EECS260 Optimization Homework set #4
Fall semester 2018 Miguel A. Carreira-Perpinan

This set covers chapters 16-19 of the book Numerical Optimization by Nocedal and Wright, 2nd ed.

From the book, the following exercises: 16.1-3, 16.6, 16.10, 16.15-16, 16.20-21, 17.4, 17.11, 18.5, 19.12-13. In addition,
the exercises below. There are no Matlab programming exercises. However, you may find it useful to plot the objective
function, constraints and auxiliary functions (e.g. the quadratic-penalty function) with fcontour.

IV.1. Quadratic programming. Consider the Markowitz model of portfolio optimization (example 16.1 in the
book):

max q(x) = xTp — ixT Gx subject to efx=1,x>0
xeR™
where £ > 0, u > 0, G is symmetric positive definite and e = (1,...,1)T. W.Lo.g. assume that the largest component

of p is the first (1 > i, i =1,...,n).

(i) Suppose that g;; > g¢i;, ¢ = 1,...,n. Show that, for a solution to be at one corner of the feasible polytope,
namely x* = (1,0,...,0)T, the following condition must hold:

Kk < Kq With kg = min P
i=2,...n 2(911 - 91i>

Interpret this solution. (Hint: apply the KKT and 2nd-order conditions to x*.)

(ii) Suppose that the sum of each column of G~! is positive. Show that, for a solution to have only positive
components (x > 0), the following condition must hold:

1 1 G‘r_1 7
K > K. with k. = §eTG_1N - §eTG_1e (l—r{l}n,n ((Crfé))l) ’

What is the solution x*? What is the solution for x — oco?

(iii) Consider a different portfolio optimization problem:

m%%n x'Gx subject to wix >k efx=1, x>0

xeR™

where k > 0 as before. What is the largest x for which this problem is feasible? (Hint: formulate as an LP
k =max uTx s.t. efx =1, x > 0; guess its solution and prove it is a solution using the KKT conditions.)

IV.2. Quadratic-penalty, augmented-Lagrangian, log-barrier and interior-point methods.

(i) Consider the constrained optimization problem miny 23 + 2% s.t. 71 + 22 = 1. Find the solution (x*,\*) of
this problem using the KKT and second-order conditions. Write the quadratic-penalty function Q(x; u) and its
gradient V,Q(x; ) and Hessian V2, _Q(x; u). Show that: Q(x;p) has a single minimiser x;, for each py, > 0; this
minimiser tends to the solution x* of the problem as p; — oco; the Lagrange multiplier estimate A\, ~ —pugc(xy)
(eq. (17.10) in the book) tends to the Lagrange multiplier \* at the solution as p;, — oo; the Hessian of the penalty
function at the minimiser becomes progressively more ill-conditioned as i — oo, i.e., cond (VixQ(xk; uk)) — 0.

(ii) As in (i) but using the augmented-Lagrangian function £4(x, A; u) where the variable Ay is updated as A\py1
A — pre(xk) (eq. (17.39) in the book).
Also, prove that the sequence of iterates (xx, Ax) converges to the solution even if uy is kept at a constant value
1> 0 (i.e., we do not drive ux — 00), and give the convergence order. How does it depend on pu?

(iii) As in (i) but for the problem miny 2?2 + 23 s.t. x; > 1 using the log-barrier function P(x;u) and where the
Lagrange multiplier estimate is Ap &~ -2~ (eq. (19.47) in the book).

c(xk)

(iv) For the problem in (iii), write the system of perturbed KKT equations F(...) = 0 for an interior-point method;
solve it and find the primal-dual central path; compute the Jacobian J of F and indicate how to obtain the
Newton step; show that J does not become progressively more ill-conditioned as we approach the solution.



IV.3. Convex equality-constrained quadratic programming using quadratic-penalty and augmented-
Lagrangian methods. Consider the strictly convex equality-constrained QP:

1
min —x? Gx 4+ c¢''x subject to Ax=Db
xeR” 2

where G is symmetric pd and A,,x, has full rank with m < n.

(i)
(i)

(iii)

Solve the QP, giving an explicit expression for the solution, i.e., the KKT point (x*, A*).

Write the quadratic-penalty function Q(x;pu), prove it is strictly convex and find its minimizer x(u) and its
Lagrange multiplier estimates A(u) = —p (Ax(u) — b) explicitly. Prove x(u) —— x* and A(p) —— A*.
Hint: use the Sherman-Morrison-Woodbury formula. nree oo

Write the augmented-Lagrangian function £ 4(x, A; i), prove it is strictly convex and find its minimizer x(A; u)
and the update for A explicitly. Prove x(\; u) — x* and A(u) —— ™.

H—>00 H—>00
Now we keep the penalty parameter fixed to a value p > 0. Prove that iterating the update for A also converges
to the solution, and determine the convergence order. Hint: ||Mul| < ||[M]|||ul|, using the Ly norm for vectors

and matrices, i.e., ||ul| = Ju? + -+ u2 and ||[M| = largest singular value of M.

IV.4. Generalized spectral problem. Prove the following theorem. Consider the optimisation problem

m);gxtr(XAXT) s.t. XBXT =1 (1)

where X € REXN L < N, A,B € RV*N_ A is symmetric and B is symmetric positive definite. Let C = B :AB~:

have spectral representation C = UAUT and assume its eigenvalues are distinct though not necessarily positive. Then,
1

the solution of (1) is unique and given by X = UZB~2, where U = (uy, ..., uy) are the leading L eigenvectors of C.



