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Abstract

The problem of small vibrations in polyatomic molecules is examined from the
standpoint of gauge theory and fiber bundle theory. The Eckart conventions and their
privileged status are given a geometrical interpretation (the Eckart coordinates are
shown to be Riemann normal coordinates and the Eckart frame is a non-Abelian ver-
sion of Poincaré gauge). The Hamiltonian is developed in covariant Taylor series and
averaged over rapid vibrations to second order. The averaged Hamiltonian is expressed
in terms of geometrical objects such as the Riemann and Coriolis curvature tensors on
shape space.
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1 Introduction

It is truly a pleasure to dedicate this article to Jerry Marsden, who has not only been the
inspiration for much of our own work, but who has also been a good friend. We are especially
grateful for the series of lectures which Jerry gave to one of us (R.L.) and his students perhaps
eight or nine years ago on applications of geometrical methods to molecular dynamics. The
field of geometry, symmetry and dynamics would be greatly impoverished without Jerry,
and we hope he will continue to have as much influence on it (and us) in the future as he
has had in the past.

The problem of small vibrations in rotating systems is an intrinsically interesting one.
Here we find corrections to rigid body behavior for a body which is “stiff” but not infinitely
S0, so that it is capable of small amplitude, high frequency vibrations as it undergoes slower
rotations. Since a rigid body is an idealization which does not exist in nature, we can see
in this problem how the idealization comes about as the limit of a more realistic system.

One of the most physically important and well studied examples of a nearly rigid body is
amolecule, with important fundamental work going back to the 1930’s. The current status of
this field and references to the earlier literature are presented in standard books on molecular
physics (for example, Wilson, Decius and Cross [1955], Papousek and Aliev [1982] and
Zare [1988]). The standard approach to small vibrations is to expand the Wilson-Howard-
Watson Hamiltonian (Watson [1968]) about an equilibrium position. This Hamiltonian
is committed to the Eckart conventions (Eckart [1935], Wilson, Decius and Cross [1955],
Louck and Galbraith [1976], Biedenharn and Louck [1981] and Ezra [1982]), which consist
of a privileged choice of body frame (or gauge) as a field over shape space, and a privileged
choice of coordinates on shape space. The form of this Hamiltonian and the operations
performed on it in the standard analysis of small vibrations are intricately entwined with
the Eckart conventions, so that it is very difficult to see what the geometrical meaning is
of the various terms and expressions which result. It is generally believed in the molecular
literature that the Eckart conventions have overwhelming advantages for problems involving
small amplitude motions, although we have found it difficult to find a completely clear
examination of the issue. One of the results of this article is to confirm many of these
assumptions and to place them within the geometrical framework of fiber bundle theory.

The traditional molecular literature is fundamentally coordinate-based and non-geometrical
in nature. This situation began to change in the 1980’s, with the realization (by Guichardet
[1984], Iwai [1986], Tachibana and Iwai [1986] and Shapere and Wilczek [1989]) that the
separation of rotations from internal motions involves a certain non-Abelian, SO(3) gauge
field (the Coriolis field), and that the proper geometrical framework for understanding this
problem is that of fiber bundle theory. The situation is reviewed by Littlejohn and Reinsch
[1997], who integrate the newer approaches with the traditional literature. These newer
developments have been expressed in terms of the geometry of configuration space, rather
than phase space, and so have been somewhat independent of the earlier and more general
theory of reduction (Abraham and Marsden [1978], Marsden and Ratiu [1994]). But of
course we are dealing here with a special case of reduction theory, in which the symme-
try group acts primarily on configuration space (probably the most important case from a
physical standpoint).

The purpose of this article is to examine small vibrations of a molecule from a completely
covariant and gauge-invariant standpoint. One of our results is to show that the Eckart



frame and coordinates do have a privileged status in the analysis of small vibrations, and
to explain the geometrical significance of this fact. As we will show, the Eckart coordinates
turn out to be identical with Riemann normal coordinates on shape space and the Eckart
frame is a non-Abelian version of Poincaré gauge.

One of the main results of a theory of small vibrations is the form of the Hamiltonian
averaged over the rapid vibrations (the normal form), our Egs. (4.9) and (4.10). This Hamil-
tonian contains information about shifts in energy levels due to the “Coriolis coupling,” the
“centrifugal distortion” and other physical effects. Since energy level shifts are physically
observable, they cannot depend on conventions for body frame (gauge) or coordinate sys-
tem, Eckart or otherwise. Therefore we believed when we started this work that these
physical effects must be expressible in manifestly gauge-invariant and coordinate-invariant
form, presumably involving the Coriolis curvature tensor B, (rather than the gauge poten-
tial A,), the Riemann curvature tensor R*,,g etc. Indeed this is precisely what we found.
Nevertheless, the Eckart conventions are involved in deriving these results, as we will show.

We proceed by analyzing small vibrations in diatomic molecules, then we set up the
reduced Hamiltonian for polyatomic molecules and discuss choices of gauges which simplify
the perturbation analysis. A model problem involving small vibrations in a U(1) (electro-
magnetic) gauge field leads us to the choice of Poincaré gauge, and similarly we are led to
choose Riemann normal coordinates to simplify the expansion of the Hamiltonian. These
are shown to be identical to Eckart’s conventions. We next develop the Hamiltonian in
a covariant Taylor series expansion, and then average it (transform it to normal form).
The results are briefly discussed. Finally we present some conclusions and ideas for new
applications.

2 The Perturbation Problem

2.1 Small Vibrations in One Dimension

The small vibrations of a particle of mass m moving near the bottom of a one-dimensional
potential V (z) is described by the Hamiltonian,

p? mw2z?
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Iij36 K 424 ey .

where we have expanded the potential about the minimum at z = 0, denoted the n-th
derivative of the potential at z = 0 by V,,, introduced the frequency of small vibrations w
by writing Vo> = mw?, dropped the constant term V(0), and introduced a formal ordering
parameter x which indicates the order of the successive terms. Equation (2.1) is the starting
point for the transformation to Birkhoff normal form (Birkhoff [1927], Eckhardt [1986]),
which we carry out in action-angle variables (6, I),

2r \'? 1/2
z=|— siné, p = (2Imw)™'* cos@. (2.2)
mw

The sequence of canonical transformations which formally eliminates the angle dependence
of the Hamiltonian is conveniently carried out using Lie transform methods (Cary [1981],



Dragt and Finn [1976]), which through terms quadratic in the action yield the averaged
Hamiltonian,

5V Va
- 2 2 3
K =1Iw+ " (Iw) (— 18300 + 16m2w4) +.... (2.3)

The first correction in K occurs at second order in k, since all terms first order in k average to
zero; this correction contains the nonlinear frequency shift, a physically important quantity.

2.2 Small Vibrations of a Diatomic Molecule

Consider now the small vibrations of a diatomic molecule, from the classical standpoint (see,
example, Wilson, Decius and Cross [1955], Kroto [1975], or Bunker [1979]). The Hamiltonian
for the radial coordinate (the reduced Hamiltonian for the two-body problem) is

2 2

p L
= = 2.4
" 2m + 2mir2 + V), (2:4)

where p is the momentum conjugate to r, m is the reduced mass of the two atoms (of the
order of an atomic mass), L is the magnitude of the angular momentum (a constant), and
V (r) is the Born-Oppenheimer potential, assumed to have a minimum at r = ro. We do not
simply expand the total potential (true plus centrifugal) about its minimum, because there
are slightly nontrivial ordering issues.

To expand and order this Hamiltonian in a physically realistic manner, we must specify
physically interesting values of the parameters and initial conditions. These depend on the
physical circumstances, so the ordering scheme is not unique, but the following is a common
and reasonable approach. We begin with atomic units, in which m. (the electron mass), A
(Planck’s constant) and e (the electron charge) are all set to unity. Then a typical nuclear
(or atomic) mass is of the order of 10%, which we regard as order k% (this is standard
Born-Oppenheimer ordering). The potential V' (r) is independent of the nuclear mass and
so is regarded as of order k° = 1. This applies not only to the depth V(rg) of the potential
but also to its approximate range rg, its spring constant k = Vo = V" (rg), etc. However,
the frequency w = (k/m)'/? of small vibrations involves the nuclear mass, and thus turns
out to be of order k2. Thus these vibrations are slower than typical electronic motions by
a factor of K2 (that is, about 100).

Next we assume the initial conditions are consistent with a vibrational quantum number
of order unity (that is, independent of k). This is a reasonable assumption at ordinary tem-
peratures. Thus the vibrational amplitude x = r — rg (the displacement from equilibrium)
is of order (h/mw)'/?, that is, of order k. This in turn implies that the vibrational energy
is of order k2, the vibrational velocity v = & is of order &, and the vibrational momentum
p = mv is of order k1. Finally there is the question of the order of magnitude of the
angular momentum L, which also depends on the initial conditions. We will assume, in
accordance with thermal equilibrium, that the vibrational energy and the rotational kinetic
energy, L?/2mr?, are comparable, that is, of order 2. This implies that L, or, equivalently,
the angular momentum quantum number ¢, is of order k~'. Note that with this ordering,
the moment of inertia M is of order k%, and hence the rotational frequency €2, = M 'L
is of order k3. This is a factor of k times slower than the vibrational frequency, so we have
an adiabatic separations of time scales between the vibrational and rotational motions. The
molecule vibrates on the order of 10 times during each rotation.



Other ordering schemes than the one we have presented are possible, but correspond to
different physical circumstances. Our assumptions regarding the rotational kinetic energy
imply that the amount of centrifugal distortion is small, namely, of order k. Thus, the
shape of the molecule at a minimum of the potential energy is nearly the same as the shape
in a relative (rotating) equilbrium, and the difference between the two can be handled by
perturbation theory. This may be a disappointment to those interested in the theory of
relative equilibria, which is an important part of the rest of this volume. The situation
would be different for rapidly rotating molecules; in this case, studies have been carried out
by Jellinek and Li [1989], Kozin, Roberts and Tennyson [2000] and others. However, such
rapid rotation is unusual from a physical standpoint, and is of less common interest than
the case we consider here. The ordering scheme we have developed is equivalent to that
developed by Nielson (discussed in Papousek and Aliev [1982]).

Although we have used quantum concepts to work out the ordering of various quantities,
we will carry out a classical treatment of the Hamiltonian. This is reasonable since the
classical treatment closely parallels the proper quantum treatment, and in any case is good
practice before doing the quantum calculation.

To introduce a formal ordering parameter consistent with the Nielson ordering scheme,
we make the substitutions m = m//k*, r = ro + kz', p = p'/k and L = L'/k in the
Hamiltonian (2.4). We note that (r,p) — (z',p’) is a canonical transformation. Then we
drop the primes, expand both the true potential V(r¢g + xx) and the centrifugal potential
L?/2m(ro + k)? in k, and drop the constant V(rp). Finally, we cancel an overall factor
of k% from the Hamiltonian, or, equivalently, set ¢+ = #'/x2, which means working with a
new time variable in which the vibrational time scale is of order unity. The result is the
Hamiltonian H = Y >° / k™H,, where

2 2,2 2
p mwe L
g - P 2.
0 2m + 2 2mrd’ (2:5)
H, = (-D)*n+1) L z ’ + ﬂx"“ n>0 (2.6)
" 2mr2 \ 1o (n+2)! ’ ' '

The third term in Eq. (2.5) is the rotational kinetic energy at lowest order; it is a constant,
but we retain it in the Hamiltonian because it depends on L, and we often wish to know
how the energy depends on L. Otherwise it has no effect on the following analysis. The
first term in Eq. (2.6) can be thought of as representing the effects of centrifugal distortion.
This is particularly clear in the case n = 1, where this term is proportional to x and can be
incorporated into the harmonic oscillator in Hy by completing the square, that is, by shifting
the origin. The new origin is approximately the equilibrium configuration in the rotating
system. Indeed, it would be possible to expand the total potential (true plus centrifugal)
about the minimum of the total potential, rather than that of the true potential only, as
done here. The result would be a reorganization of the expansion, with some first order
terms being absorbed into zeroth order terms. This does not, however, seem to offer any
great advantages.

We now transform this Hamiltonian to action-angle variables as before and apply the
normal form or averaging transformation. Writing ) k" K, for the averaged Hamiltonian,



we find K,, = 0 for n odd, and

2
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Hamilton’s equation Q, = 0K /JL gives the angular velocity €2, of rotation of the molecule
(valid for a diatomic), which for a rigid body would be M 'L, where M is the moment
of inertia. If we use this rigid body formula also in the case of the vibrating molecule, we
effectively define M~! for a non-rigid molecule. We then find that M~! is given by its
equilibrium value 1/mr? plus one correction proportional to L? and another proportional to
the vibrational action I. The first of these corrections indicates the centrifugal distortion,
that is, the distortion to the shape of the rotating molecule due to centrifugal forces, and
the second is the correction to the moment of inertia due to the vibrations, averaged over
the rapid vibrations. The other one of Hamilton’s equations, Q, = 0K/JI, gives the
vibrational frequency (2, which is w (the frequency of small vibrations) plus a correction
proportional to I (due to the nonlinearity of the potential) and another proportional to
L?. The latter indicates the nonvanishing average of the centrifugal forces over the rapid
vibrations (compared to the slower rotations).

This calculation was classical, but a good approximation to the correct quantum result
is obtained by replacing L? by £(£ + 1)A? and I by (n + 1/2)h, where n is the vibrational
quantum number. From the observed spectrum of the molecule (differences between energy
levels) it is possible to determine the parameters of the Hamiltonian (w, ro, V3, V4).

2.3 The Hamiltonian for Small Vibrations in Polyatomic Molecules

Let us now consider the small vibrations of a polyatomic molecule with N > 3 atoms,
modelled as a system of point masses interacting via a Born-Oppenheimer potential V. The
first problem is to write down the reduced Hamiltonian (that is, reduced with respect to the
translational and rotational invariance of the system). This is an old subject. Here we follow
the notation of Littlejohn and Reinsch [1997], which is based on local coordinate patches
and local sections on the quotient (shape) space. It is understood that all constructions
(coordinates, section and fields over shape space) are local, which is all we need for the
problem of small vibrations. We let {rs;o,@ = 1,... N} be the positions of the N atoms,
referred to the inertial or “space” frame (hence the s subscript). The translational degrees
of freedom are eliminated by going to the center-of-mass frame, in which only N — 1 vectors
{Pso, @ =1,...,N — 1} are needed to specify the configuration. We choose these vectors to
be mass-weighted Jacobi vectors, which means that the kinetic energy is Euclidean, that is, it
has the form (1/2) 3" |p,,/>. The translation-reduced configuration space is R¥V =3, which
is foliated by the action of SO(3) to produce an SO(3) fiber bundle plus singular orbits, the
latter consisting of the collinear configurations. Generic orbits are fibers, diffeomorphic to
S0(3). The quotient space R*N 3 /SO(3) is “shape space,” the base space of the bundle plus



the singular (collinear) shapes. We introduce a coordinate system {¢*,u =1,...,3N — 6},

essentially arbitrary at this point, on shape space. We also introduce a section of the fiber

bundle, also essentially arbitrary at this point, which is equivalent to the definition of a

body frame (a configuration on the section is one for which the body frame and space frame

coincide). The s subscript is omitted on vectors and tensors referred to the body frame.
The Hamiltonian is expressed in terms of three fields over shape space, defined by

M = Zpa ® Py — |pa|2|7 (29)
A, = M_lzpax%, (2.10)
[e%
9py 0P,
Gy = Za—qﬂ e ~A,-M-A,, (2.11)
a

where M is the moment of inertia tensor, | is the identity tensor, A, is the Coriolis gauge
potential, and g, is the metric tensor on shape space. Then the translation- and rotation-
reduced Hamiltonian is

1 1
H=ZL. M~ L+ ivug’“’v,, +V(q), (2.12)

where L is the angular momentum and where where v, is the covariant “shape” velocity,
given in terms of the p,, the momentum conjugate to ¢*, by

vy =pu—L-A,. (2.13)

The three terms in the Hamiltonian (2.12) are the vertical kinetic energy, the horizontal
kinetic energy and the potential energy. We also need the symplectic 1-form to find equations
of motion, which is § = p, dg* + L;\;, where A;, ¢ = 1,2,3, are the left-invariant 1-forms
on SO(3), transported to the rotation fibers in R*¥—3. The absence of the s-subscript on
P.>M, A, and L indicates the body frame. Thus, the components L; satisfy the usual
(body frame) Poisson bracket relations, {L;, L;} = —¢€;;x L.

Now suppose o is an equilibrium shape, that is, one for which dV/9¢* = 0. We assume
that go is a noncollinear shape (it lies on a generic orbit of SO(3)). We wish to study small
vibrations about this equilibrium. We use Nielson ordering for this purpose, which as above
involves writing mq, = m. /k*, ¢* = ¢} + kz'*, p, = p,/k, L=L'/k and t = t'/k%. This is
less trivial than in the diatomic case, because now L is a nontrivial dynamical variable. In
addition, we set p, = pl,/k? (because the Jacobi vectors are “mass-weighted,” that is, they
have absorbed factors of the square root of the atomic masses to make the kinetic energy
Euclidean), M = M'/k*, A, = A, g, = g,,,/K*, ¢ = g™ K*, v, = v}, /K and v* = v'#E3,
which follow from the definitions above. The gauge potential A, is independent of k because
the angle of rotation of the “falling cat” is invariant when all masses are scaled by the same
amount. We substitute these into the Hamiltonian, drop the primes, scale H by k2 (which
is the effect of the scaling of time), expand the potential and drop the constant V' (gg). The
result is

1 1 1
H=SL-M" L+ cv,0", + SVt + gV,MMm'“:L"’x” ., (2.14)



where V..., V uuo, €tc., are the g-derivatives of the potential evaluated at equilibrium (com-
mas represent ordinary derivatives), and where it is understood that M, A, (contained in
v,) and g*” are evaluated at ¢f + ka*. If these dependencies are also expanded out, H is
arranged as a power series in « (it is also quadratic in L, quadratic in p,, and a power series
in z#). The symplectic form also becomes ordered in &; it is now

1
0= yun dz* + ;Lz)\, (215)

Symplectic forms which are ordered like this into “large” and “small” parts are a standard
occurrence in problems with multiple time scales. They are easily handled in perturbation
theory by using a Poisson bracket which is correspondingly ordered; in this case, we have
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Examples of such perturbation problems are presented in Littlejohn [1979] (for guiding
center motion) and Littlejohn and Weigert [1993] (for the Stern-Gerlach problem). In this
case, the slow angular momentum Poisson bracket indicates the slow time scale of rotations,
in comparison to vibrations. Corresponding problems in quantum mechanics can be handled
by a kind of Weyl symbol perturbation theory, for which see see Littlejohn and Flynn [1991],
[1992] and Weigert and Littlejohn [1993], or in other cases by Van Vleck perturbation theory
(Zare, [1988]).

The Hamiltonian (2.12) is written in an arbitrary coordinate system and gauge (it is
manifestly covariant), in constrast to the usual custom in the study of small vibrations in
the molecular literature, where the Hamiltonian is specialized to the Eckart conventions for
gauge and shape coordinates. Moreover, it is the usual custom in the molecular literature
to complete the square in the angular momentum L in a different way, thereby introducing
new tensor-like fields (the “modified” inverse moment of inertia tensor and others) which
are not true tensor fields. The effect is to obscure the geometrical meaning of the result.
Our aim will be to maintain manifest covariance throughout. One can give a geometrical
interpretation to the Eckart frame (discussed in Littlejohn and Reinsch [1997]), but this by
itself does not explain whether the Eckart frame really has special virtues for the analysis
of small vibrations.

On the other hand, a straightforward expansion of the Hamiltonian (2.14) in a power
series in k produces quite a few terms even through second order, and it is natural to ask
whether a special choice of gauge or coordinate system will simplify these or the perturbation
analysis itself. The issue is already seen in the zeroth order term of Eq. (2.14),

1 1
Ho= ;LMo L+ o(pu — L Aou)g6" (py — L~ Aou) + 5V wa"a”, (2.17)

N =

where the 0-subscripts indicate that the fields are evaluated at ¢¢. It is not even clear that
this Hamiltonian has effected a separation of vibrational and rotational motions at lowest
order, due to the presence of the terms in L - Ag,. Thus one is motivated to perform a
gauge transformation such that in the new gauge, A, vanishes at the equilibrium shape.
The desirability of doing this was apparently first noted by Casimir [1931]. The geometrical
condition for this is that the section should be orthogonal to the equilibrium fiber where



it intersects that fiber; in fact, the Eckart section has this property, but so do many other
choices of gauge, so it is still not clear that the Eckart choice is the best.

In any case, in such a gauge, the vertical kinetic energy becomes a function only of
L (it is the rigid body kinetic energy for the molecule in the equilibrium shape), and the
rest of Hy is a harmonic oscillator. To bring out the harmonic oscillator more clearly, we
may first choose our coordinates ¢g* to be orthogonal at the equilibrium shape, so that
96 = gouw = Opy- The horizontal kinetic energy is then (1/2) 3", p5,- Then by a further,
orthogonal transformation of coordinates, we can diagonalize V ,,,. With wﬁ denoting the
(presumed positive) eigenvalues, the unperturbed Hamiltonian takes on the form

1 1 2 2

in which it is clear that rotations and vibrations are decoupled. Higher order terms will
couple these degrees of freedom, of course, and introduce shifts in the energy levels of
Hy; that is where the real work lies. Before proceeding, however, we will examine a model
problem which will help us address the question of privileged choices of gauge for simplifying
the perturbation calculation.

3 Special Gauges, Frames and Coordinates

3.1 A Model Problem

In order to address issues concerning small vibrations in the presence of a gauge field, let
us consider an Abelian, U(1) problem before attacking the non-Abelian, SO(3) problem
of small vibrations in a molecule. Specifically, let us consider a 3-dimensional harmonic
oscillator perturbed by a magnetic field B = VxA. The Hamiltonian is

_ 1 9, 1 2.2
H_§(p—A) +§;wixi, (3.1)

where we have set m = 1 and absorbed other physical constants into the vector potential A.
The frequencies of the harmonic oscillator in the three directions are w;, ¢ = 1,2, 3; these
are assumed to be rationally independent, for simplicity. The magnetic field is allowed to
be inhomogeneous, but the vibrational amplitude is assumed to be small compared to the
scale length of the magnetic field, so field gradients are sampled only weakly. The effect of
these assumptions is captured by an expansion and ordering of the vector potential,
2
A(x) = A(0) + kx - VA(0) + %xx VVA(0) + ..., (3.2)

where & is the ordering parameter.

We expect the magnetic field to have an effect on the vibrational frequencies and to give
them a dependence on the actions. These effects should be gauge-invariant, that is, they
should be expressible as a function of the magnetic field and its gradients alone. However,
if we work in an arbitrary gauge, then even the unperturbed Hamiltonian is unattractive,

——[p A0 Zwl zz, (3.3)
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because of the presence of the constant vector A(0). It is possible to do the perturbation
calculation in an arbitrary gauge, but it is certainly more convenient to transform to a gauge
in which A(0) = 0. Similar transformations are suggested at each higher order, the effect
of which is to express the vector potential near x = 0 as a power series in x in which the
coefficients depend only on B and its gradients. If these transformations are not made, the
perturbation analysis can still be carried out, but since the answers do turn out to depend
only on B and its gradients, any terms in the expansion of A which do not contribute to the
final answers (for example, the symmetric part of VA(0)) drop out of the analysis. Thus,
it is convenient to perform a series of gauge transformations to eliminate these superfluous
terms. The details are unimportant, but what emerges is a power series representation of
Poincaré gauge, given by

A(x)

1
/ tdt B(tx)xx
0

= (%B(O) + %x -VB(0) + éxx : VVB(0) +.. ) XX. (3.4)
Poincaré gauge is defined by the integral formula on the first line (which is Poincaré’s
formula for uncurling a vector field); we remark that a completely equivalent definition is
x - A(x) = 0 (the gauge is transverse in real space). Poincaré gauge is used in low-energy
quantum electrodynamics (Cohen-Tannoudji [1989]), where it is useful for expressing the
interaction of a localized charge and current distribution with the electromagnetic field in
terms of the field and its gradients at the center of the distribution. The purpose here is
similar, since the amplitude of vibration is small compared to field scale lengths.

Even in Poincaré gauge, the perturbation analysis of the Hamiltonian (3.1) is not entirely
trivial. It helps to use the following formula for the second order averaged Hamiltonian,
valid for an arbitrary, bound, nonresonant system of N degrees of freedom. Let H =
Hy + kH; + k2Hy + ..., where the action-angle variables are (8,I), where Hy depends
only on I, where w = 0Hy/0I, where the other terms in H are expanded in Fourier series
according to Hy(6,I) = >, Hgn(I)exp(in - 0) for k > 1. Vectors I, #, w and n are N-
vectors, and n consists of integers. Then the first order averaged Hamiltonian is Ky = Hg,

the n = (0, ...,0) Fourier component of H;, and the second order averaged Hamiltonian is
given by
_ 1 |Hin|?
Kz_Hzo—illZ#O 61( ) (3.5)

With the help of Eq. (3.5) and working in Poincaré gauge, we can carry out the pertur-
bation analysis of small vibrations in a magnetic field through second order. The averaged
Hamiltonian is given by K = Ky + k2K, where

KO = Zwili, (36)
2 wz i IJ
K, = 3 ZB : (3.7)
i#j J

where B;; = €;;x Bi, and where it is understood that the magnetic field is evaluated at
x = 0. Not surprisingly, the first nonvanishing correction only involves the strength of the

11



magnetic field at the origin (gradients will appear at higher order); also not surprising is
the fact that the correction is linear in the actions, since a harmonic oscillator in a constant
magnetic field is altogether a linear problem.

3.2 Non-Abelian Poincaré Gauge

Let us now return to the problem of small vibrations in the molecule, where the gauge field
A, is non-Abelian, and ask whether something like Poincaré gauge could be useful there. An
obvious guess is that a non-Abelian version of Poincaré gauge should satisfy z#A ,(z) = 0,
where as above z# is the coordinate difference from the equilibrium ¢f'. Amazingly enough,
this condition is once again equivalent to an integral formula connecting the gauge potential
A, and the Coriolis field tensor B, defined by

0A 0A
B,, = v E A xA,. 3.8
I 8(]“ 6qy Hx ( )
Namely, the integral formula is
1
A,(z) = / dttz"B,, (tx). (3.9)
0

The result is amazing because the relation between A, and B, in Eq. (3.8) is nonlinear,
but it is linear in Eq. (3.9). The equivalence of z#*A,(z) = 0 and Eq. (3.9) is known in
particle physics (Halpern [1979]), but otherwise we do not know its history.

To prove these results, we use bold face symbols for 3-vectors (for example, A, and
B,.), and sans serif symbols for the corresponding 3 x 3 antisymmetric matrices belonging
to the Lie algebra of SO(3) (for example, A, and B, ), where, for example, A,;; = €;jx Apuk.
Now let A/ () represent an arbitrary choice of gauge (that is, body frame). First we show
that it is always possible to transform to a new gauge where z#A ,(z) = 0. A general gauge
transformation is specified by a matrix field S(z) € SO(3),

dS
A, =SA,S" + %sf. (3.10)

Thus, if we demand that z#A, = 0, we obtain a differential equation for S,

x“% = —zMSA,, (3.11)
which can always be solved (locally) by integrating along radial lines in the x* coordinates
(we choose initial conditions S(0) = I).

The geometrical interpretation of this construction is illustrated in Fig. 5.1. In the figure,
qo is the equilibrium shape on shape space SS, Fp is the fiber above it, diffeomorphic to
S0O(3), and Qg is a specific configuration on the fiber. Relative to some coordinates z* on
shape space with origin at gg, we draw radial lines emanating from ¢q, that is, lines with
coordinates z#(A\) = Aé#, where £* is a constant vector (a vector in the tangent space at qg).
The horizontal lifts of these lines, starting at Qg, sweep out the section S of the Poincaré
gauge. The condition z#A, = 0 is equivalent to the condition that the fiber F' above a
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point ¢ on a radial line is orthogonal to the lifted line in the section. This in turn is the
condition for the horizontal lift. With this construction, the Poincaré gauge depends on the
coordinates used to define the radial lines.

Now given the condition z#A,(z) = 0, Eq. (3.9) follows. We prove this by writing

1 1
A,(z) = /0 dt%(tAu)z /0 dt (A, +tz"A,,), (3.12)

where all fields under the integral are evaluated at tz*. Then by using Eq. (3.8) to eliminate
A, ., in favor of B,,, then integrating by parts and using z*A, = 0, we easily prove
Eq. (3.9).

We can now use the non-Abelian version of Poincaré gauge to expand the gauge potential
A, about the equilibrium z# = 0, and to express the result in terms of the curvature tensor
B,.. The result is like Eq. (3.4):

1 1
Au(@) = 5Bap s + 3Bay,s %P + ..., (3.13)
where the fields on the right hand side are evaluated at equilibrium, z# = 0. The gauge
potential is expressed in terms of the Coriolis curvature form and its derivatives at equilib-
rium. Thus, the use of Poincaré gauge in the expansion of Eq. (2.13) and (2.14) simplifies
the result and expresses it purely in terms of the Coriolis curvature tensor.

3.3 Riemann Normal Coordinates and the Eckart Conventions

However, the expansion of the Hamiltonian (2.14) still has quite a few terms in it, including
those coming from an expansion of the metric tensor g* about the equilibrium. The first
derivatives of the metric tensor can be expressed in terms of the Christoffel symbols I‘Zﬂ
at equilibrium, the second derivatives in terms of the Riemann tensor R",,g, etc. The
suggestion naturally arises that Riemann normal coordinates (Misner, Thorne and Wheeler
[1973]) would simplify the expansion, certainly at least by making I' 5 and therefore the
derivatives of the metric tensor vanish at equilibrium. Further advantages are noted below.

To construct Riemann normal coordinates, we choose a fixed basis in the tangent space
to shape space at qg, we let £* be the components of a tangent vector with respect to this
basis, and we then construct the geodesics passing through gg with tangent vectors &* at
parameter A = 0. Then the point on a geodesic with parameter A and initial tangent vector
&¥ is assigned the Riemann normal coordinates z# = A&*. Thus, radial lines in Riemann
normal coordinates are geodesics. Since d’z* /dA\* = 0, we have the identity T4, z%zP =0
in Riemann normal coordinates. This reminds us of the condition z# A, = 0 for Poincaré
gauge.

In general, a geodesic on shape space is a trajectory ¢(t) of a system of free particles
with zero angular momentum, as is fairly obvious by setting V' =0 and L = 0 in Eq. (2.12).
The corresponding trajectory up in the bundle is of course a straight line with constant
velocity, also with L = 0. The bundle trajectory is also the horizontal lift of the trajectory
in shape space (since L = 0 is the condition for the horizontal lift). Thus, if Riemann
normal coordinates are used to define the radial lines which when lifted produce the section
for Poincaré gauge, that section will consist of all straight lines passing through a point Qg
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(see Fig. 5.1) on the equilibrium fiber Fy which are orthogonal to Fy at Qo. The section
itself is then simply the flat subspace of R*V~=3 of dimension 3N — 6 which is orthogonal
to the equilibrium fiber Fy at Qo (in fact, it passes through the origin and so is a vector
subspace). But as explained in Littlejohn and Reinsch [1997], this is precisely the geometrical
description of the Eckart frame (or gauge). Therefore the Eckart frame is the same as
Poincaré gauge, relative to Riemann normal coordinates on shape space.

Eckart’s conventions include not only a frame, but also a set of shape coordinates. These
are constructed by first choosing a set of Euclidean coordinates with origin at Q¢ on the
Eckart section, possible since it is a flat subspace of the bundle, itself a Euclidean space, and
then projecting those onto shape space. Straight lines passing through the origin in these
coordinates on the section are geodesics of zero angular momentum, which project onto
radial geodesics on shape space. Thus, Eckart coordinates are Riemann normal coordinates.
Furthermore, since the section is orthogonal to the equilibrium fiber, the metric on shape
space at qo is the projection of the metric on the section at (g, which means that the Eckart
coordinates are orthonormal at go. Often these coordinates are oriented so as to diagonalize
V. uv at equilibrium, thereby transforming the unperturbed Hamiltonian into normal modes
as in Eq. (2.18).

4 Expanding and Averaging the Hamiltonian

4.1 The Covariant Expansion of the Hamiltonian

We can now return to the expansion of the Hamiltonian (2.14), in which the potential V
is already expanded and we must in addition expand the metric tensor g#”, the inverse
moment of inertia tensor M~!, and the gauge potential A,. However, by Eq. (3.13), the
latter is expressed in terms of the Corilolis curvature tensor, so we obtain the expansion of
A, once that for B, is known. These expansions by Taylor series produce coefficients which
are the ordinary derivatives of these various tensor fields, evaluated at ¢o. Unfortunately,
ordinary derivatives do not by themselves lead to covariant expressions, so we are motivated
to reexpress all ordinary derivatives in terms of covariant derivatives of various tensor fields,
including as it turns out the Riemann tensor, evaluated at go. That this can be done at all is
a special feature of Riemann normal coordinates and Poincaré gauge. The result, however,
is a set of fully covariant expressions, valid in any coordinates or gauge.

We will omit the derivations of these expansions, and just quote the results. It is assumed
that we are working in Riemann normal coordinates z* and Poincaré gauge. First, for the
potential V', a scalar, it turns out that all ordinary derivatives are identical to covariant
derivatives, when evaluated at # = 0. Thus, in this case, we can simply replace the comma
by a semicolon, and the expansion of the potential is

V(z) = i L Q)2 e, (4.1)

As for the metric tensor, its expansion in Riemann normal coordinates is discussed by
Misner, Thorne and Wheeler [1973] and has been carried out to high order by Yamashita
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[1984] with computer algebra. Through third order the result is

1 1
9" (@) = 9" (0) = 3R 0" (0) 22" = ZRVas", (0) 202" + ..., (4.2)

where as noted above the first order terms vanish. As for the inverse moment of inertia tensor
M~! and the Coriolis curvature tensor B, these are hybrid tensors, linking the tangent
and cotangent spaces on shape space with the tangent spaces to the fibers (effectively the
Lie algebra of SO(3)). Thus, the covariant derivatives of these tensors involves the gauge
potential A, as well as the Christoffel symbols I', 5> a8 discussed by Littlejohn and Reinsch
[1997]. As it turns out, the expansion of the inverse moment of inertia tensor is particularly
simple:

= 1

M~ (z) = EM;}L“M (0)zHt ... ghn, (4.3)

n=0
very much like the expansion of V' above. Finally, the gauge potential A, has the following
expansion, valid through third order,

1 1
Au(x) = §Bau(0) % + gBau;ﬁ(O) z%zP

1 1 v (07
+ (gBau;ﬂv(O) + ER aﬁH(O)B,y,,(O)) P 4. (4.4)

4.2 The Perturbation Calculation

These expansions of the various fields allow us to write out the covariant expansion of the
Hamiltonian, for which we write H = ) k"H,. In the following, it is understood that
all fields, V, M=%, g#¥, B, and R*,,p5 and their derivatives, are evaluated at z* = 0 (the
equilibrium). The expansion through second order is given by

1 1 1
Hy = §L'M_1 .L+§pup“+§v;m, Ttz (4.5)
_ 1 M-1 wy L pgv 4 L ko’ z®
H, = §(L " L).’L' +§By1/p T +6‘/;puaw T T, (46)
1 -1 pow L oo B, 1 HopV g 0B
H, = Z(L M;;w L)ZL’ ¥ + g(L'Bua;ﬁ)p x x” + gRuauﬂp prTx
1 AP} 1 TR RPN}
+ @ Ba)(L-By")ee’ + o Viwas aa¥z%a’. (47)

Some further simplification of this expansion can be achieved by using the Kaluza-
Klein identities for the N-body problem, which are given by Littlejohn and Reinsch [1997].
However, we have found that the results of the averaging transformation, Eq. (4.10), seem
to be simpler if we leave the expanded Hamiltonian as it is. We remark that the Kaluza-
Klein identities show that all the fields which occur in the expansion of the Hamiltonian
(not counting V'), plus all of their covariant derivatives, can be expressed in terms of just
the three fields M, M;, and B,,. Indeed, such a reduction is necessary to reconcile the
covariant expansion we have developed with the standard, noncovariant expansion of the
Watson Hamiltonian (see, for example, Papousek and Aliev [1982]).
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We now assume that the Riemann normal coordinates are chosen to be orthogonal (they
are now Eckart coordinates) and to diagonalize V,,, as in Eq. (2.18). Thus, gy, = 0u
at equilbrium. For simplicity we also assume that the frequencies of small vibrations are
nondegenerate, or more precisely, that {w,} are rationally independent and sufficiently
far from resonance. Many common molecules are highly symmetric and have degenerate
frequencies of vibration, so this condition does not hold for them. See Harter [1993] for an
analysis of this case. We next introduce action angle variables,

21
= w—” sinf,,  pp= /2w, cosb,, (4.8)
I

and finally carry out the averaging transformation. It turns out that the slow Poisson
bracket (the second term in Eq. (2.16)) does not contribute to the result at second order (it
occurs in the expansion, but averages to zero).

The results of the expansion to second order are the following. We write K =) £"K,.
We have

1 _
Ko=7L-M 1-L+;I‘,wu, (4.9)

and K; = 0. For the second order Hamiltonian, we find

1 Lw,—TLw 1 w w
Ky = 23 (L-Bp,) 20— 4 =N "Ry L, (2 + =~
2 4¢( ) w2 — w2 +12HR’“‘ s\ G o
nFEV v

2

1 N A 1 ., I,

+ (L.M;W.L)@—g w_z<L.Mm.L+ZV;,,,,“w—V
©w v

1]
1 Z Voo [I,,L, + 1,1, + 1,1, N LI, +I,1, -1,
48 e Wy Wy, Wy Wy + Wy + we Wy + Wy, — We

B LIy A LTy LTy 1T + I,JV]

Wy — Wy + We —Wy + Wy + We
2 2
_ i V;mw Iu 1 Z SHUY T2
16 s w? 4wk —wl 8 s wiwz
1 LI, 1 I
+ 8 Z V;uwwm ~ 16 Vmuww_ﬁ- (4.10)
v n

Most of the work in deriving this result, and the most complicated parts of the result,
come from averaging the cubic and quartic contributions to the potential. These terms
have nothing to do with the gauge fields or the curvature of the manifold (they would
be present in a multidimensional generalization of Eq. (2.3) on a flat space), and so are
relatively uninteresting from the standpoint of the geometry of the fiber bundle. But even if
we are only interested in those terms which have a dependence on the angular momentum or
the curvature tensors, we cannot ignore the potential, because there is a nonlinear beating
between the cubic contributions to the potential and the centrifugal distortion, which is seen
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in fourth major sum. Terms of this sort are also present in the diatomic result, Eq. (2.8),
which in fact is a special case of Eq. (4.10).

The first sum in Eq. (4.10) is the contribution from the Coriolis forces, and is an obvious
non-Abelian generalization of the result found in Eq. (3.7) for the oscillator in the magnetic
field. The second sum represents the sampling of the curvature of shape space by the
oscillator. The third sum obviously involves the second order effects of the centrifugal
distortion of the moment of inertia tensor. Nonlinear beatings of the first order centrifugal
distortion of the moment of inertia tensor with itself are seen in the fourth major sum, which
produces a term quartic in the angular momentum.

The vibrational actions I,, are formal invariants of this Hamiltonian, which effectively
is reduced to one degree of freedom, that of the angular momentum L. For fixed values of
the actions I, the Hamiltonian is an even quartic in the angular momentum L (sixth and
higher order terms would appear in higher order perturbation theory). Thus, the dynamics
of L on the angular momentum sphere can display a much richer set of oscillations and
separatrices than in the case of a rigid body (where H is only a quadratic function of L).
This is an old and well studied theme in molecular physics.

The results of a quantum calculation are quite close to the classical result given above,
mainly because of the strong similarity between classical and quantum harmonic oscillator
theory. Thus, a very good idea of the correct quantum result is obtained by replacing I,
above by (n, + 1/2)h, where n, is the quantum number of the u-th normal mode. The
result is then a quantum Hamiltonian in the angular momentum alone, which can be solved
either by diagonalizing the (2¢+ 1) x (2£+ 1) dimensional matrix for H, or by semiclassical
(Bohr-Sommerfeld) methods on the angular momentum sphere.

The effect of the averaging transformation is to create a collection of tensors, defined on
the tangent space to shape space at gp, whose components are simple in the orthonormal
frame of the normal modes of the potential. For example, in the third major sum in
Eq. (4.10) there occurs a tensor with components (I,/w,)dyu,. The final result can be
expressed in terms of generally covariant contractions with these tensors.

5 Conclusions

We will conclude with the following suggestion for a generalization of this work. Molecular
clusters are currently an active area of research. Such clusters are often modelled as a
collection of rigid bodies, interacting by some potential. In this model, the Hamiltonian for
a cluster is a generalization of Eq. (2.12), in that the “particles” are no longer points, but
rather have their own (fixed) moment of inertia tensors and rotational kinetic energy. We
have recently worked out this Hamiltonian in general form (Mitchell and Littlejohn [1999]).
Suppose we wish to study rovibrational coupling in such systems. How are the Eckart frame
and coordinates to be generalized? There is no clue from Eckart’s original (coordinate-based)
definition. However, the analysis above shows that the coordinates should be Riemann
normal coordinates, which are constructed out of radial geodesics (potential free motions of
zero angular momentum), whose horizontal lifts define the section for a version of Poincaré
gauge. In this case, the potential free motion no longer consists of straight lines (the free
rotation of asymmetric tops is somewhat nontrivial). Nevertheless, the covariant Taylor
series expansions developed above can be carried over almost without modification. We will
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report on these developments in the future.
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Figure Captions
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Qo

Figure 5.1: Poincaré gauge can be described as the section which is the horizontal lift of
radial lines emanating from the equilibrium shape go. The lines are radial in some coordinate
system with origin at ¢go. If Riemann normal coordinates are used, the section is flat and
coincides with the section of the Eckart frame.
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