  1.5x delivered memory bandwidth versus Pascal GP100 
(the last version)

– CPU to high bandwidth memory on Intel Xeon Phil (Knights 
Landing): ~475-490 GB/s
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Key features

• Multi-Process Service

– Allow multiple applications to simultaneously share GPU execution 
resources

• Permitting many individual inference jobs to be submitted concurrently to 
GPU and improve overall GPU utilization
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Key features

• Maximum Performance and Maximum Efficiency Modes

– A not-to-exceed power cap can be set 

• Cooperative Groups and New Cooperative Launch APIs 

– Pascal and Volta include support for new cooperative launch APIs 
that support synchronization amongst CUDA thread blocks 



PASA Lab

References

• A Guide to Vectorization with Intel® C++ Compilers, 

– https://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-
compilers

• TPU slides on ISCA’17

– https://homes.cs.washington.edu/~cdel/presentations/TPUPaperISCA2017.pdf

• NVIDIA white paper (NVIDIA Tesla V100 GPU architecture)

– http://www.nvidia.com/object/volta-architecture-whitepaper.html

• B. Wilkinson, “GPU Memories”, ITCS 6/8010 CUDA programming, UNC-Charlotte, 2011

• Justin Luitjens and Steven Rennich, “CUDA Warps and Occupancy”, GPU Computing 
Webinar, July 12, 2011

https://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers

