
EECS260 Optimization Homework set #4
Fall semester 2018 Miguel Á. Carreira-Perpiñán

This set covers chapters 16–19 of the book Numerical Optimization by Nocedal and Wright, 2nd ed.

From the book, the following exercises: 16.1–3, 16.6, 16.10, 16.15–16, 16.20–21, 17.4, 17.11, 18.5, 19.12–13. In addition,
the exercises below. There are no Matlab programming exercises. However, you may find it useful to plot the objective
function, constraints and auxiliary functions (e.g. the quadratic-penalty function) with fcontour.

IV.1. Quadratic programming. Consider the Markowitz model of portfolio optimization (example 16.1 in the
book):

max
x∈Rn

q(x) = xTµ− κxTGx subject to eTx = 1, x ≥ 0

where κ ≥ 0, µ > 0, G is symmetric positive definite and e = (1, . . . , 1)T . W.l.o.g. assume that the largest component
of µ is the first (µ1 ≥ µi, i = 1, . . . , n).

(i) Suppose that gii > gij , i = 1, . . . , n. Show that, for a solution to be at one corner of the feasible polytope,
namely x∗ = (1, 0, . . . , 0)T , the following condition must hold:

κ ≤ κa with κa = min
i=2,...,n

µ1 − µi
2(g11 − g1i)

.

Interpret this solution. (Hint: apply the KKT and 2nd-order conditions to x∗.)

(ii) Suppose that the sum of each column of G−1 is positive. Show that, for a solution to have only positive
components (x > 0), the following condition must hold:

κ > κc with κc =
1

2
eTG−1µ− 1

2
eTG−1e

(
min

i=1,...,n

(G−1µ)i
(G−1e)i

)
.

What is the solution x∗? What is the solution for κ→∞?

(iii) Consider a different portfolio optimization problem:

min
x∈Rn

xTGx subject to µTx ≥ κ, eTx = 1, x ≥ 0

where κ ≥ 0 as before. What is the largest κ for which this problem is feasible? (Hint: formulate as an LP
κ = maxµTx s.t. eTx = 1, x ≥ 0; guess its solution and prove it is a solution using the KKT conditions.)

IV.2. Quadratic-penalty, augmented-Lagrangian, log-barrier and interior-point methods.

(i) Consider the constrained optimization problem minx x
2
1 + x22 s.t. x1 + x2 = 1. Find the solution (x∗, λ∗) of

this problem using the KKT and second-order conditions. Write the quadratic-penalty function Q(x;µ) and its
gradient ∇xQ(x;µ) and Hessian ∇2

xxQ(x;µ). Show that: Q(x;µ) has a single minimiser xk for each µk > 0; this
minimiser tends to the solution x∗ of the problem as µk →∞; the Lagrange multiplier estimate λk ≈ −µkc(xk)
(eq. (17.10) in the book) tends to the Lagrange multiplier λ∗ at the solution as µk →∞; the Hessian of the penalty
function at the minimiser becomes progressively more ill-conditioned as µk →∞, i.e., cond

(
∇2

xxQ(xk;µk)
)
→∞.

(ii) As in (i) but using the augmented-Lagrangian function LA(x, λ;µ) where the variable λk is updated as λk+1 ←
λk − µkc(xk) (eq. (17.39) in the book).
Also, prove that the sequence of iterates (xk, λk) converges to the solution even if µk is kept at a constant value
µ > 0 (i.e., we do not drive µk →∞), and give the convergence order. How does it depend on µ?

(iii) As in (i) but for the problem minx x
2
1 + x22 s.t. x1 ≥ 1 using the log-barrier function P (x;µ) and where the

Lagrange multiplier estimate is λk ≈ µk

c(xk)
(eq. (19.47) in the book).

(iv) For the problem in (iii), write the system of perturbed KKT equations F(. . . ) = 0 for an interior-point method;
solve it and find the primal-dual central path; compute the Jacobian J of F and indicate how to obtain the
Newton step; show that J does not become progressively more ill-conditioned as we approach the solution.



IV.3. Convex equality-constrained quadratic programming using quadratic-penalty and augmented-
Lagrangian methods. Consider the strictly convex equality-constrained QP:

min
x∈Rn

1

2
xTGx + cTx subject to Ax = b

where G is symmetric pd and Am×n has full rank with m < n.

(i) Solve the QP, giving an explicit expression for the solution, i.e., the KKT point (x∗,λ∗).

(ii) Write the quadratic-penalty function Q(x;µ), prove it is strictly convex and find its minimizer x(µ) and its
Lagrange multiplier estimates λ(µ) = −µ (Ax(µ) − b) explicitly. Prove x(µ) −−−−→

µ→∞
x∗ and λ(µ) −−−−→

µ→∞
λ∗.

Hint: use the Sherman-Morrison-Woodbury formula.

(iii) Write the augmented-Lagrangian function LA(x,λ;µ), prove it is strictly convex and find its minimizer x(λ;µ)
and the update for λ explicitly. Prove x(λ;µ) −−−−→

µ→∞
x∗ and λ(µ) −−−−→

µ→∞
λ∗.

Now we keep the penalty parameter fixed to a value µ > 0. Prove that iterating the update for λ also converges
to the solution, and determine the convergence order. Hint: ‖Mu‖ ≤ ‖M‖‖u‖, using the L2 norm for vectors
and matrices, i.e., ‖u‖ =

√
u21 + · · ·+ u2n and ‖M‖ = largest singular value of M.

IV.4. Generalized spectral problem. Prove the following theorem. Consider the optimisation problem

max
X

tr
(
XAXT

)
s.t. XBXT = I (1)

where X ∈ RL×N , L < N , A,B ∈ RN×N , A is symmetric and B is symmetric positive definite. Let C = B−
1
2 AB−

1
2

have spectral representation C = UΛUT and assume its eigenvalues are distinct though not necessarily positive. Then,
the solution of (1) is unique and given by X = UT

LB−
1
2 , where UL = (u1, . . . ,uL) are the leading L eigenvectors of C.


