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Abstract

Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from down-

scaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale cli-

mate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of

cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs’ ability to

provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring vari-

ability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate

that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios

against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these

historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don)

under ‘normal’ combinations of temperature and precipitation, and under anomalous combinations representative of

potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is

equivalent to climate projected by GCMs for California by 2020–2030 and that under these conditions, climatically

suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest

that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological

forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by

ocean–atmosphere dynamics that are not represented by coarse-scale GCMs.
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Introduction

Although global climate models (GCMs) project changes

in climatic patterns at coarse spatial scales (i.e., global

and regional), the local effects of climate change are not

yet well quantified (Knutti & Sedlacek, 2013), limiting

our ability to incorporate them into ecological forecasts

(Osmond et al., 2004). Further, local climatic trends do

not always follow global trends (Helmuth et al., 2002;

Cordero et al., 2011). One example of the inability of

GCMs to project complex local climate patterns occurs

in California, where a cool coastal climate transitions

sharply to a substantially warmer interior. While

weather station data in California show a coherent state-

wide positive trend in minimum surface air temperature

(LaDochy et al., 2007), maximum temperature trends

vary spatially, with cooling in coastal areas and warm-

ing in inland areas (Lebassi et al., 2009).

The mechanism proposed to explain the asymmetric

change in surface air temperatures involves differential

heating between the ocean and continents, which has

been hypothesized to result in stronger and more per-

sistent wind-driven coastal upwelling along the coast

of California in the future (Bakun, 1990; Iles et al., 2012;

Sydeman et al., 2014). Regional climate models (RCMs)

indicate that increases in wind-driven coastal upwel-

ling may limit future increases in coastal California

temperatures by reducing insolation due to upwelling-

induced fog and raising humidity in coastal terrestrial

ecosystems (Snyder et al., 2003; O’Brien et al., 2012).

Although long-term observations support this predic-

tion (Seo et al., 2012), it has not yet been consistently

corroborated by GCM simulations (Wang et al., 2010),

due to simplifying assumptions and low resolution in

coupled ocean–atmosphere models (Bakun et al., 2010).
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The limited capacity of global simulations to resolve

local climates has profound implications for projecting

climate change impacts (Wilby et al., 2004), including

shifts in species distributions (Kremen et al., 2008).

Range shift forecasts are most often explored using spe-

cies distribution models (SDMs), which integrate geo-

graphic and climatic data associated with species

occurrences (Peterson & Vieglais, 2001), yielding a spa-

tially explicit hypothesis of current climatically suitable

habitat. SDMs are also applied to estimate where future

climatic conditions will be suitable for a given species,

under the assumption that the species–climate relation-

ship remains stable (Franklin & Miller, 2009; Peterson,

2011). This is typically achieved by projecting fine-scale

hypotheses of current suitable habitat onto downscaled

future global simulations (e.g., Daszak et al., 2012).

Downscaling brings the coarse spatial resolution of the

global and regional scale climate models (>50 km2) to

the resolution of current climate datasets (<1 km2) to

avoid combining data with different resolutions (Wilby

et al., 2004).

Multiple approaches are used to downscale GCM

simulations, ranging from basic techniques such as the

simple change factor approach (e.g., Tabor & Williams,

2010), to more complex ones, such as deterministic sta-

tistical approaches (e.g., Hidalgo et al., 2008; Abat-

zoglou & Brown, 2012). Currently, downscaled datasets

that have the potential to capture both the effect of

wind-driven coastal upwelling on surface air tempera-

ture and humidity patterns and, at the same time, pre-

sent a spatial resolution fine enough to capture the

environmental heterogeneity characteristic of coastal

California are limited (e.g., Abatzoglou, 2013). Yet it is

this combination of properties that would enable con-

servation and adaptation strategies at a local scale (Flint

& Flint, 2012). Researchers have used dynamically

downscaled (e.g., Kueppers et al., 2005) and statistically

downscaled temperature and precipitation (e.g., Loarie

et al., 2008; Klausmeyer & Shaw, 2009) with SDMs to

project potential effects of climate change on California

biodiversity. However, the downscaled climate surfaces

used for these studies do not include historic changes

in wind-driven coastal upwelling, nor projected future

upwelling regimes and coastal surface air temperature

and humidity patterns, limiting confidence in range

shift estimates for coastally restricted species.

The aim of this study was to develop and test an

alternative approach to forecasting climatically suitable

habitat for a coastal species (i.e., coast redwood) that

incorporates both regional and local manifestations of

climate change. For this, we assume that anomalous

years in the historic climatic record already capture

fine-scale climate dynamics and can be used as a proxy

for short- to midterm future climate scenarios (Hansen

et al., 2012). With this approach, we not only maintain

coherent relationships between regional climate and

local effects of coastal upwelling, but we also preserve

covariance among climatic variables in our projections

(Dobrowski et al., 2011) as it is manifest in more

extreme years.

Coast redwood (Sequoia sempervirens), with a distribu-

tion limited to a 50-km belt along the coast of California

(Noss, 2000), is particularly well suited for our analysis.

Coast redwoods have a well-known distribution, facili-

tating model evaluation. They also are the foundation

species of redwood forest and share a distribution and

key traits with many co-occurring species that might

explain the forest species composition (Violle et al.,

2014). In particular, coast redwoods are known to be

poor regulators of water use (Burgess & Dawson, 2004;

Simonin et al., 2009) and eighty percent of the dominant

plant species that occur in redwood forest can acquire

water through their leaves (Limm et al., 2009), includ-

ing coast redwoods. These shared physiological traits

and restricted distributions are evidence that many spe-

cies in redwood forest are strongly influenced by local

ocean–atmosphere interactions (Johnstone & Dawson,

2010). Finally, coast redwoods and the species that

occur in redwood forests are of conservation concern.

An approach that can more reliably project zones of

contraction, of expansion, and of persistence under a

range of climate scenarios could be a useful tool for

conservation science and practitioners.

In this paper, we address three questions: (i) Do

coarse spatial resolution global climate model projec-

tions of future mean regional climate have observed

fine spatial resolution analogs in the historic climatic

record? (ii) How sensitive are SDMs to fine-scale cli-

mate analogs from the historic climatic record, using

redwoods as an example, and how do these projections

relate to GCM scenarios of the future? (iii) Do distribu-

tion models based on fine-scale historic climatic analogs

allow us to identify highly stable and unstable zones

that could support climate adaptation planning for red-

wood forests? To address these questions, we used nat-

urally occurring variability in the historic climatic

record to develop multiple atemporal scenarios of Cali-

fornia climate. To provide a temporal context, we com-

pared these scenarios to GCM projections from the

archive of the Coupled Model Intercomparison Project

Phase 5 (CMIP5). We developed estimates of climati-

cally suitable habitat for redwoods under historically

‘normal’ temperature and precipitation patterns, and

for multiple historically based climate scenarios. We

combined the resulting habitat scenarios, based on his-

toric climate, into an ensemble that identifies coherent

subregions robust to near-term climate change, as well

as subregions projected to experience almost certain
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departures from 20th century climate. This approach

suggests refugial portions of the current redwood forest

distribution that are forecast to remain climatically suit-

able in the near-term, which can inform redwood man-

agement, restoration, monitoring, and conservation

initiatives.

Materials and methods

Climate change scenarios for California

We used the tails of the distribution of observed temperature

and precipitation (Hansen et al., 2012) as analogs of future sce-

narios of California coastal climate at a spatial scale finer than

those produced by GCMs. This approach, similar to the cli-

matic analogs method developed by Lorenz (1969), takes

advantage of spatially gridded climatic time-series data, cir-

cumvents the need to run RCMs at finer resolutions in a regio-

nal subdomain (e.g., dynamical downscaling; Ahmed et al.,

2013) and avoids the need to establish complex relationships

between current observations and large-scale variables (i.e.,

statistical downscaling; Wilby & Dawson, 2013). However,

instead of searching for equivalent gridded surfaces for the cli-

matic variables at the resolution of the GCMs (Zorita & Von

Storch, 1999), we selected climatically anomalous years at the

statewide scale from the historic record.

To identify historic anomalous years, we used data from a

network of 195 Cooperative Observer Network climate sta-

tions for the State of California, hosted at the California Cli-

mate Data Archive (CCDA). These long-term measurements,

which are also part of the Global Historical Climatology Net-

work (GHCN), are the most comprehensive and harmonized

climate record available for temperature and precipitation in

California (Abatzoglou et al., 2009); they are often used for

validating GCMs. We examined four annual climatic vari-

ables, but here we focus on mean annual temperature and

annual total precipitation; results for maximum and mini-

mum temperature yielded similar results (Appendix S1, Figs

S1–S4). We computed annual departures from statewide

means for the full historic record (1895–2010; Fig. 1) and

assigned departures for each year (x) to one of three possible

categories: (i) x > l + s; (ii) x < l � s; and (iii) l � s

< x < l + s, where s is one standard deviation from the mean

(l). We classified years according to both annual mean tem-

perature and total annual precipitation (Fig. 2), with ‘normal’

years within one standard deviation of the mean for both

variables, and other years grouped to represent eight scenar-

ios of less probable (i.e., anomalous) combinations of temper-

ature and precipitation.

Fig. 1 Mean annual temperature (top) and annual precipitation (bottom) departures from the 1895 to 2010 mean (solid line) for

California based on the CCDA dataset (Abatzoglou et al., 2009). Dashed lines represent � one standard deviation for each variable.
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Comparison of historically based scenarios and GCM
projections

To provide a temporal context to these historically based cli-

mate scenarios, we directly compared them to outputs from

the Coupled Model Intercomparison Project Phase 5 (CMIP5)

GCMs run under Representative Concentration Pathway

(RCP) 4.5 (Thomson et al., 2011) using the averaged standard-

ized Euclidean distance (Diffenbaugh & Giorgi, 2012) to evalu-

ate similarity. The RCP4.5 greenhouse gas concentration

trajectory provides a conservative estimate of future global

temperature compared with alternative trajectories (Peters

et al., 2012), although trajectories of temperature change do

not diverge substantially among RCPs until after the 2040’s

(Knutti & Sedlacek, 2013). From 19 GCMs in the CMIP5

archive, we obtained mean monthly temperature and total

monthly precipitation for California for the period 1895–2099

at their native spatial resolution. We calculated mean annual

temperature, annual total precipitation, and anomalies for

each year from 2020 to 2099, using the same baseline

period deployed in the selection of historically anomalous

years (i.e., 1895–2010) for each GCM. We then calculated mean

anomalies (i.e., averaged over 19 GCMs) for four future

10-year periods: 2020–2029, 2030–2039, 2040–2049, and 2050–

2059 and compared the means to the climate anomalies

obtained from the observed historical period to identify histor-

ical years analogous to future climates as projected by the

GCMs (Fig. 3).

Species distribution modeling

Climate variables. We obtained historically based climate sce-

narios in gridded form at 800 m resolution from the monthly

time series (1895–2010) Parameter-elevation Relationships on

Independent Slopes Model dataset (PRISM; Daly et al., 2000)

and grouped years based on the analysis of CCDA weather

stations. Over the spatial domain of the conterminous U.S.,

PRISM incorporates the effects of temperature inversions,

cold-air pooling, and coastal effects, providing one of the fin-

est spatial resolutions of climate patterns relative to other sim-

ilar products (but see Flint & Flint, 2012). PRISM values are

estimated using a local regression where surrounding weather

stations used to populate the regression are weighted by their

physiographic similarity to the grid cell being modeled.

PRISM constitutes a well-vetted and critical climate data

resource for a diversity of studies in fields including ecology,

biogeography, conservation, and natural resource manage-

ment (e.g., Fitzgerald & Gordon, 2012; Franklin et al., 2013;

Torregrosa et al., 2013).

To generate the SDMs, we used monthly maximum and

minimum temperature, total precipitation, and vapor pressure

from the PRISM gridded time-series dataset (Appendix S1,

Figs S1–S4). We also included a derived variable to capture

monthly climatic water deficit (WD; Stephenson, 1990, 1998).

We calculated the WD (Appendix S1, Fig. S9), as the difference

between precipitation and potential evapotranspiration (Palti-

neanu et al., 2009; Ellis et al., 2010) for each month of every

Fig. 2 Assignment of individual years to climate scenarios. White or gray circles indicate mean annual temperature and total precipita-

tion departures for individual years between 1895 and 2010 relative to the 1895–2010 means (solid lines). Dashed lines represent � one

standard deviation from the means. Years falling into the eight peripheral boxes (gray circles) define climatic scenarios for our analysis.
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year from 1895 to 2010 following Hamon (1963; see Appendix

S2 for details on WD derivation), which is a refinement of the

Thornthwaite method (Thornthwaite & Mather, 1955). This

method has been proven to be robust under a wide range of

conditions (V€or€osmarty et al., 1998) and, when compared to

alternative approaches, it provided the most accurate approxi-

mation when the inputs are limited to temperature and pre-

cipitation (Lu et al., 2005). While calculation of WD as the

difference between potential evapotranspiration and actual

evapotranspiration would have been desirable (e.g., Flint

et al., 2013; Chardon et al., 2014; McIntyre et al., 2015), lack of

complete soil depth and texture datasets across the full study

domain limited a reliable estimate of actual evapotranspira-

tion. Further, SDMs that included a more accurate approxima-

tion of WD (Appendix S1, Fig. S13A) differed only by 15.51%

(SD = 5.46) with no discernible spatial pattern (Appendix S1,

Fig. S13B).

Species occurrence data. To build the species distribution

models, we compiled all coast redwood occurrence data from

museum specimens including, (i) georeferenced specimens

from the Consortium of California Herbaria, a centralized

repository for 16 regional herbaria (accessed June 2012) and

(ii) the Global Biodiversity Information Facility, a global con-

sortium of biodiversity data-holding institutions (accessed

June 2012). For evaluating the models, we obtained indepen-

dent occurrence data from redwood specimens held at the

California Academy of Sciences, which we retrospectively

georeferenced following the protocols of Chapman & Wiec-

zorek (2006). We define a species occurrence as a unique local-

ity expressed as latitude and longitude with positional

uncertainty represented by a maximum error estimate of

<800 m, supported by a vouchered specimen collected

between 1895 and 2010.

Species distribution models. We generated species distribu-

tion models using MaxEnt v3.3.3k (Phillips et al., 2006), a

method particularly effective under conditions of presence-

only observation data (Elith & Leathwick, 2009). MaxEnt uses

the principle of maximum entropy to estimate a set of rules

correlating environmental variables and species occurrences

to approximate the potential bioclimatic habitat of the target

species (Phillips & Dudik, 2008). The MaxEnt algorithm is

related to Bayesian theory and considers redundant informa-

tion without overfitting; eliminating the need to apply a vari-

able reduction technique before running the models (but see

Parolo et al., 2008). We calibrated the models using an

approach that addresses spatial autocorrelation using a spa-

tially structured partitioning procedure adapted from Fern�an-

dez et al. (2013). This process randomly resamples species’

observations into different subsets where 80% of the localities

are used for training and 20% are used for testing the model.

We created 100 subsets of the species observations that were

used to produce 100 MaxEnt models representing ‘normal’

conditions, defined here as the average values of variables

across 1895–2010 that fall within the central quadrant (Fig. 2;

Appendix S1, Figs S3 and S4). We used the default values in

the MaxEnt algorithms for the maximum number of iterations

and convergence threshold (i.e., 500, 10�5).

We averaged the 100 bootstrapped niche model results into

a final model that provided a continuous index of relative suit-

ability under ‘normal’ conditions. We converted the proba-

bilistic output into a presence/absence map based on a widely

accepted thresholding approach using the value of the points

Fig. 3 Multimodel mean annual temperature and precipitation anomalies for California projected for three decades in the 21st century

(colored circles) compared to historical annual temperature and precipitation anomalies (circles as in Fig. 2).
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on the receiver operating characteristic curve where the sum

of sensitivity and specificity is maximized (Loarie et al., 2008).

We evaluated the final model produced for ‘normal’ condi-

tions using three complementary approaches. First, we took

advantage of our independent evaluation data by measuring

how often the model successfully predicts the withheld inde-

pendent localities (i.e., prediction success) from georeferenced

specimens (Zweig & Campbell, 1993). As prediction success is

a function of the threshold for assigning presence, we also

evaluated the models using the area under the receiver

operating characteristic curve (AUC). AUC is a threshold-

independent metric that summarizes a model’s overall perfor-

mance over every possible threshold (Lobo et al., 2008).

Although this approach has been criticized for being sensitive

to the total geographic extent over which models are pro-

duced (VanDerWal et al., 2009), this should not affect our

results because we kept extent constant. While these metrics

are statistically defensible, they are still hampered by the lack

of true absence data (Lobo et al., 2010). As the current distribu-

tion of redwoods is relatively well known and mapped, we

compared the models for ‘normal’ conditions to the known

distribution of redwoods using the True Skill Statistic (TSS)

criterion (Allouche et al., 2006). We used the Classification and

Assessment with Landsat of Visible Ecological Groupings

(CALVEG), a fine-scale dataset that was primarily derived

from remote sensing and produced by the U.S. Department of

Agriculture, as the known current redwood distribution

(Appendix S1, Fig. S12).

We projected the bootstrap simulations that contributed to

the final model under the ‘normal’ conditions into each of

the anomalous years and aggregated projections by each of

the eight scenarios. As each scenario has a different number

of years, we combined the probabilistic outputs from Max-

Ent for each group of years before selecting the threshold

following Marmion et al. (2009). We converted the results

into the presence/absence maps (Appendix S1, Fig. S10)

based on the same threshold rule applied under ‘normal’

conditions.

Analysis of redwood distributions

To quantify changes in the distribution of suitable habitat, we

compared the spatial patterns, as well as metrics of distribu-

tion area, distance, and direction change. First, we evaluated

the differences in spatial patterns by subtracting gridded

model outputs under each scenario from the distribution

under ‘normal’ conditions and mapped the differences. Sec-

ond, we calculated the change in total area between the cur-

rent distribution and the distributions under each scenario. To

calculate areas, we converted all gridded model outputs into

polygons and projected them into an equal area projection

(Albers Equal Area Conic); we measured areas using the Spa-

tial Statistics toolset in ArcGIS v.10.1. Third, we calculated the

shifts in distance and direction under each scenario using

centroids. Using the Geographic Distributions toolset in Arc-

GIS v.10.1, we calculated centroids by projecting the data into

Azimuthal Equidistant projection and measuring the centers

of mass of the distributions.

Results

Observed analogs for GCM projections in the historic
climatic record

We used natural variability in the historic record to

develop multiple atemporal scenarios of California cli-

mate; to provide a temporal context, we directly com-

pared these scenarios to GCM projections from the

CMIP5 archive. The historically based climate scenario

that most closely matches GCM projections for 21st cen-

tury California climate change has higher temperature

but relatively unchanged precipitation (Fig. 3). More-

over, most of the years used to develop the historically

based warmer (normal precipitation) scenario are

within one standard deviation of mean projections for

the 2020s; GCM temperature projections continue to

increase but with little change in statewide annual pre-

cipitation in subsequent decades (Fig. 3). Although

mean GCM projections are located within our warmer

(normal precipitation) scenario, one standard deviation

across models for annual total precipitation extends

into the drier–warmer and wetter–warmer scenarios as

well, highlighting continued uncertainty regarding

future precipitation in California.

SDM sensitivity to fine-scale changes in climate using
redwood as an example

We developed estimates of climatically suitable habitat

for redwood under historical ‘normal’ temperature

and precipitation, and for multiple historical anoma-

lous climate scenarios (Appendix S1, Fig. S10). The

potential distribution for coast redwood was synthe-

sized across the years falling in each group of anoma-

lous climate conditions to produce ensemble estimates

for each historically based scenario (Fig. 4; Appendix

S1, Fig. S11). The redwood distribution projected into

the warm (normal precipitation) scenario, which most

closely resembles the CMIP5 projections for California,

showed a range contraction in the south, with a 50%

reduction of the climatically suitable area under ‘nor-

mal’ conditions (8809 km2; Fig. 5), and with no

suitable bioclimate remaining south of San Francisco

Bay. This contraction is balanced by an expansion in

the north, with a 34% gain in area (5895 km2; Fig. 5).

The stable area for this scenario is restricted to the

coastal region in the central part of the current

redwood distribution (Fig. 4b).

The combination of drier and warmer conditions

(Fig. 4a) produced the most extreme degree of contrac-

tion in the projected bioclimatic habitat for redwood,

with a 79% reduction in area from ‘normal’ conditions

(Fig. 5). The drier scenario (normal temperatures;

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13027
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Fig. 4d) presented the next highest degree of contrac-

tion with a loss in suitable habitat of 63% (Fig. 5). Con-

versely, the highest degree of expansion was found in

the wetter and cooler scenario (Fig. 4h) with a gain of

44% of the climatically suitable area under ‘normal con-

ditions’ (Fig. 5). The second largest degree of expansion

was hypothesized by the wetter and warmer scenario

(Fig. 4c) with a projected increase in area equal to 37%

(Fig. 5).

When the centroids of each projected distribution

were compared to the centroid of the historical mean

redwood distribution, the scenarios with the largest rel-

ative shifts were the warmer scenario (normal precipi-

tation; Fig. 4b) and the drier and warmer scenario

(Fig. 4a), with shifts of 201 and 192 km, respectively

(Fig. 6). The wetter and cooler scenario (Fig. 4h)

showed the lowest degree of geographic shift of 10 km

(Fig. 6). All of the scenarios, except the wetter and

cooler scenario, presented an average north-northwest

(337 � 5°) direction of displacement (Fig. 6).

Identification of stable and unstable regions for redwoods

We combined our historically based climatically suit-

able habitat scenarios into an ensemble to identify sub-

regions that were (i) consistently robust to modest

climate change (refugia) and (ii) highly sensitive to

modest climate change (unstable). When we overlaid

the stable areas from all historically based scenarios,

the most stable region is located in the north-central

portion of the redwood range (Fig. 7) restricted to an

area of 3010 km2. When we restricted the ensemble to

include only the realistic, warmer scenarios, the stable

area expanded somewhat to 3642 km2. When we over-

laid the contraction areas from all historically based

scenarios, we found that the most climatically unstable

regions are located in the southern and parts of the cen-

tral range of coast redwoods, particularly along the

eastern edge of its distribution (Fig. 7).

Discussion

In this study, we developed an approach that uses his-

torical climate variability in the context of GCM projec-

tions to project near-term consequences of climate

change in coastal ecosystems sensitive to fine-scale

ocean–atmosphere dynamics. Among the eight high-

resolution scenarios, we developed for California

coastal climate, three (Fig. 4a–c) reflect warming but

uncertain precipitation change (Pierce et al., 2013). Con-

sistent with Hansen et al. (2012), the warmer (normal

precipitation) scenario is equivalent to mean climate

changes projected for California for the 2020s–2030s by
CMIP5 GCMs using RCP4.5 scenarios (Fig. 3), suggest-

ing this historically based ‘equivalent’ can be an alter-

native to downscaled GCM projections that incorporate

the effect of wind-driven costal upwelling. Such an

equivalent is well suited for projecting future shifts in

climatically suitable habitat for redwoods because it

captures fine-scale climate variation, such as the sharp

coastal energy/moisture gradients associated with the

upwelling zone in California. It is also useful because it

circumvents problems associated with downscaling

(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 4 Composite maps of the projected expansion, contraction,

and stability for the eight scenarios we developed.
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variables separately and maintains temporal consis-

tency and regional climate coherence, which are needed

for hydrological and ecological studies (Flint & Flint,

2012). However, while this approach may produce

more biophysically accurate estimates of bioclimate

shifts, it is also restricted to the next two decades for

California due to the rapid rate of climate change and

to the limited availability of anomalously warm years

in the last century. Efforts to develop climate records

further back in time, for example, using climate proxies

such as tree rings or lake sediment cores, could facili-

tate development of additional scenarios. Higher fre-

quency historic climatic records (i.e., daily data) could

also be used to construct alternative scenarios.

Resource managers seeking greater spatial preci-

sion in their future projections confront a challenge

(McPherson et al., 2006; Kremen et al., 2008): the spa-

tial resolution of global climate simulations is still

insufficient to identify how global stressors are modi-

fied by small-scale heterogeneity and manifest locally

(Kirincich et al., 2005). Our approach offers a method

for ecological forecasting that addresses the issue of

how climate variability manifests at local scales. Our

historically based ensembles, analogous to GCM pro-

jections, suggest near-term (2020s–2030s) bioclimatic

shifts northward with contractions in coast redwood

suitable habitat at the southern and parts of the cen-

tral portion of their current range – a spatially expli-

cit hypothesis relevant to climate change adaptation

planning (Flint & Flint, 2012). In addition to the

GCM-referenced scenarios, the historical record con-

tained sufficient variability to produce five additional

boundary free scenarios (Tebaldi & Knutti, 2007) and

their corresponding projected SDMs. These spatially

explicit divergent hypotheses also reveal substantial

changes in the distribution of redwood bioclimate,

providing hypotheses about redwood sensitivity to

conditions not projected by global climate models

(e.g., cooler temperatures) that could be tested with

paleoecological data. Unique to long-lived trees, an

independent bioclimatic dataset exists in the form of

tree rings, which provide measures of physiological

response to environmental change. Analyses of the

Fig. 5 Ensemble average changes in area of climatically suitable habitat for coast redwood among scenarios identified in Figure 2.

Fig. 6 The shift in the center of mass of modeled climatically

suitable habitat for coast redwood for each of the eight scenarios

relative to center of mass under ‘normal’ conditions.

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13027
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dendrochronological record can confirm or counter

hypothesized sensitivity of redwoods to natural cli-

matic variability. Rapidly expanding citizen science

observations offer another possibility for obtaining

time-series data that connect biodiversity, climate,

and environment to test these hypotheses.

Increasingly, dynamic, synthetic conservation plan-

ning frameworks require improved understanding of

the spatiotemporal relationships between biodiversity

and climate. The ecological forecasts presented here

suggest regions of near-future climate stability and cli-

mate stress across the range of coast redwood. The iden-

tification of coherent subregions: (i) robust to modest

climate change (refugia) and (ii) highly sensitive to

modest climate change (instability) can inform the spa-

tial prioritization of areas with higher degrees of natural

resistance to climate change, which act as natural cli-

mate refugia (Fig. 7). While we built these forecasts

using coast redwood as the target species, we expect the

projections also to be valuable for shorter-lived species

with similar bioclimatic constraints (Limm et al., 2009).

Their long life span suggests redwood trees can tolerate

a significant amount of climate variability whereas

shorter-lived species may respond quickly to near-term

climate change. Experimental heating is increasingly

used to understand biodiversity response to climate

warming (Aronson & McNulty, 2009). Such experi-

ments, in combination with other climate manipulations

(e.g., soil water reductions), could be deployed in areas

projected to be stable and those expected to be unstable

to test whether young redwoods are indeed more sensi-

tive to climate change in unstable sites. Further, such

experiments could also help test whether the redwood

bioclimatic envelope is a good proxy for bioclimatic

envelopes of co-occurring species. Areas outside of the

current coast redwood range but that are predicted as

climatically suitable and stable under our projected sce-

narios of climate change could be investigated as sites

for assisted migration and forest restoration efforts

(Lunt et al., 2013).

Fig. 7 Ensemble scenarios for climatically stable subregions. Left, map of stability. Right, map of contraction.

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13027
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Although there is evidence that coastal upwelling

might limit future increases in costal California temper-

atures (Snyder et al., 2003; O’Brien et al., 2012), there

are also measurements that show a slight decline in fog

during the driest months in the same area (Johnstone &

Dawson, 2010). Given the strong reliance of redwoods

and other co-occurring species on fog, future research

should explore the relationship between fog and regio-

nal climate over the 20th century to understand

whether the regionally warm years we selected are low

or high fog years and whether fog can be used more

explicitly to develop future climate scenarios.

In summary, historical climate variability offers an

untapped resource for developing robust climate sce-

narios in regions with fine-scale, dynamic responses to

global climate change. The tails of observed climate dis-

tributions can be an alternative to GCM projections, at

least for near-term forecasting. While we expect this

approach to be particularly valuable in western conti-

nental margins where changes in wind-driven upwel-

ling affect coastal climate and for short-lived

organisms, we recognize that long-lived organisms

such as redwoods will likely have lagged biogeo-

graphic responses to climate change. However, demo-

graphic, ecophysiological, and ecohydrological changes

may manifest more quickly, and these spatially explicit

scenarios provide guidance on where to expect change

first.
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