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In the coming century, anthropogenic climate change will threaten
the persistence of restricted endemic species, complicating conser-
vation planning. Although most efforts to quantify potential shifts
in species’ ranges use global climate model (GCM) output, regional
climate model (RCM) output may be better suited to predicting
shifts by restricted species, particularly in regions with complex
topography or other regionally important climate-forcing factors.
Using a RCM-based future climate scenario, we found that poten-
tial ranges of two California endemic oaks, Quercus douglasii and
Quercus lobata, shrink considerably (to 59% and 54% of modern
potential range sizes, respectively) and shift northward. This result
is markedly different from that obtained by using a comparable
GCM-based scenario, under which these species retain 81% and
73% of their modern potential range sizes, respectively. The
difference between RCM- and GCM-based scenarios is due to
greater warming and larger precipitation decreases during the
growing season predicted by the RCM in these species’ potential
ranges. Based on the modeled regional climate change, <50% of
protected land area currently containing these species is expected
to contain them under a future midrange ‘‘business-as-usual’’ path
of greenhouse gas emissions.

Quercus douglasii � species range displacement � Quercus lobata �
regional climate model � conservation

Endemic species face relatively great risks from human activ-
ities because of their limited geographic distribution. For

more than a century, ecologically and culturally valuable en-
demic oaks of California have experienced pressure from cutting
for fuel, grazing, conversion of woodlands to vineyards and
orchards, water resource development, competition with inva-
sive grasses, and urban expansion (1). Here, we report how the
regional manifestation of anthropogenic global climate change
may present an even graver threat, complicating conservation
planning for these and other restricted species (2, 3). Specifically,
we highlight how predictions of future suitable habitat for
endemic species can depend greatly on whether the scenario for
climate change is derived from a relatively coarse-resolution
global climate model (GCM) or a fine-resolution regional cli-
mate model (RCM).

California endemic oaks Quercus douglasii Hook. & Arn.
and Quercus lobata Née (blue and valley oak, respectively) are
sensitive to temperature and precipitation at many stages of
their life history. Both experience the Mediterranean-like
climate of much of California, with winter rain and summer
drought. Blue oak occurs in the foothills of the Coast Ranges
and western Sierra Nevada, forming both woodland and
savannah habitat. It is winter-deciduous and drought-tolerant,
remaining active well into the long, dry summers (4, 5).
Tree-ring data show greater growth in years with greater mean
annual precipitation, although there is geographic variation in
the strength of this effect (6). Blue oak seedlings are sensitive
to soil moisture availability, with higher mortality and lower
growth where competition with annual plants leads more
rapidly to growing season soil moisture deficits (7, 8). Valley
oak occurs on deeper soils in the Great Central Valley and in
riparian habitats of the foothills and has seen much of its

former habitat degraded or eliminated (4). Valley oak is also
winter-deciduous but is less drought-tolerant than blue oak. It
is highly sensitive at both seedling and adult stages to water
stress (9). Higher acorn production by both species is corre-
lated to warmer April temperatures (10), probably a result of
greater pollen advection and therefore greater fertilization
under warmer, less humid spring conditions (11).

Modern geographic distributions of blue and valley oaks also
suggest that their ranges are constrained by climate factors (Fig.
1). We hypothesized that (i) the potential range of each species
would be related to climate variables, (ii) climate change could
alter the geographic location of suitable habitat for each species,
and (iii) predicted future distributions would be sensitive to the
spatial and temporal details of predicted future climate change.
With respect to (iii), we were particularly concerned that pre-
dicted range shifts based directly on GCM-derived climate
change scenarios could differ qualitatively and quantitatively
from RCM-derived scenarios. Predicted climate change impacts
to agricultural crop yields and agroeconomic activity (12–14) and
to water yield in specific river basins (15) are known to depend
on the scale of climate scenario used (GCM vs. RCM), suggest-
ing that predictions for species range shifts could be similarly
sensitive.

Methods
Climate Envelope Modeling. We used quadratic discriminant anal-
ysis to identify the multivariate climate and soil envelopes, and
thereby suitable habitat, for each species. Discriminant analysis
is similar to other statistical climate envelope approaches and has
been used previously for predicting potential future species
ranges with climate change (16). Discriminant analysis identifies
the multivariate distance between a given cell and the centroids
of all cells in the ‘‘oak-present’’ and ‘‘oak-absent’’ groups,
assigning the cell to the closest centroid. We assumed unequal
variances between groups and transformed explanatory vari-
ables when possible to achieve normal frequency distributions.
We first built the statistical model based on modern climate and
soils data and then applied the model to GCM- and RCM-based
scenarios of future climate.

We selected four explanatory climate variables based on
field observations of these species (5–11) and on factors likely
to limit the ranges of deciduous trees (17): mean temperatures
of the coldest and warmest months, total annual precipitation,
and April–August precipitation. We selected three soil vari-
ables that ref lect the importance of soil properties in regulat-
ing moisture availability, including available water-holding
capacity, soil depth, and surface layer clay content.§ We used
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satellite-based estimates of modern (�1990) blue and valley
oak distributions¶ and modern climate values derived from
1971–2000 weather station data interpolated to 4-km resolu-
tion� as the basis for the discriminant models. (Links to digital
versions of the annotated data sources may be obtained from
the authors upon request.) Discriminant model-derived mod-
ern distributions somewhat overpredict oak presence relative
to the satellite data (Table 1) but capture the geographic
pattern of both species. The discriminant model predic-
tions have better matches to historic range maps (18) (Table
1), suggesting that the model may be more representative of
potential oak distributions before extensive habitat conversion.

We varied the criterion by which cells were assigned to the
oak-present group by comparing thresholds of 50% and 80%.
Using the higher probability threshold reduced the extent of
modern potentially suitable oak habitat, resulting in better
matches to the original satellite data and to range maps (Table
1). Raising the probability threshold from 50% to 80% also
resulted in 28–40% less future suitable habitat, depending on the
species and climate model output used. Therefore, the reported
50% threshold discriminant models, which overpredict modern
potential habitat, may also overpredict future suitable habitat for
any given future climate scenario.

We used output from a climate change experiment using the
RCM RegCM2.5 and the GCM CSM (Climate System Model)
(see below) to calculate differences between annual averages
of the years 2080–2099 and 1980–1999 for the selected climate
variables and added the anomalies to the modern climate
1971–2000 values. We thereby created a projected future
California climate based on RCM output and a projected
future California climate based on GCM output. We then used
the discriminant models derived for each species to predict
potential ranges after climate change, holding soil properties
constant. We did not explore the third alternative of calcu-
lating a future California climate based on statistically down-
scaled GCM output. However, the relatively smooth, GCM-
like signal for summer temperature change in California in a
study using statistically downscaled GCM output (19) suggests
that this approach may yield predictions that are more similar
to those using GCM output than RCM output (see below).

Regional Climate Modeling. Most estimates of potential shifts in
species’ ranges with future climate change are based on relatively
coarse GCM output (20–23). However, RCM-based climate
scenarios may be better in California than GCM-based scenarios
for several reasons. First, GCMs have topographically smooth
landscapes, with each grid cell representing average land surface
properties and climate over hundreds of kilometers, whereas
RCMs can describe the land surface and topography at much
higher spatial resolution. As a specific example, the Sierra
Nevada Mountains and the Great Central Valley, which define
climatologically distinct ecoregions in California, are repre-
sented in the RCM but not the GCM (24). Second, within
regional models, with resolutions on the order of tens of
kilometers, local topography, distance from the coast, and
latitude can result in a more highly resolved, subregionally
varying estimate of climate change (Table 2). Lastly, we used the
RCM RegCM2.5, which has been used and validated for the
western U.S. (25, 26) and compares more favorably to observa-
tions than a GCM for a range of temperature and precipitation
variables in this region (26). RegCM has also been shown to
produce elevationally dependent climate change consistent with
observations in other regions (27), a climatic feature not well
captured by relatively coarse-resolution GCMs.

We ran the RCM RegCM2.5 from 1980–1999 and 2080–2099,
with atmospheric conditions at the domain boundaries derived
from the National Center for Atmospheric Research global CSM
(28). RegCM2.5 was run with a horizontal resolution of �40 km,
compared with the 2.8° (�250 km) horizontal resolution of CSM.
CSM is a fully coupled atmosphere, ocean, land, and sea-ice
model that was run from 1870 to 2099 with observed increases
in greenhouse gas concentrations until 1998 and increases
thereafter from the ACACIA-BAU (A Consortium for the
Application of Climate Impact Assessments Business-as-Usual)
emissions scenario. ACACIA-BAU is a ‘‘business-as-usual’’ sce-
nario of greenhouse gas emissions and climate policy similar to
Intergovernmental Panel on Climate Change (IPCC) IS92a but
with sulfate emissions more consistent with the Special Report
on Emissions Scenarios (SRES) average (29). ACACIA-BAU
CO2 emissions rise from 7 to 19 gigatons of C�yr�1 between 1990
and 2100, an emissions trajectory slightly higher than the
midrange IPCC SRES scenario A1B (30). CO2 concentrations in
CSM increased to �710 ppm by 2099 with this scenario, whereas
the 2080–2099 RegCM2.5 CO2 concentrations were kept con-
stant at 660 ppm, the CSM midpoint for those years (28, 29). In
CSM, mean global temperatures increased 1.9°C from 1990 to

¶Davis, F. W., Stoms, D. M., Hollander, A. D., Thomas, K. A., Stine, P. A., Odion, D., Borchert,
M. I., Thorne, J. H., Gray, M. V., Walker, R. E., et al. (1998) The California Gap Analysis
Project: Final Report (Univ. of California, Santa Barbara).

�Daly, C., Gibson, W. & Taylor, G. (2002) 103-Year High-Resolution Precipitation Climate
Data Set for the Coterminous United States (Spatial Climate Analysis Service, Corvallis, OR).

Fig. 1. Modern satellite-based distributions of blue oak (A) and valley oak
(B).¶ California ecoregions labeled in B are as follows: NW, northwest Califor-
nia; CR, Cascade Ranges; MP, Modoc Plateau; SN, Sierra Nevada; CV, Great
Central Valley; ES, east of Sierra Nevada; CW, central west California; MD,
Mojave Desert; SW, southwest California; and SD, Sonoran Desert.¶

Table 1. Skill of discriminant models in predicting the modern
distributions of blue and valley oak

Model

Satellite data Range maps

Percent correct � Percent correct �

Blue oak
(50%) 82 0.41 84 0.50
(80%) 87 0.48 87 0.53

Valley oak
(50%) 71 0.10 81 0.52
(80%) 79 0.12 83 0.51

Numbers in parentheses indicate the likelihood threshold for assigning
individual cells to the oak-present group in the discriminant model. Increasing
the threshold from 50% to 80% likely improves the models’ match to the
satellite data and range maps, reducing the modern area predicted as suitable
for blue oak (�24%) and valley oak (�27%). Percent correct reflects the
percentage of all cells correctly assigned to oak-present and oak-absent
groups. � values account for the cells that would be assigned correctly by
chance, where � � 0.4 is poor agreement, 0.4 � � � 0.55 is fair agreement,
0.55 � � � 0.70 is good agreement, and � � 0.7 is very good to excellent
agreement (24).
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2100, a projection at the low end of the IPCC multiscenario,
multimodel envelope (31).

Overall, CSM has a cold bias (�1–2°C annual average) and
tends to be wet (up to 5 mm�d�1) in western North America
compared with observations (28, 29). Compared with observa-
tions, RegCM2.5 is cool (by 2–4°C on a monthly basis), wet
during the rainy season (by 2.0 mm�d�1), and dry in the late
summer (by 0.6 mm�d�1) (28). In California, RegCM2.5 slightly
underestimates both the warmest and coldest month tempera-
tures, whereas CSM overestimates the coldest month tempera-
tures and underestimates the warmest month temperatures, as
compared with observations. RegCM2.5 overestimates both
annual (by �800 mm�yr�1) and April–August (by �240
mm�yr�1) precipitation, particularly in northwest California and
the Sierra Nevada; CSM underestimates annual precipitation in
northwest California and the Sierra Nevada (by �400 mm�yr�1)
and overestimates April–August precipitation in these subre-
gions (by �200 mm�yr�1). Overall, RegCM2.5 better captures
the spatial patterns of temperature and precipitation throughout
the state when compared with high-resolution observational
data (32) (see Fig. 3, which is published as supporting informa-
tion on the PNAS web site).

Because we used the change in climate between two time
periods for projecting changes in suitable oak habitat, model
bias is less relevant than model sensitivity to transient climate
forcing, such as by greenhouse gases. When driven by the
global atmospheric model HadAMH, RegCM reproduced
slight winter warming trends in some subregions of Europe,

but not all, and a related winter drying trend in the Mediter-
ranean region over the 20th century (33). For the European
temperature trends, much of the model agreement with ob-
servations (or lack thereof) is attributed to global model
forcing, whereas local feedbacks within the regional model
appear to improve trend simulation for precipitation in some
subregions (33). CSM, the global model we used as initial and
boundary conditions, reproduces the pronounced global
warming trend in the late 20th century, although it did not
capture the rapid midcentury warming seen in observations
(29). CSM also captures the slight positive trend in northern
mid- to high-latitude precipitation over the 20th century but
does not represent decadal variations in the El Niño southern
oscillation very well, a point of concern for the tropics and our
western U.S. region.

Conservation Area Calculations. To estimate the fraction of poten-
tial modern and future oak habitat overlapping with existing
conservation areas, we combined digital maps of U.S. National
Wilderness Areas** and of National Parks, California State
Parks and Reserves, and private conservation areas†† into a
single data layer. We then examined the change in the number
of oak-present cells overlapping with all conservation areas

**U.S. Geological Survey (2004) National Atlas of the United States of America (U.S.
Geological Survey, Reston, VA).

††California Resources Agency (2003) California Legacy Project (California Resources
Agency, Sacramento, CA).

Table 2. Change in average climate variables between 1980–1999 and 2080–2099 from GCM
and RCM output

Region Model

Mean
temperature

of the
coldest

month, °C

Mean
temperature

of the
warmest

month, °C

Annual
precipitation,

mm

April–August
precipitation,

mm

California GCM 2.53 2.52 �12.49 �5.27
RCM 2.45 2.82 �5.18 �19.87

Northwest California GCM 2.16 2.16 �30.69 �11.81
RCM 2.27 2.98 31.11 �16.03

Cascade Ranges GCM 2.51 2.49 �6.95 �2.03
RCM 2.60 3.33 39.15 �20.45

Modoc Plateau GCM 2.54 2.52 �3.65 �0.44
RCM 2.64 3.65 39.81 4.26

Sierra Nevada GCM 2.57 2.55 �2.12 �0.65
RCM 2.66 2.90 �17.20 �46.43

Great Central Valley GCM 2.45 2.43 �6.28 �2.36
RCM 2.37 2.41 �3.63 �24.56

East of Sierra Nevada GCM 2.71 2.71 �0.85 �0.58
RCM 2.86 3.53 �18.16 �25.39

Central west California GCM 2.25 2.23 �18.08 �7.44
RCM 2.21 2.15 �20.35 �18.78

Mojave Desert GCM 2.83 2.84 �14.07 �6.81
RCM 2.68 3.07 �13.77 �10.82

Southwest California GCM 2.58 2.58 �15.26 �7.41
RCM 2.28 2.41 �31.38 �16.12

Sonoran Desert GCM 2.80 2.79 �14.37 �7.31
RCM 2.04 2.53 �38.06 �5.79

Blue oak GCM 2.38 2.37 �12.65 �4.94
RCM 2.37 2.56 2.71 �24.45

Valley oak GCM 2.32 2.34 �13.27 �5.26
RCM 2.32 2.49 0.04 �23.26

The first two rows reflect mean changes for all of California; subsequent rows reflect changes within the
ecoregions identified in Fig. 1B. Blue oak and valley oak rows reflect changes within the modern potential habitat
for those species, as determined by the discriminant model described in the text.
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between the modern and future scenarios. We used SYSTAT 8.0 for
all statistical analyses and ARCGIS 8.3 for geospatial associations
among climate, soil, species, and conservation area maps.

Results and Discussion
With RCM-based climate change, suitable habitat shrank to 59%
and 54% of modern potential range sizes for blue and valley oak,
respectively (Fig. 2 A and C). With GCM-based climate change,
we saw more modest overall contractions to 81% and 73% of
current range sizes (Fig. 2 B and D). For both species and model
scenarios, we saw some expansion into northwestern California
and the Sierra Nevada Mountains, with more persistence and
expansion at the southern end of the species’ range under the
GCM cases. Under the RCM scenario, �39% of the predicted
future habitat is new, whereas �30% is new under the GCM
scenario.

The difference between RCM- and GCM-based predictions
can be explained primarily by the larger predicted decreases in
RCM April–August precipitation and by larger increases in
temperature within the oaks’ modern potential ranges, which
include the Great Central Valley and Sierra Nevada regions (see
Fig. 4, which is published as supporting information on the PNAS
web site; see also Table 2). For example, in areas that lost blue
oaks under the RCM case, annual precipitation changed �1%,
April–August precipitation declined 43%, and both coldest
month and warmest month mean temperatures increased by
�2.3°C, resulting in a more heat- and drought-stressed environ-
ment during these winter-deciduous species’ growing season.
Mean temperature of the warmest month increases more in the

RCM than in the GCM, especially in Northern California, in the
Sierras, and east of the Sierras. This discrepancy could be due to
the fact that the RCM has more detailed topography than the
GCM, resulting in greater warming at higher elevations, an effect
that has been observed in the Alps (27). Changes in precipitation
may also be elevation-dependent (27), but the larger decrease in
summertime precipitation in the RCM is likely due to better
resolution of spring circulation patterns. As a result of the large
GCM grid cell size, storm systems may be more extensive in the
GCM than in the RCM, with the most pronounced differences
in the month of May. Additional factors that could yield stronger
signals in temperature and precipitation in subregions of the
RCM include more heterogeneous land cover, and therefore
albedo and energy partitioning, and better resolution of con-
vective activity and cloud cover.

Our predictions are based on only one RCM realization of
potential climate change in the western U.S. Consistent with our
RCM scenario, Leung et al. (34) found a nonsignificant warm
season drying trend in California between 1995 and 2060 using
an RCM, MM5, and a GCM, PCM. However, using another
RCM, MAS, and GCM, HadCM2, Kim et al. (35) found a small
increase in summer precipitation between control and enhanced
CO2 runs. Differences among scenarios may be due in part to
GCM input but also to how the RCMs resolve circulation
patterns and parameterize convective precipitation. Model sce-
narios yielding growing season precipitation increases may result
in an expansion of suitable oak habitat rather than a contraction,
as we found.

Our results indicating decreases and northward shifts in
potential blue and valley oak habitat are consistent with

Fig. 2. Potential modern (light blue and brown) and future (brown and green) distributions of blue oak (A and B) and valley oak (C and D). A and C reflect
distributional changes based on the RCM scenario; B and D reflect changes based on the GCM scenario.
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modeled vegetation change in the California region predicted
by dynamic vegetation models. Using the model MC1, Lenihan
et al. (36) found that mixed evergreen woodland decreases in
extent relative to the historic case under two different GCM
scenarios for the 2070–2099 time period, losing out to mixed
evergreen forest in one scenario (HadCM2) and to grassland
in the other (PCM). Mixed evergreen woodland persists or
expands slightly at the northern and upper elevation limits of
its historical distribution. Also using MC1 but statistically
downscaled output from four GCM scenarios, Hayhoe et al.
(19) found overall decreases in the extent of mixed evergreen
woodland with climate change by 2050 and 2100, primarily to
expansion by grassland.

Our results showing impacts dependent on the scale of the
climate model scenario are also consistent with studies of
agricultural yield changes under RCM and GCM scenarios for
climate change. In the midwestern U.S., yield differences
between RCM and GCM scenarios were most pronounced
where the climate models differed in precipitation, tempera-
ture, and humidity during key periods of the growing season,
leading to differential water stress in some crops (13). Simi-
larly, in the southeastern U.S., crop-specific sensitivity to RCM
vs. GCM changes in growing season precipitation and tem-
perature resulted in differences in predicted yield (12). The
latter study also found that by adjusting planting dates for corn,
the effects of decreased precipitation during the summer
months in the RCM scenario were mitigated. For predicting
impacts, this result underscores the importance of understand-
ing the ability of agricultural and natural systems to adapt to
climate changes, as well as the importance of using accurate
climate change scenarios.

With our RCM-based results, we found that of the current
conservation area encompassing current potential oak ranges,
�50% (33% for blue oak and 40% for valley oak) also encom-
passed future suitable habitat, indicating that today’s conserva-
tion areas may not provide protection for future oak habitat
(data not shown). Future overlap between oak habitat and
protected areas established to protect other species and ecosys-
tems would depend on the ability of these two species to disperse
northward and to compete with existing coniferous vegetation in
the predicted future ranges. Climate-driven range shifts will be
constrained by nonclimate factors that affect recruitment and

establishment, including fire regimes, browsing by domestic and
wild animals, acorn predation, and competition with annual
grasses and conifers (37–39). For valley oak, small genetic
‘‘neighborhoods’’ also suggest limited genetic exchange across
the modern landscape (40), indicating that the ability of this
species to migrate significant distances in response to climate
change may be limited. Given the above challenges to range
shifts by these species, their persistence may be highly dependent
on their ability to adapt to climate change in situ, perhaps by
adjusting their growing season.

Our results show that conservation planning guided by GCM
output or by the expectation of simple upward elevational
shifts in distributions for these and other restricted species
could be misdirected. In California, RCM-based patterns of
warming and drying between April and August in the Sierra
Nevada Mountains and Great Central Valley result in unex-
pected reductions and shifts in suitable habitat for two highly
valued endemic species, a quantitatively different result than
that obtained by using GCM output. This precipitation sen-
sitivity is consistent with the observed importance of water
stress to both species’ growth and reproduction, leading us to
believe that if the spatial variation in predicted climate change
is more realistic in the RCM, these and other moisture-
sensitive species may be particularly vulnerable to climate
change in California. As conservation planners confront cli-
mate change, it will be critical that they employ a selection of
RCM-based scenarios that resolve variation in climate re-
sponse on scales relevant to restricted species and regional
reserves. Similarly, planning for potential climate change
impacts on biogenic trace gas emissions, water resource timing
and availability, or agricultural yield and crop suitability
should take into account regionally specific results from
state-of-the-art RCMs.

Input from several anonymous reviewers greatly improved earlier ver-
sions of the manuscript. Climate model computations were carried out
at the University of California, Santa Cruz (UCSC) Climate Change and
Impacts Laboratory, which is funded in part by National Science
Foundation Grant ATM-0215934. Geographical Information Systems
(GIS) work was carried out in the UCSC Environmental Studies
Department GIS Laboratory. This research was supported by the David
and Lucile Packard Foundation and the California Energy Commission.
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