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The rovibrational kinetic energy for complexes of rigid molecules
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The rovibrational kinetic energy for an arbitrary number of rigid molecules is computed. The
result has the same general form as the kinetic energy in the molecular rovibrational
Hamiltonian, although certain quantities are augmented to account for the rotational energy
of the monomers. No speci® c choices of internal coordinates or body frame are made in order
to accommodate the large variety of such conventions. However, special attention is paid to
how key quantities transform when these conventions are changed. An example system is
analysed explicitly as an illustration of the formalism.

1. Introduction
The rovibrational kinetic energy of a molecular (rigid

body) complex has previously been computed explicitly
for a number of speci® c cases. Examples include calcula-
tions for the atom± monomer system, consisting of a
point particle and a rigid body, by Brocks and van
Koeven [1], van der Avoird [2], and Makarewicz and
Bauder [3]; the molecular dimer, consisting of two
rigid bodies, by Brocks et al. [4] and van der Avoird
[5]; the molecular trimer by Xantheas and Sutcli� e [6]
and van der Avoird, Olthof and Wormer [7]; and closely
related systems of single molecules with internal rotation
[8, 9]. In the present paper we derive the rovibrational
kinetic energy of an arbitrary molecular complex con-
taining an arbitrary number of rigid bodies. That is, we
express the kinetic energy in terms of the total angular
momentum of the complex and the momenta associated
with the internal degrees of freedom. The term r̀ovibra-
tional’ is perhaps misleading since it implies small ampli-
tude vibrations of the complex, an assumption we do
not make. A rovibrational kinetic energy for a general
molecular complex has been proposed earlier by Makar-
ewicz and Bauder [3]; their analysis di� ers markedly
from ours in that they do not impose rigidity conditions
on the monomers nor do they distinguish the relative
rotational motion of the monomers from the internal
vibrations of the monomers.

One method for deriving the rovibrational kinetic
energy of a system of rigid bodies would be to begin
with the rovibrational kinetic energy of a system of
point particles and then impose rigidity constraints
within certain subsets of these particles. A general analy-
sis of internal constraints on n -body systems has been

given by Menou and Chapuisat [10] and by Gatti et al.
[11]. These authors observe that such a formalism may
be applied to ® nd the rovibrational kinetic energy of a
rigid body complex, though they do not derive such a
kinetic energy. The constrained systems approach has
the advantage of naturally allowing the relaxation of
the rigidity constraints to include small internal vibra-
tions of the monomers. However, within a strictly rigid
body, the positions, masses, and velocities of the consti-
tuent particles are irrelevant. Rather, only the overall
orientation, moment of inertia, and angular velocity
are of interest. Therefore, in our derivation of the rovi-
brational kinetic energy, we assume from the outset that
the bodies are rigid and use a kinetic energy consisting
of only the translational and rotational energies of the
rigid bodies. It should be mentioned that whichever
approach is followed there exists an ambiguous extra-
potential term in the quantum kinetic energy. The origin
of this ambiguity rests in the lack of knowledge about
the potential which con® nes the system to the manifold
of rigid shapes (see, e.g. Kaplan et al. [12]). For simpli-
city, we neglect any extrapotential terms arising from
the constraint process and adopt the standard form
(translational plus rotational energies) for the quantum
kinetic energy of a rigid body.

Our approach is modelled on the derivation of [13],
valid for clusters of point particles, but is augmented to
include the rotational kinetic energy of the monomers;
the current paper therefore generalizes many results
valid for point particles to systems of extended rigid
bodies.

Also, in deriving the rovibrational kinetic energy, we
make no speci® c choice of internal coordinates or body
frame. This allows our results to be applicable to the
wide range of coordinate and frame conventions suit-
able to di� erent molecular complexes. We discuss how
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the various quantities appearing in the kinetic energy
transform under changes of internal coordinates and
body frame. We also present two distinct decomposi-
tions of the kinetic energy into rotational and vibra-
tional (internal) contributions. The ® rst decomposition
is independent of the conventions for internal coordi-
nates and body frame. The second decomposition has
a form more common to rovibrational Hamiltonians in
the literature, though it is not independent of coordinate
and frame conventions.

The current paper has been in¯ uenced by recent work
exhibiting the importance of gauge theory and geometric
phase in the study of rovibrational coupling [13± 19]. In
addition to rovibrational coupling, the geometric, or
Berry’s, phase [20] has important applications in
Born± Oppenheimer theory [21], optics [22, 23], and
guiding centre motion [24], to name a few examples.
The in¯ uence of gauge theory on our analysis here is
most readily evident in the form of the kinetic energy
equation (27) which, owing to the appearance of a gauge
potential, is reminiscent of the kinetic energy of a
charged particle in a magnetic ® eld. Notions of gauge
invariance and covariance also have in¯ uenced our
analysis of transformation properties presented in sec-
tion 2.3. Although our development is in¯ uenced by the
techniques and concepts of gauge theory and geometric
phase, this paper requires no speci® c background in
either ® eld.

2. The classical kinetic energy of a molecular complex
2.1. The principal derivation

In this paper, a molecular complex is modelled by a
collection of n rigid bodies or monomers. No constraints
are placed on the positions or orientations of the
monomers or on the symmetry of the moment of inertia
tensors. In particular, we allow the monomers to be
point particles (atoms), collinear bodies, or non-colli-
near bodies. However, for mathematical simplicity, initi-
ally we assume that each monomer is non-collinear.
Then, after deriving the rovibrational kinetic energy,
we comment on the straightforward generalization of
allowing complexes containing collinear monomers
and point particles.

We begin by introducing three classes of frames which
are important in our derivation. The space frame (SF) is
the inertial, laboratory-® xed frame. There are n individ-
ual body frames (IBF), one for each body. IBFa ,
a = 1, . . . , n , is ® xed to rigid body a and rotates with
the body. Finally, there is a single collective body frame
(CBF), which is ® xed to the complex as a whole. The
CBF di� ers from the other frames in that it must be
speci® ed for each shape or internal con® guration of
the complex. In general, this speci® cation produces sin-
gularities in the CBF, a fact which has been studied

in three- and four-atom systems [25, 26]. There is no
canonical way of choosing the CBF, though there are
several methods commonly used in such Hamiltonians,
such as ® xing the CBF to the principal axes of the com-
plex or to one of the IBFs. In this paper we will make no
speci® c choice of CBF.

We employ the following notation to denote the
frame to which the components of a vector are referred.
For an arbitrary vector v, an s superscript, that is vs,
indicates components in the SF; an ia superscript indi-
cates components in the IBF of body a ; and a c super-
script indicates components in the CBF. (For notational
simplicity, at a certain point we will drop the c super-
script, leaving it understood thereafter that a vector
without a superscript is implicitly in the CBF.) The com-
ponents of v in the various frames are related by proper
orthogonal 3 3 matrices, which we de® ne by

vs = Rvc, ( 1)

vs = Ss
a via , ( 2)

vc = Sc
a via . ( 3)

The matrix Ss
a determines the orientation of body a , in

the SF; the matrix R determines the orientation of the
entire complex in the SF; and the matrix Sc

a determines
the orientation of body a in the CBF.

The con® guration of the complex of n rigid bodies is
speci® ed fully by the centre of mass position of each
body and the orientation of each body. To eliminate
the overall translational degrees of freedom, we ® x the
centre of mass of the entire complex at the origin. The
centre of mass positions of the n bodies are then
determined by n - 1 Jacobi vectors [27, 13] rs

a ,
a = 1, . . . , n - 1. The orientations of the rigid bodies
are speci® ed by the n matrices Ss

a 2 SO( 3) ,
a = 1, . . . , n . Taken together, rs

a , a = 1, . . . , n - 1 and
Ss

a , a = 1, . . . , n specify a lab description of the con-
® guration. To shift to an internal± external, or shape±
orientation, description of the con® guration, we intro-
duce 6n - 6 internal, or shape, coordinates q ¹,
¹ = 1, . . . , 6n - 6. The q ¹ may be separated into 3n - 6
coordinates parametrizing the distances between the
rigid bodies and 3n coordinates (Euler angles) para-
metrizing the orientations of the bodies in the CBF.
However, here we allow the q ¹ to be completely arbi-
trary, so long as they are invariant under rotations of
the complex. The Jacobi vectors rc

a , referred to the
collective body frame, and the matrices Sc

a are both
functions of the internal coordinates q ¹. In practice,
one may de® ne the CBF by specifying the functions
rc
a ( q ) and Sc

a ( q ) , where q without a superscript refers
to the collection of all coordinates q ¹. The orientation
R 2 SO( 3) (de® ned in equation (1)) of the complex and
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the shape q ¹ fully determine the con® guration in the SF,
as may be seen by the following equations:

rs
a = Rrc

a ( q ) , ( 4)

Ss
a = RSc

a ( q ) . ( 5)

Equation (4) is an application of equation (1), and equa-
tion (5) is implied by equations (1) ± (3). The above equa-
tions relate the internal± external description of a
con® guration (in terms of R and q ) to the original
description (in terms of rs

a and Ss
a ).

We assume that the masses of the n bodies have been
absorbed into our de® nition of the Jacobi vectors. Thus,
the kinetic energy of the complex, without the overall
translational contribution, is

T =
1
2

n - 1

a = 1
j Çrs

a j
2 +

1
2

n

a =1
!s

a Ms
a !s

a , ( 6)

where the dot is used for time derivatives, Ms
a is the

moment of inertia of body a in the SF, and !s
a is the

angular velocity of body a .
In general, an angular velocity is a vector which meas-

ures the rotation rate of one frame with respect to
another frame. The components of this vector may be
referred to either of these two frames (or to an arbitrary
third frame for that matter). For example, the angular
velocity !s

a measures the rotation rate of the IBF of
body a with respect to the SF; its components are
referred to the SF.

We introduce the notation v for the antisymmetric
matrix which maps a vector u into the vector v u.
Then,

!s
a = ÇSs

a SsT
a , ( 7)

!ia
a = SsT

a
ÇSs

a , ( 8)

where the T superscript denotes the matrix transpose.
Note that these two formulas are consistent with the
change of basis relation equation (2), that is
!s

a = Ss
a !ia

a , as may be seen from the general relation

Q( v ) QT = ( Qv) , ( 9)

where the vector v is arbitrary and Q 2 S O ( 3) .
We proceed by expressing the kinetic energy equation

(6) in terms of the internal velocities Çq ¹ and the total
angular velocity !c. The total angular velocity measures
the rotation rate of the CBF with respect to the SF. It
has components in both the SF and the CBF which are

!s = ÇRRT, ( 10)

!c = RT ÇR . ( 11)

These equations are analogous to equations (7) and (8).
Equation (11) permits the time derivatives of equations
(4) and (5) to be expressed as

Çrs
a = ÇRrc

a + Rrc
a ,¹ Çq ¹ = R ( !c rc

a + rc
a ,¹ Çq ¹) , ( 12)

ÇSs
a = ÇRSc

a + RSc
a ,¹ Çq ¹ = R[( !c ) Sc

a + S
c
a ,¹ Çq ¹], ( 13)

where the ,̀¹’ subscript denotes the derivative with
respect to the coordinate q ¹. In the above equations
we have used the convention, which we adopt for the
remainder of the paper, that the Greek indices ¹, t , . . .
are implicitly summed from 1 to 6n - 6 when repeated.
However, the Greek indices a , b , . . . which label either
the Jacobi vectors or monomers are summed explicitly.
Combining equations (7) and (13) and using equation
(5), we ® nd

!s
a = R[( !c ) + Sc

a ,¹ScT
a Çq ¹]RT. ( 14)

Since Sc
a ,¹ScT

a is antisymmetric, we de® ne a vector s a ¹

such that
s

c
a ¹ = Sc

a ,¹ScT
a , ( 15)

s
ia
a ¹ = ScT

a Sc
a ,¹. ( 16)

By comparison with equations (7) and (8), we see that
Çq ¹ s

c
a ¹ is the angular velocity of the IBF a with respect to

the CBF. By inserting equation (15) into (14) and using
equation (9), we ® nd

!s
a = R( !c + Çq ¹ s

c
a ¹) = !s + Çq ¹ s

s
a ¹. ( 17)

The above equation expresses the angular velocity of the
IBF of body a with respect to the SF as the sum of the
angular velocity of the CBF with respect to the SF plus
the angular velocity of the IBF of body a with respect to
the CBF. However, this decomposition has no inherent
physical meaning since it depends on the convention
used to de® ne the CBF. By appropriately changing
this convention, either of these two terms could be
made to vanish.

Using equations (12) and (17) in equation (6), we
write the kinetic energy as

T = 1
2!·M!+ a¹·!Çq ¹ + 1

2h ¹t
Çq ¹ Çq t , ( 18)

where

M =
n - 1

a = 1

( r2
a I - ra rT

a ) +
n

a = 1

M a =
n - 1

a = 1

( r2
a I - ra rT

a )

+
n

a =1
S a Mia

a ST
a , ( 19)

a¹ =
n - 1

a = 1

ra ra ,¹ +
n

a = 1

M a s a ¹ =
n - 1

a =1

ra ra ,¹

+
n

a =1
S a Mia

a s
ia
a ¹, ( 20)
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h ¹t =
n - 1

a =1
ra ,¹·ra , t +

n

a = 1
s a ¹·M a ¿a t =

n - 1

a = 1
ra ,¹·ra , t

+
n

a =1
s

ia
a ¹·Mia

a s
ia
a t , ( 21)

and where henceforth we suppress the c superscript on
vectors and tensors referred to the CBF. We have also
used I for the identity matrix and M a = RTMs

a R and
Mia

a = SsT
a Ms

a Ss
a for the moment of inertia of body a

in the CBF and IBF a respectively. In the above equa-
tions, we present two expressions for each of the quan-
tities M, a¹, and h ¹t . The ® rst expression involves
quantities referred entirely to the CBF. The second
expression is slightly more complex but has the advan-
tage that all of the dependence on S a ( q ) and ra ( q ) is
shown explicitly by S a , ra , r a ,¹, and s i a

a ¹. Note that M i a
a

is the moment of inertia of body a in its own IBF and as
such is a constant matrix independent of both the shape
and orientation.

By rearranging the terms in equation (18), we put the
kinetic energy in the form

T = 1
2( !+ A¹

Çq ¹)·M( !+ At
Çq t ) + 1

2g¹t
Çq ¹ Çq t , ( 22)

where

A¹ = M- 1a¹, ( 23)

g¹t = h ¹t - a¹·M- 1at . ( 24)

Converting the velocities to momenta, we ® nd

J =
¶ T

¶ !
= M( !+ A¹

Çq ¹) , ( 25)

p ¹ =
¶ T

¶ Çq ¹
= g¹t

Çq t + A¹·J. ( 26)

The vector J is the total angular momentum of the com-
plex. It satis® es the usual body-referred ànomalous’
commutation relations f J i , J j g = -

k
e i j k J k , where e i j k

is the usual Levi± Civita symbol. The classical kinetic
energy is now expressible in terms of momenta as

T = 1
2J·M- 1J + 1

2( p ¹ - A¹·J) g¹t ( p t - At ·J) , ( 27)

where g
¹t is the inverse of g¹t .

Equation (27) decomposes the kinetic energy into two
terms. The ® rst term is the kinetic energy the complex
would have if it were a rigid body of ® xed shape. We
regard this term as the rotational kinetic energy of the
complex. The second term we regard as the internal, or
vibrational, kinetic energy. Often in such rotation±
vibration decompositions a di� erent rotational term
appears which contains a modi® ed moment of inertia
tensor and a modi® ed angular momentum vector. We
will relate the above decomposition to such alternative

decompositions in the next section. For now, however,
note that the appearance of A¹ in the internal kinetic
energy couples the internal degrees of freedom to the
angular momentum. For this reason, we call A¹ the
Coriolis potential. Furthermore, we call g¹t the internal
metric because it acts to square p ¹ - A¹·J. Note that the
internal kinetic energy has the same j̀ p - e Aj

2’ form as
the kinetic energy of a particle in a magnetic ® eld, where
the role of the vector, or gauge, potential is played by
the Coriolis potential and the role of the electric charge
is played by the angular momentum.

The kinetic energy given in [13] for a collection of
point particles has exactly the same form as equation
(27). However, for collections of point particles, the
quantities de® ned in equations (19) ± (21) do not contain
the terms with Mia

a . The appearance of these terms, and
of course the introduction of an extra 3n internal coor-
dinates, are the sole modi® cations necessary to augment
the kinetic energy of a system of point particles to
include the rotational kinetic energy of the monomers.
The fundamental reason why the form of the kinetic
energy is the same for these two cases is the rotational
symmetry of the kinetic energy operator; equation (27)
is in fact a general result, valid for any SO( 3) invariant
metric. We will discuss this matter further in a future
publication.

We comment now on how the preceding results are
generalized to include collinear monomers and point
particles. First, the number of coordinates changes. A
non-collinear body requires three Euler angles to specify
its orientation fully, whereas a collinear body requires
only two spherical coordinates to specify its orientation
(the direction of its collinear axis). A point particle, of
course, requires no orientational coordinates. Therefore,
instead of 6n - 3 coordinates as before, there are
3n + 3n n + 2n c - 3 coordinates parametrizing the
centre of mass system. Here, n = n n + n c + n p is the
total number of monomers, where n n is the number of
noncollinear monomers, n c is the number of collinear
monomers, and n p is the number of point particles.

We next describe the form of the rovibrational kinetic
energy when incorporating collinear bodies and point
particles. First, the computation leading from equation
(6) to equation (27) is essentially unchanged by the
inclusion of collinear bodies and point particles, so
long as one takes the moment of inertia tensor M a of
a point particle to be 0. The moment of inertia tensor of
a collinear body is explicitly M a = ·a ( I - na nT

a ) , where
na is a unit vector pointing along the collinear axis and
·a is the single nonzero principal moment. The quantity
na is a more natural measure of the orientation of a
collinear body than S a , since S a overparametrizes the
orientations. Therefore we rewrite equations (19) ± (21)
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in the following form, more appropriate for a general
complex:

M =
n - 1

a =1

( r2
a I - ra rT

a ) +
n n

a =1

S a Mia
a ST

a

+
n n+ n c

a = n n+1

·a ( I - na nT
a ) , ( 28)

a¹ =
n - 1

a =1
ra ra ,¹ +

n n

a =1
S a Mia

a s
ia
a ¹

+
n n+ n c

a = n n+1
·a na na ,¹, ( 29)

h ¹t =
n - 1

a =1
ra ,¹·ra , t +

n n

a =1
s

ia
a ¹·M ia

a s
ia
a t

+
n n+ n c

a = n n+1

·a na ,¹·na , t , ( 30)

where we have ordered the monomers with the non-col-
linear bodies ® rst, the collinear bodies second, and the
point particles last. We omit the straightforward proof
of these equations relying instead on the following two
observations. First, the orientational contribution from
the point particles has dropped out since M a is 0 for
such particles. Next, the orientational contribution
from a collinear body is identical to the contribution
of a single Jacobi vector. This fact is easily understood
by modelling a collinear body as two point particles
connected by a Jacobi vector. The above equations
may be combined with equations (23) and (24) to
obtain the kinetic energy equation (27) of a general mol-
ecular complex. The only note of caution occurs if the
entire complex should become collinear, in which case
M is not invertible and singularities may arise.

2.2. An alternative form of the kinetic energy
We rearrange the kinetic energy equation (27) to place

it in a form which is more common in the literature on
rovibrational Hamiltonians. We de® ne the modi® ed
moment of inertia tensor ~M by

~M = M - h ¹t a¹aT
t , ( 31)

where h ¹t is the inverse matrix of h ¹t , and the vector K,
often called the angular momentum of vibration, by

K = h ¹t a¹p t . ( 32)

We use these de® nitions to place the kinetic energy in the
form

T = 1
2( J - K)· ~M

- 1
( J - K) + 1

2p ¹h ¹t p t . ( 33)

The above equation may be veri® ed by comparing the
terms of order J 2, J 1, and J 0 in equations (33) and (27).
The equality of the respective terms is apparent from the
following identities:

g¹t M- 1at = h ¹t ~M
- 1

at , ( 34)

g
¹t = h ¹t + h ¹s ( as · ~M

- 1
a¿) h ¿t , ( 35)

~M
- 1

= M- 1 + g¹t A¹AT
t , ( 36)

which follow from equations (31) and (24).
Equation (33) provides an alternative rovibrational

decomposition of the kinetic energy, in a form
common in the literature for rovibrational Hamilto-
nians. For example, the Wilson± Howard± Watson mol-
ecular Hamiltonian [28, 29] is expressed in this manner
using the Eckart conventions, for which various simpli-
® cations occur.

2.3. Changing the internal coordinates and the collective
body frame

When the conventions for the internal coordinates or
the CBF are changed, the quantities de® ned in this
paper do not, in general, remain invariant. Instead,
they transform via a precise set of rules. Although the
analysis of these rules is not critical to the logical ¯ ow of
this paper, we include an account of them for the fol-
lowing two reasons. An understanding of transforma-
tion rules facilitates conversion between di� erent sets
of conventions. This is important in actual problems,
where it is not uncommon to utilize more than one
coordinate or frame convention, especially for large
amplitude motions. Also, knowledge of transformation
properties leads to the de® nition and consideration of
quantities which transform in a simple manner (that is
invariantly or covariantly). Such quantities often have
special geometric or physical signi® cance. The review of
Littlejohn and Reinsch [13] contains an in depth discus-
sion of transformation properties specialized for systems
of point particles. Since essentially these results are
unchanged by the generalization to include rigid
bodies, we simply summarize here the key results from
[13] and comment on how they are to be extended.

We ® rst introduce the important concept of q tensors.
We consider a new set of coordinates q 0 ¹ which are
functions of the old coordinates q ¹. A q tensor trans-
forms under such a change in cordinates by contracting
each lower Greek index ¹ with ¶ q ¹/ ¶ q 0 t and each upper
Greek index ¹ with ¶ q 0 t / ¶ q ¹. The rank of the tensor is
the total number of such indices, whether upper or
lower. For example, s a ¹ is a rank one q tensor because
it transforms via
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s 0
a ¹ =

¶ q t

¶ q 0 ¹
s a t , ( 37)

where s 0
a ¹ is computed from equation (15) using the new

coordinatesq 0 ¹ and s a ¹ is computed using the old coor-
dinates q ¹. Other rank one q tensors are s ia

a ¹, a¹, A¹, p ¹,
and Çq ¹. Rank zero q tensors, also called q scalars, are
invariant under coordinate transformations. They
include Ss

a , S a , R, rs
a , ns

a , !s
a , !s, Ms

a , Ms, ~M
s
, T , Js,

and Ks, as well as these same quantities referred (where
appropriate) to the CBF or IBF a . Rank two q tensors
include h ¹t , h ¹t , g¹t , and g¹t .

Next, we de® ne the concept of an R tensor, which is
important when changing the CBF. We consider a new
CBF such that the orientation matrix R 0 with respect to
the new frame is related to the old orientation R by

R 0 = RU( q ) , ( 38)

where U( q ) 2 SO( 3) is a smooth function of q . The
coordinatesq ¹ are held ® xed. The quantities ra and S a
transform via

r 0
a = UTra , ( 39)

S 0
a = UTS a , ( 40)

where we have omitted the q dependence. We call ra a
rank one R tensor because it has one Latin index which
transforms with one copy of UT. In general, an R tensor
transforms by contracting each Latin index with UT as
in equation (39). The rank of the R tensor is the number
of Latin indices it possesses. Other rank one R tensors
include na , !a , and J. Rank zero R tensors, also called
R scalars, do not depend on the choice of CBF and
include T and Çq ¹. Rank two R tensors include M and
M a .

The quantity A¹ is not an R tensor. Instead, it has a
more complicated transformation property

A 0
¹ = UTA¹ - c ¹, ( 41)

where c ¹ = UTU ,¹. An interpretation of this transfor-
mation property as the gauge transformation law of a
non-Abelian gauge potential is given in [13]. We simply
note that such an analysis motivates the introduction of
the Coriolis ® eld strength,

B¹t = At ,¹ - A¹, t - A¹ At . ( 42)

The Coriolis ® eld strength is a rank two q tensor and
a rank one R tensor. We will use the Coriolis ® eld
strength only brie¯ y in section 5. However, it plays a
central role in the gauge theoretical approach to
rovibrational coupling.

One should be aware that other quantities which have
been introduced also are not R tensors. These include
h ¹t and ~M. However, it should be noted that both of

these quantities have counterparts, g¹t and M, respect-
ively, which are R tensors. For further insight into the
relationship between these two pairs of quantities, see
[13]. Various other quantities which are not R tensors
include s a ¹, a¹, K, !, and p ¹.

An important observation is that the two decomposi-
tions of the kinetic energy, equations (27) and (33), di� er
in their transformation properties. Speci® cally, equation
(27) decomposes the kinetic energy into two terms which
are q and R scalars. Equation (33), on the other hand,
decomposes the kinetic energy into two terms which are
q scalars but not R scalars. Thus, the latter decomposi-
tion is dependent on the choice of CBF, whereas the
former is not. For this reason, we view equation (27)
as the fundamental rovibrational decomposition of
the kinetic energy. However, depending on the CBF
convention, the decomposition of equation (33) very
well may be easier to compute (see section 5).
Reference [13] provides further discussion of these
decompositions.

3. General expressions for the quantum kinetic energy
3.1. The unscaled kinetic energy

Temporarily we abandon the speci® c system of a mol-
ecular complex in order to present expressions for the
quantum kinetic energy of a general system. Largely the
results of this section are similar to previous work of
Nauts and Chapuisat [30] which, in turn, relies on sev-
eral earlier references. We note also that van der Avoird
et al. [7] have employed a similar formalism for the
water trimer. Here we will summarize relevant aspects
of these results to ® x notation and to lay the foundation
for section 4. Also, we apply the formalism to the simple
example of a single rigid body, which will be of future
use. In section 3.2 we present a new approach to scaling
the wavefunction.

We denote the classical kinetic energy by

T = 1
2p a G a b ( x ) p b , ( 43)

where x stands for a collection of generalized position
variables x a , a = 1, . . . , d (d is the number of degrees of
freedom), p a , a = 1, . . . , d , are generalized momenta,
and G a b are the components of the inverse metric
tensor G- 1. When repeated, the indices a , b , c , . . . are
assumed to be summed from 1 to d , both in equation
(43) and the subsequent development. The momenta p a

are linear combinations of the canonical momenta,

p a = C a
b ( x ) p b , ( 44)

where p a is the momentum canonically conjugate to x a

and the C a
b are components of the change of basis

matrix. Nauts and Chapuisat [30] call the more general
momenta p a quasi-momenta and reserve the term
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momenta for what we call the canonical momenta p a .
The kinetic energy equation (43) is expressed in terms of
the canonical momenta p a by

T = 1
2 p c C c

a G a b C d
b p d = 1

2 p a

~
G

a b
p b , ( 45)

where ~
G

a b
are the components of the inverse metric

~G
- 1

= CTG- 1C with respect to the canonical momenta.
From now on, we omit the explicit x dependence.

The quantum kinetic energy ^
T is often expressed in

the Podolsky form [31]

^
T =

1
2

1
~
G 1/ 2

p̂ a
~

G
1/ 2 ~

G
a b

p̂ b , ( 46)

where ~
G = det ~

G and where p̂ a is the momentum
operator conjugate to x a ,

p̂ a = - i
¶

¶ x a
, ( 47)

setting h = 1. The operator ^
T may be expressed also

using the adjoints of the momentum operators:

^
T = 1

2 p̂ y
a

~
G

a b
p̂ b ( 48)

or, more generally,

T̂ = 1
2
^p y

a G a b ^p b , ( 49)

where ^p a is the operator corresponding to the classical
momentum p a ,

^p a = C a
b p̂ b . ( 50)

As observed by van der Avoird et al. [7], even though the
adjoint form of the kinetic energy represents the same
di� erential operator as the Podolsky form, equations
(48) and (49) are convenient for evaluating matrix
elements since the adjoint of the momentum operator
e� ectively acts on the bra to the left.

Equations (48) and (49) are straightforward conse-
quences of the de® nition of the adjoint. For an arbitrary
operator ^

A , the matrix element of ^
A

y
with respect to

wavefunctions U and U
0 is

h U j
^

A
y
U

0 i = h
^

A U j U
0 i , ( 51)

where the inner product is de® ned via

h U j U
0 i = dv U U

0 , ( 52)

and the volume element is

dv = ~
G

1/ 2
dx 1 . . . dx d =

G 1/ 2

j det C j
dx 1 . . . dx d , ( 53)

where G = det G. From this de® nition, one ® nds that
the momenta p̂ a are not in general Hermitian but
rather satisfy the relation

p̂ y
a =

1
~
G

1/ 2 p̂ a

~
G

1/ 2
. ( 54)

More generally, the momenta ^p a satisfy

^p y
a = ^p a +

1
~

G
1/ 2 [ p̂ b

~
G

1/ 2
C a

b ], ( 55)

where the square bracket notation indicates that p̂ b acts
only on the terms inside the brackets. Equations (46),
(54), and (50) combine to prove equations (48) and (49).

An important illustration of the preceding formalism
and one which we shall need later is that of a single rigid
body. We de® ne Euler angles [x 1, x

2, x
3] = [a , b , g ] in the

usual way by R ( a , b , g ) = R z ( a ) Ry ( b ) R z ( g ) , where R
rotates the space frame into the body frame and R i is
a rotation about the ith space axis. The body-referred
angular momenta [p 1, p 2, p 3] = [J 1, J 2, J 3] are non-
canonical momenta related to the canonical momenta
[p 1, p 2, p 3] = [p a , p b , p g ] via [32]

J 1

J 2

J 3

= C

p a

p b

p g

, ( 56)

where

C =

-
cos g
sin b

sin g cos g cot b

sin g
sin b

cos g - sin g cot b

0 0 1

. ( 57)

The classical kinetic energy in terms of the angular
momenta is T = J·M- 1J/ 2 where M = G is the body-
referred moment of inertia tensor, which is independent
of the Euler angles. The volume element is computed
from equation (53) to be

dv = ( det M) 1/ 2 sin b da db dg = 8p 2( det M) 1/ 2 dR ,

( 58)

where dR = sin b da db dg / ( 8p 2) is the normalized Haar
measure on SO( 3) . The quantum kinetic energy is
expressed in terms of the operators ^

J i

^
J 1

Ĵ 2
^
J 3

= C

- i ¶ / ¶ a
- i ¶ / ¶ b

- i ¶ / ¶ g

. ( 59)

Using the volume element dv , one may verify that Ĵ i is
Hermitian. (On a deeper level, ^

J i is Hermitian because it
is a symmetry of the kinetic energy.) Thus, the quantum
kinetic energy equation (49) acquires the familiar form

^
T = 1

2
^J·M- 1^J. ( 60)
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3.2. The scaled kinetic energy
Often it is useful to multiply the original wavefunction

U by some real positive function S ( x ) to form a new
wavefunction W ,

W = S U . ( 61)

Such a scaling produces a new kinetic energy operator
acting on the new wavefunction W . In this section, we
derive the form of this new kinetic energy operator.
Similar discussions are given by Nauts and Chapuisat
[30] and Chapuisat, Belafhal and Nauts [33]. The most
notable distinction between our approach and these
earlier accounts is our introduction of a new adjoint,
shown in equation (64). This adjoint allows for a
di� erent form for the scaled kinetic energy operator
shown in equation (67) and the associated extrapotential
term in equation (68).

We note that equation (61) induces a new inner
product on the scaled wavefunctions. We denote this
new inner product with an S subscript and de® ne it via,

h W j W
0 i

S
=

1
S

W
1
S

W
0 = W

1
S

2 W
0

=
~
G

1/ 2

S
2 dx

1 . . . dx d
W W

0 . ( 62)

Thus, ~
G

1/ 2
/ S

2 dx 1 . . . dx d is the volume element associ-
ated with the scaled wavefunctions. The operator
adjoint taken with respect to this new inner product
will be di� erent in general from the adjoint taken with
respect to the old inner product. To avoid confusion we
will denote the new adjoint by ^

A
y ( S )

. These two adjoints
are related by the following computation

h W j
^

A
y ( S )

W 0 i
S

= h
^

A W j W 0 i
S

= ^
A W

1
S

2 W 0

= W
^

A
y 1

S
2 W

0 = W S
2 ^
A

y 1
S

2 W
0

S

,

( 63)

which summarizes as

^
A

y ( S )
= S

2 ^
A

y 1
S

2 . ( 64)

Equation (64) combines with equation (55) to yield

^p y ( S )
a = ^p y

a - 2[^p a ln S ]. ( 65)

The scaling of the wavefunction transforms the
kinetic energy operator into ^

T S = S
^
T ( 1/ S ) . Combining

equations (49) and (64), we ® nd

^
T S =

1
2

1
S

^p y ( S )
a S G a b

S ^p b

1
S

. ( 66)

By more or less straightforward commutation of opera-
tors in the above equation and using equations (55) and
(65), we arrive at the main result of this section

^
T S = 1

2
^p y ( S )

a G a b ^p b + V S , ( 67)

where

V S = - 1
2( G a b [^p a ln S ][^p b ln S ] + [^p y ( S )

a G a b [^p b ln S ]])

= 1
2( G a b [^p a ln S ][^p b ln S ] - [^p y

a G a b [^p b ln S ]]) . ( 68)

Comparing equation (67) with the unscaled expression
(49), we note that the two operators di� er by the addi-
tional scalar term in equation (67) and the di� erent
adjoints which are used. Thus, scaling the wavefunction
may be used to place the adjoint of the momenta in an
alternative, perhaps more attractive, form, but only at
the expense of introducing an extrapotential term into
the kinetic energy.

4. The quantum kinetic energy of a molecular complex
We quantize the classical kinetic energy equation (27)

using equation (49) derived in the previous section. This
approach requires the operators p̂ ¹, ^

J i , and their
adjoints. Since the classical momentum p ¹ is canonically
conjugate to q ¹, the quantized operator p̂ ¹ has the usual
form of equation (47)

p̂ ¹ = - i
¶

¶ q ¹
. ( 69)

The quantized angular momenta ^
J i satisfy the

standard `anomalous’ commutation relations [^
J i ,

^
J j ] =

- i
k

e ij k
^
J k and of course commute with all rotationally

invariant operators, for example,

[^
J i , M] = [^

J i ,
~M] = [^

J i , A¹] = [^
J i , a¹] = [^

J i , g¹t ]

= [^
J i , h ¹t ] = [^

J i , p̂ ¹] = 0. ( 70)

To compute the volume element of equation (53) we
require explicit coordinates covering all directions of
con® guration space. This means de® ning three Euler
angles [µ1, µ2, µ3] = [a , b , g ], describing the collective
orientation R , which complement the d - 3 internal
coordinates q ¹. Here, d = 3n + 3n n + 2n c - 3 is the
dimension of the centre of mass system. We adopt the
Euler angle conventions used in section 3. The non-
canonical momenta ^p i = ^

J i and ^p ¹ = p̂ ¹ - ^J·A¹ are
expressed in terms of the canonical momenta
p̂ i = - i ¶ / ¶ µi and p̂ ¹ by

^
J i

p̂ ¹ - ^J·A¹

=
C

j

i 0

-
k

A k
¹C

j

k
d t

¹

p̂ j

p̂ t

, ( 71)

where C
j

i are the components of the matrix in equation
(57) and the sum over j is implicit. The full d d matrix
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in equation (71) corresponds to the matrix C a
b in equa-

tion (50). Its determinant is equal to the determinant of
the upper left block alone, that is det C = - 1/ sin b . The
metric G a b with respect to the momenta p i = J i and
p ¹ = p ¹ - J·A¹ is seen from equation (27) to have de-
terminant

G = g det M, ( 72)

where g = det g¹t . The volume element is therefore

dv =
G 1/ 2

j det C j
da db dg dq 1 . . . dq d - 3

= ( g det M) 1/ 2 sin b da db dg dq
1 . . . dq d - 3

= 8p 2( g det M) 1/ 2 dR dq
1 . . . dq d - 3. ( 73)

An identity we will use later is the following alternative
expression for G :

G = h det ~M, ( 74)

where h is the determinant of h ¹t . This identity follows
from the fact that the change of basis connecting equa-
tion (27) with equation (33) is orthogonal.

Since det M and g are rotationally invariant, their
presence in dv is irrelevant for the computation of ^

J
y

i .
Therefore, the computation of ^

J
y

i reduces to the case of a
single rigid rotor examined in section 3, from which we
recall that ^

J
y

i = ^
J i . Therefore, from equations (27) and

(49), we ® nd
^
T = 1

2
^
J·M- 1^

J + 1
2( p̂ y

¹ - A¹·^
J) g

¹t ( p̂ t - At ·^
J) . ( 75)

The ordering of the operators ^
J i with respect to the

other factors is irrelevant, on account of equation (70).
The ordering of the p̂ ¹ with respect to g

¹t and A¹, how-
ever, is essential. Note that the p̂ ¹ are not in general
Hermitian but rather satisfy

p̂ y
¹ =

1
G 1/ 2 p̂ ¹G 1/ 2 =

1
( g det M) 1/ 2 p̂ ¹( g detM) 1/ 2, ( 76)

as seen from equation (54) and the fact that
~

G = G / ( det C ) 2 = G ( sin b ) 2.
We now scale the wavefunction by a factor

S = ( 8p 2) 1/ 2
G

1/ 4 = ( 8p 2) 1/ 2( det M) 1/ 4
g

1/ 4 ( 77)

to obtain a new form of the kinetic energy. First, we
note that the transformed volume element is

dv

S
2 = dR dq

1 . . . dq d - 3. ( 78)

The angular momenta ^
J i are still Hermitian with respect

to this new volume element, that is Ĵ
y ( S )
i = Ĵ i , as may be

noted from equation (65) and the fact that S is rotation-
ally invariant. However, since the new volume element

contains no q ¹ dependence in the Jacobian prefactor, we
have the added bene® t that p̂ ¹ is now Hermitian, that is

p̂ y ( S )
¹ = p̂ ¹. ( 79)

Therefore, the transformed kinetic energy of equation
(67) takes the simple form

^
T S = 1

2
^
J·M- 1^

J + 1
2( p̂ ¹ - A¹·^

J) g
¹t ( p̂ t - At ·^

J) + V S ,

( 80)

where the extrapotential term may be reduced to

V S = 1
2G - 1/ 4 ¶

¶ q ¹
g

¹t ¶
¶ q t

G
1/ 4 . ( 81)

We observe that V S is an R scalar, but not a q scalar.
Therefore, V S depends on the choice of internal coordi-
nates, but not on the choice of CBF. Further discussion
of this matter is given in [13].

The quantum kinetic energy also may be placed in a
form analogous to equation (33). The unscaled kinetic
energy equation (75) becomes

^
T = 1

2(
^
J - ^

Ky )· ~M
- 1

( ^
J - ^

K) + 1
2p̂ y

¹h ¹t p̂ t , ( 82)

where
^
K = h ¹t a¹ p̂ t . ( 83)

Similarly, the scaled kinetic energy becomes
^
T S = 1

2(
^J - ^Ky ( S ) )· ~M

- 1
( ^J - ^K) + 1

2p̂ ¹h ¹t p̂ t + V S . ( 84)

5. Example: a monomer± atom complex
We compute the rovibrational kinetic energy expli-

citly for a system containing a single non-collinear
rigid monomer with moment of inertia M1 and a
single atom, for example, ArNH3. The kinetic energy
of such systems has been studied by Brocks and van
Koeven [1], van der Avoird [2], and Makarewicz and
Bauder [3]. Our presentation is mainly designed to illus-
trate the formalism of the preceding sections, although
we believe that the derivation of the Coriolis potential
A i

¹, Coriolis ® eld strength B i
¹t , and internal metric g¹t

is new.
We de® ne the CBF by ® xing it to the rigid monomer.

This implies that the matrix S, de® ning the orientation
of the monomer’s IBF in the CBF, is constant. We take
this constant to be the identity,

S ( q ) = I. ( 85)

Since there is only one rigid body and one Jacobi vector,
we drop all à ’ subscripts, except on M1, where the 1̀’
serves to distinguish the moment of inertia of the
monomer from the total moment of inertia M of the
complex. The Jacobi vector r locates the atom with
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respect to the monomer, and therefore its components
may be chosen as the internal coordinates, that is

[q 1, q 2, q 3] = [r1, r2, r3]. ( 86)

Thus,

r i ,¹ = d i¹. ( 87)

Furthermore, from equations (15) and (85), we have

s ¹ = 0. ( 88)

Inserting equations (85), (87), and (88) into (28) ± (30), we
obtain

M = r
2I - rrT + Mi

1, ( 89)

a i¹ = ( r r,¹)
i
=

j

e i j¹r j , ( 90)

h ¹t = r,¹·r, t = d ¹t , ( 91)

where the i superscript on Mi
1 indicates that it is referred

to the monomer’s IBF (which agrees here with the CBF)
and hence is a constant matrix.

We proceed ® rst to construct the kinetic energy
equation (33), which results here in a simpler form
than equation (27). Using equations (31) and (32) we
compute

~M = M i
1, ( 92)

K = r p, ( 93)

where p = [p 1, p 2, p 3]. These are particularly simple
results and, together with equation (91), yield the
classical kinetic energy

T = 1
2( J - r p)·( M i

1) - 1( J - r p) + 1
2p·p. ( 94)

The quantum kinetic energy requires the further result

G = h det ~M = det M i
1, ( 95)

which follows from equation (74) and shows that G is
constant. Hence, from equation (76) it is clear that p̂ ¹ is
Hermitian with respect to the original inner product.
Since ^K = r p̂ we ® nd that ^K also is Hermitian with
respect to both the original and the scaled inner
products. Furthermore, the extrapotential term of equa-
tion (81) arising in the scaled kinetic energy vanishes.
Thus, both the original and the scaled quantum kinetic
energies are identical and each is formed simply by
replacing p and J in equation (94) with p̂ and ^J, respect-
ively. Our results agree with earlier derivations by
Brocks and van Koeven [1] and van der Avoird [2].

To simplify the algebra in constructing the kinetic
energy equation (27), we assume the rigid body is a
spherical top with M i

1 = ·I. The total moment of inertia

tensor given in equation (89) may be inverted explicitly,
with the form

M- 1 =
1

r2 + ·
I +

1
·( r2 + ·)

rrT, ( 96)

and combined with equations (23) and (24) to yield
explicit forms for the Coriolis potential and the internal
metric,

A i
¹ =

j

1
r2 + ·

e i j¹r j , ( 97)

g¹t =
1

r2 + ·
( ·d ¹t + r¹r t ) . ( 98)

The inverse of the internal metric is

g
¹t =

1
·

[( r
2 + ·) d ¹t - r¹r t ]. ( 99)

Equations (96), (97), and (99) combine with (27) to yield
an explicit form for the classical kinetic energy. As
earlier, the quantum kinetic energy, both original and
scaled, is obtained simply by replacing p and J by their
operator counterparts, without the need for Hermitian
conjugates or an extrapotential term.

It is interesting to compute the Coriolis ® eld strength
de® ned by equation (42),

B i
¹t = e ¹t s

1
( r 2 + ·) 2 ( r i r s + 2·d i s ) . ( 100)

As the separation r of the atom from the monomer goes
to in® nity, the Coriolis ® eld strength B i

¹t ! e ¹t s r i r s / r
4.

We change the CBF, as in equation (38), via a matrix
U( r) which rotates ẑ into r/ r . Then, since B¹t is a rank
one R tensor, as r goes to in® nity, the new ® eld strength
tensor B 0

¹t changes as

B 0
¹t = UTB¹t ! e ¹t s

r s

r3 ẑ. ( 101)

The above asymptotic form is that of a (non-Abelian)
monopole ® eld [34]. A similar monopole ® eld is already
known to exist in the three-body problem[15, 16], a fact
which has led to several useful applications [15, 16, 19,
35]. We remark that the above asymptotic form is valid
even if the monomer is an asymmetric top.

6. Conclusion
We have computed the kinetic energy of an arbitrary

molecular complex for arbitrary coordinate and body
frame conventions. In so doing, we have tried to provide
an e� cient framework in which explicit Hamiltonians
may be computed for speci® c choices of coordinates
and frames. We have provided a discussion of transfor-
mation properties to facilitate the changing of these con-
ventions. Our formalism is illustrated with the example
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of a monomer± atom system, and more complex
systems may be handled with similar ease within our
framework.

One of the more novel and intriguing aspects of our
derivation is the appearance of the Coriolis potential
and the various insights which are possible by adopting
a gauge theoretical viewpoint. We brie¯ y cite two areas
of current research which are based on this perspective.
First, using gauge theoretical reasoning we have
managed to generalize the Eckart conditions, so often
employed for small vibrations in molecules, to systems
of rigid bodies. Much of the formalism for small vibra-
tional analysis in molecules then can be ported over
readily to study small amplitude vibrations in clusters
of rigid molecules. Second, we have been able to under-
stand rotational splittings in molecules with internal
rotors as a sort of Coriolis Aharonov± Bohm e� ect.
These applications and others are planned for future
publications.

The authors gratefully acknowledge stimulating dis-
cussions with Professor R. J. Saykally and the astute
review of the manuscript by Dr M. MuÈ ller. This work
was supported by the US Department of Energy under
Contract No. DE-AC03-76SF00098.
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