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Abstract

Classical trajectories of an electron escaping from a hydrogen atom in parallel elec-
tric and magnetic fields exhibit strikingly diverse and complex behavior. We study
the qualitative structure of these trajectories. Specifically, we present a symbolic al-
gorithm that allows one to compute the number of radial oscillations of the electron
before it escapes, and to determine whether or not each such oscillation encircles
the nucleus. The algorithm applies to a large and prominent (but not exhaustive)
family of ionizing trajectories.
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1 Introduction

In previous work[1,2], we proposed an experiment in which hydrogen atoms,
placed in external parallel electric and magnetic fields, are excited by a short
laser pulse of high enough frequency that the energy of an excited electron
exceeds the classical ionization barrier. The resulting flux of ionizing electrons
is then measured by a detector placed downhill, i.e. in the direction of accel-
eration by the electric field. We predicted that one could observe a train of
electron pulses striking this detector. The structure of this pulse train reflects
fractal behavior within the chaotic dynamics of the ionizing electrons [3].

Email addresses: kmitchell@ucmerced.edu (Kevin A. Mitchell),
jbdelo@wm.edu (John B. Delos).

Preprint submitted to Elsevier Science 6 July 2005



Fig. 1. A prediction for the rate at which electrons, ionizing from hydrogen in
parallel fields, strike a detector. The model assumes an initial classical ensemble of
electrons moving away from the nucleus with constant energy and with exactly the
same launch time. See Ref. [2] for greater detail. Several of the early time pulses are
labeled, with their representative ionizing trajectories shown in Fig. 4.

The following qualitative description of the ionization process is helpful. First,
the electron absorbs a photon from the laser pulse. The excited electron forms
an outgoing wave, moving away from the nucleus in all directions. We model
this wave by a classical ensemble of electron trajectories that begin at the
nucleus and propagate outward in all directions. The frequency and duration
of the laser pulse are such that all trajectories in this ensemble are launched
at nearly the same time and have nearly the same energy. As time evolves,
some of these trajectories find their way over a saddle in the potential energy
surface that separates the Coulomb center from the ionization channel. These
trajectories are subsequently accelerated toward the detector, striking it in a
series of pulses (Fig. 1).

A natural question arises when looking at the picture of a pulse train (Fig. 1):
What do the ionizing orbits associated with each pulse actually look like? The
answer is shown in Fig. 4 for 29 early pulses. Our objective in this paper is
to understand these pictures: (i) We seek a simple description of the qualita-
tive shapes of the trajectories. (ii) We seek a set of rules that predicts these
qualitative shapes and explains the relationships among them.

The first goal is easily accomplished. Along with the picture of each trajectory
in Fig. 4, there is a string of dashes and ohs that record the trajectory’s qual-
itative behavior. Each dash represents a portion of the trajectory that begins
on the negative z axis (the dotted line) and returns to it without encircling
the nucleus. Each oh represents a portion that does encircle the nucleus. The
reader is invited to examine each (−o)-string (pronounced “dash-oh” string),
reading it left to right, and sketch the corresponding orbit without looking
at the picture. One will find that the (−o)-string, together with continuity of
position and velocity, encapsulates the essential shape of the orbit.

The second goal can now be restated as: We seek a set of rules that permit
us to predict the (−o)-strings directly, without recourse to pictures of the tra-
jectories. In this paper, we develop a symbolic algorithm which accomplishes
this goal for a large class of trajectories; for example, it applies to all but one
of the trajectories shown in Fig. 4, i.e. it describes the trajectories associated
with most of the early pulses in the chaotic pulse train. This algorithm is
purely algebraic – it does not solve the differential equations. It is a lengthy
algorithm, but it does its job, and we doubt there is a significantly simpler
one.

The algorithm also explains patterns among the shapes of various trajectories.
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These patterns are visible in Fig. 4 and are summarized by Facts 1 and 2 in
Sect. 3.

The symbolic algorithm is stated without justification in Sect. 4. This section
requires no background in symbolic dynamics. The justification is provided
in Appendix A, which assumes some familiarity with maps, homoclinic tan-
gles, and symbolic dynamics. The algorithm is based upon a new approach to
homoclinic tangles, called homotopic lobe dynamics, which was introduced in
earlier work [4]. Standard formulations of symbolic dynamics typically describe
how an individual trajectory visits points in the phase plane. In contrast, ho-
motopic lobe dynamics focuses on how a whole curve in the phase plane maps
forward, thereby describing the evolution of a family of trajectories [5]. The
algorithm we present takes the phase space description afforded by homotopic
lobe dynamics and translates it into a configuration space description of orbits
in terms of the (−o)-strings.

The paper has the following outline. Section 2 reviews background material
on “fractal escape-time plots”. Section 3 surveys the structure of ionizing
trajectories, including the two important results, Facts 1 and 2, concerning
patterns among the (−o)-strings. Section 4 states the symbolic algorithm for
generating (−o)-strings, and Appendix A provides the justification for the
algorithm. Appendices B and C prove Facts 1 and 2, respectively.

2 The Dynamical System and the Continuous- and Discrete-Escape-
Time Plots

We consider the classical dynamics of the electron in a hydrogen atom that is
placed in parallel electric and magnetic fields. Following the detailed discussion
in Ref. [2], this system can be appropriately scaled so that the electron has
the following Hamiltonian in cylindrical coordinates (ρ, z),

H(ρ, z, pρ, pz) =
1

2
(p2

ρ + p2
z) −

1√
ρ2 + z2

+ z +
1

8
B2ρ2 = E, (1)

where B is the scaled magnetic field strength, E is the scaled energy, and the
z component of angular momentum is zero. (The electric field strength does
not appear explicitly due to the choice of scaling.) For all data in this paper,
B = 4.5 and E = −1.3. The applied fields point in the positive z direction,
and hence ionizing trajectories eventually escape in the negative z direction.
For our calculations, the detector is placed at z = −4 [6].

The trajectories that form a given pulse all come from a particular interval of
the initial outgoing angle θ, defined as the angle between the initial momentum
and the positive z-axis [7]. This is evident from a plot of the time t that it
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Fig. 2. (a) The continuous-escape-time plot: the time t for a trajectory launched
from the nucleus at angle θ to reach the detector at z = −4. Note that time increases
downward along the vertical axis. (b) The discrete-escape-time plot: the number of
iterates of a map required for the electron to escape. (c) An enlargement of an
interval in (b).

takes a trajectory to reach the detector as a function of θ, where we assume
that all trajectories have the same energy E and the same initial launch time.
Such an escape-time plot is shown in Fig. 2(a).

The escape-time plot is divided into smooth regions that look like upside-
down icicles [8]. On the left and right edge of each icicle, the escape time
goes to infinity, and in the middle, it has a minimum. Since most trajectories
within an icicle strike the detector shortly after this minimum, each icicle
produces a pulse with a large initial flux followed by a decaying tail. Thus,
there is a one-to-one correspondence between icicles and pulses, and so we can
understand the structure of the pulse train by understanding the structure of
the escape-time plot.

In Fig. 2(b), we show a discrete-escape-time plot, which simplifies the continuous-
escape-time plot by compressing each icicle into a single escape segment, with
a constant integer value. Figures 2(a) and 2(b) have been placed end to end
to emphasize this connection. The precise definition of the discrete plot in-
volves representing the electron dynamics by a discrete-time Poincaré map.
The discrete escape time is then defined as the number of iterates of this map
required for the electron to escape a particular region of phase space. This is
defined explicitly in Sect. A.1 and in earlier references [1,2].

On the far right of Figs. 2(a) and 2(b) is an interval of θ labeled “Direct”.
This interval extends all the way to θ = π. Trajectories launched at values of
θ within this segment escape more or less directly downhill, as discussed in
Sect. 3 below. Trajectories from other segments in Fig. 2(b) can be much more
complicated. Before considering these trajectories in more detail (Sect. 3), we
examine the structure of segments within the escape-time plot itself, following
Refs. [9,4].

The escape-time plot exhibits regular repeated structure. In particular, regular
infinite sequences of escape segments occur throughout the escape-time plot
on all scales. We call these sequences epistrophes [10]. They have the following
properties: (1) An epistrophe is an infinite sequence of consecutive escape
segments that converges geometrically upon the endpoint of another escape
segment. (2) An epistrophe converges upon each endpoint of every escape
segment (except, of course, for the θ = π endpoint of the direct segment).
We therefore say that each escape segment “spawns” two new epistrophes,
one on either side. (3) The asymptotic tails of any two epistrophes only differ
by a change of scale. These results were proved in an Epistrophe Theorem in

4



Ref. [9].

In the discrete-escape-time plot, the segments labeled A1, A2, and A3 form the
first three segments of an epistrophe that converges on the left endpoint of the
direct segment. Similarly, the segments B1 and B2 are the first two segments
in a B epistrophe, which converges on the left endpoint of the A1 segment.
Likewise, a C epistrophe converges on the right endpoint of the A1 segment.
Within the resolution limits of Fig. 2, we see that an epistrophe converges
upon each endpoint of every escape segment.

In many cases, new epistrophes are spawned in a regular manner. Note that
the B and C epistrophes are spawned exactly two iterates after the A1 segment.
The same is true of the D and E epistrophes relative to the A2 segment, as
shown in Fig. 2(c). This pattern is repeated throughout the escape-time plot.
In Ref. [4] we proved a general rule, called the Epistrophe Start Rule, for such
escape-time plots. This rule states that: (1) there is a minimal set of escape
segments, which is determined by the topological structure of the underlying
homoclinic tangle; (2) each segment within the minimal set spawns two new
epistrophes some number of iterates D + 1 later. (In Fig. 2, D = 1.) The
integer D is called the minimum delay time. (It is a topological parameter of
the homoclinic tangle, as discussed in Sect. A.1.)

The Epistrophe Start Rule implies a recursive self-similar structure to the
escape-time plot. Each segment in the A epistrophe spawns two new epistro-
phes after two iterates. Each segment within these new epistrophes also spawns
two new epistrophes after two iterates, and so forth. This regular structure
accounts for most of the early escape segments. On the other hand, a few
segments in Fig. 2 do not fit within this recursive structure. For example, the
segment marked by ∗ is not generated by the Epistrophe Start Rule. Sim-
ilarly, where we would expect to see the G1 segment in Fig. 2(c) we find
three distinct escape segments, denoted G1′, G1′′, G1′′′ [11]. In summary, the
Epistrophe Start Rule recursively generates a minimal set of escape segments,
but there are typically additional segments occurring in the true escape-time
plot. We sometimes call the additional escape segments “strophes” [12]. For
important earlier work on fractal escape-time plots and other related functions
see Refs. [8,13].

All of the results in this paper apply to the chosen parameters E = −1.3,
B = 4.5, and they describe the entire minimal set of escape segments for
this case. As these parameters are varied, the structure of the escape-time
plot changes. For example, “strophe” segments may appear or disappear, and
more importantly, the value of the minimum delay time D in the Epistrophe
Start Rule may change. Our methods can be extended to the case D > 1, but
for simplicity we restrict consideration in this paper to D = 1.
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Fig. 3. Ionizing trajectories from the direct escape segment are plotted for a selection
of launch angles θ. In the upper left panel, the trajectory launched at θ = π proceeds
from the nucleus directly downward. This panel also shows potential contours, with
the Coulomb center at the origin and the potential saddle at z = −1. The unstable
periodic orbit near the saddle appears as a thick shaded horizontal line. In the
remaining panels, the launch angle θ approaches the critical angle of the direct
segment, and the resulting trajectories exhibit an increasing amount of oscillation
along the periodic orbit.

3 Description of the structure of ionizing trajectories

We examine the structure of ionizing electron trajectories in the coordinates
ρ, z. These trajectories move on the potential surface illustrated by the con-
tours in Fig. 3. This surface has an infinite Coulomb well with a saddle sep-
arating the well from the escape channel. Trajectories begin at the nucleus,
oscillate chaotically within the Coulomb well, and eventually pass over an un-
stable orbit which lies near the saddle. This unstable orbit is shown as the
thick shaded horizontal line in Fig. 3.

The trajectories that form the direct segment have the simplest behavior
(Fig. 3). The trajectory launched at θ = π proceeds directly downhill and
reaches the detector first. Adjusting θ away from π, the trajectory oscillates
in ρ as it travels down toward the detector. As θ approaches the critical angle
at the edge of the escape segment, the frequency of ρ oscillations near the
saddle is nearly constant, but the z velocity near the saddle grows smaller
and smaller. As a result, for trajectories launched near the critical angle, the
ρ oscillations accumulate along the unstable periodic orbit as the trajectory
passes over the saddle region. At the critical angle itself, the trajectory oscil-
lates forever, converging upon the periodic orbit.

The trajectories forming the A1 segment exhibit a qualitatively different be-
havior. Figure 4 shows the trajectory from the A1 icicle that reaches the de-
tector first, with θ = 2.04293. It initially moves downward, away from the
nucleus, then passes under and around the nucleus, and finally escapes. As it
travels farther downward, toward the detector, it continues to oscillate in ρ.
Adjusting the launch angle away from θ = 2.0428, the ionizing trajectory still
displays the same qualitative initial behavior, but as it passes over the sad-
dle region on its way toward the detector, it undergoes an increasing number
of ρ oscillations close to the unstable periodic orbit, analogous to the direct
trajectories in Fig. 3. This is a general phenomenon: All trajectories within a
given escape segment display the same initial qualitative behavior but differ
in the amount of ρ oscillation as they move past the saddle toward the detec-
tor. Thus, to understand the qualitative behavior of the ionizing trajectories
within a given segment, we concentrate on a single representative trajectory,
taken to be the trajectory that strikes the detector first. Figure 4 plots an
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Fig. 4. The earliest trajectory from various pulses, or escape segments, is shown.
The electric and magnetic fields point along the z-axis, which is the vertical axis.
The segment label, (−o)-string, and launch angle θ are shown in each panel. The
thick shaded horizontal line is the same periodic orbit shown in Fig. 3.

assortment of such trajectories.

Let us examine the trajectories within the A epistrophe. As with the A1 trajec-
tory, the A2 trajectory initially moves downward and passes under the nucleus.
However, it undergoes an additional half-cycle in ρ before looping around the
nucleus and exiting [14]. Similarly, the A3 and A4 trajectories oscillate one
additional half-cycle each before encircling the nucleus. This pattern persists
as one progresses through the A epistrophe: trajectories from consecutive es-
cape segments oscillate one additional half-cycle before encircling the nucleus
and escaping. These additional oscillations are close to the unstable periodic
orbit, converging upon it as one progresses deeper into the epistrophe.

As stated in the Introduction, we record this qualitative behavior by a finite
string of the symbols {−, o}. (This (−o)-string is the same for all trajectories
within an escape segment.) Each time a trajectory intersects the negative z-
axis, we record the symbol o if the trajectory has encircled the nucleus since its
last intersection. If it has not encircled the nucleus, we record the symbol −.
We record the symbols from left to right, beginning with the first intersection
away from the nucleus and ending when the trajectory encircles the nucleus for
the last time. For example, the A1, A2, A3, and A4 trajectories yield strings
−o, −−o, −−−o, and −−−−o, respectively. More generally, we will see that
an Ak trajectory yields −ko, where −k is shorthand for a string of k dashes.

Considering now the B epistrophe, the B1 – B4 trajectories have strings −o−o,
−o − −o, −o − − − o, and −o − − − −o, respectively (Fig. 4). As with the
A epistrophe, successive trajectories oscillate one additional half-cycle in ρ
before their last loop around the nucleus. More generally, we will see that the
Bk trajectory yields (−o) −k o. The parentheses highlight the fact that the
“prefix” (−o) of the string is equal to the string of the A1 segment, which
spawns the B epistrophe.

Considering the C epistrophe, we find the same situation, with one striking ex-
ception. Figure 4 shows that trajectories C2 – C4 follow the pattern (−o)−k o
(as do all Ck for k > 1), but the C1 trajectory breaks this pattern, yielding
−−oo. The difference between the true (−o)-string −−oo and the “expected”
string −o − o is a transposition of the second and third symbols, reflected in
Fig. 4 by the fact that the C1 trajectory first encircles the nucleus counter-
clockwise rather than clockwise, as all subsequent trajectories Ck do.

Note that some escape segments, such as B2 and C2, have the same (−o)-
string. Thus the (−o)-string is not a unique symbolic labeling, as one typically
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defines for the logistic map or Smale horseshoe – that is not the purpose of
the (−o)-string. Its purpose is to qualitatively describe what a trajectory looks
like in configuration space.

Next consider the D and E epistrophes, spawned by the A2 segment. Trajecto-
ries from Dk display the consistent pattern (−− o)−k o for k ≥ 1, as seen for
D1 – D4 in Fig. 4. Here, the prefix (−− o) equals the string of the spawning
segment A2. Trajectories from the E epistrophe, however, only display this
pattern for k ≥ 3. As with C1, the E1 and E2 trajectories break the pattern.

The F and G epistrophes are expected to display the pattern (− − oo) −k o,
since they both converge upon C1, which has the string −−oo. The F1 segment
is the only one to break this pattern.

In the G epistrophe, the Epistrophe Start Rule forces they existence of one
segment G1, but two additional segments are observed in Fig. 2c, resulting in
the three segments G1′, G1′′, and G1′′′. All three segments exhibit the same
string (−− oo) − o.

Finally, the segment marked ∗, which is not a member of the minimal set
and which is the first segment to break the regular recursive structure of the
escape-time plot, has the string −oo−o. This string is different from any string
within the minimal set. We shall say nothing more about such strings in this
paper.

The trajectories considered above illustrate the following general facts, which
are valid within the minimal set.

Fact 1 A trajectory from a segment within an epistrophe encircles the nucleus
once more than a trajectory from the segment spawning the epistrophe. That
is, an epistrophe segment yields a string with one more o than the spawning
segment.

Fact 2 A trajectory from a segment Xk within an epistrophe yields the string
P −k o, for k ≥ k0, where P is the (−o)-string of the segment Y that spawned
the epistrophe and where k0 is the index of the first segment to follow the
pattern P −k o. (Hence, once the pattern is realized, all successive trajectories
must also follow the pattern.) Furthermore, k0 ≤ n, where n is the iterate of
the spawning segment Y.

Fact 2 is a manifestation of continuity in the dynamics: as segments Xk of
an arbitrary epistrophe converge upon the spawning segment Y, the initial
behavior of a trajectory in Xk converges to the initial behavior of the trajectory
at the edge of Y.

In the next section, we present an algebraic process that predicts the qualita-
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tive structure of ionizing trajectories. Specifically, we give a symbolic algorithm
that computes the (−o)-string for any segment in the minimal set, thereby de-
scribing the sequence of crossings of the negative z-axis and loops around the
nucleus. This algorithm correctly describes the behavior of all the trajectories
shown in Fig. 4, except the trajectory ∗ which is not in the minimal set. It
also implies Facts 1 and 2 (proved in Appendices B and C), and it correctly
predicts the structure of the seemingly exceptional cases like C1, E1 and E2.

4 Algorithm for determining the (−o)-string of an escape segment

Now we present the algorithm for computing the string of symbols {−, o} for
any segment within the minimal set. The algorithm uses an extension of a type
of symbolic dynamics that we previously developed to prove the existence and
structure of the minimal set of escape segments [4]. However the algorithm
itself is self-contained – it can be applied with no knowledge of the underlying
meaning of the symbols. The meaning of the symbols and the justification of
the algorithm are given in Appendix A.

4.1 Generating the minimal set

We present a symbolic scheme to construct the minimal set of escape segments
in the discrete-escape-time plot. First, we introduce an infinite set of symbols

A ={h0, h1, c1, F, F̃ , u0, u1, u2, ...,

h−1
0 , h−1

1 , c−1
1 , F−1, F̃−1, u−1

0 , u−1
1 , u−1

2 , ...}, (2)

where each symbol has an inverse. We then introduce a map M that takes
any symbol to a product of symbols

M(h0) = h1, (3a)

M(h1) = h0u
−1
0 F, (3b)

M(c1) = F̃−1u−1
0 F, (3c)

M(F ) = M(F̃ ) = c−1
1 u−1

0 F, (3d)

M(un) = un+1, 0 ≤ n. (3e)

The iterate of the inverse of a symbol follows standard convention, e.g.
M(h−1

1 ) = F−1u0h
−1
0 , and the iterate of a product is the product of the iter-

ates. Beginning with `0 = h0, we repeatedly apply Eqs. (3) to map `n forward
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to `n+1. For example, the first four iterates are

`0 = h0, (4a)

`1 = h1, (4b)

`2 = h0u
−1
0 F, (4c)

`3 = h1u
−1
1 c−1

1 u−1
0 F, (4d)

`4 = h0u
−1
0 Fu−1

2 F−1u0F̃ u−1
1 c−1

1 u−1
0 F. (4e)

The structure of the minimal set of escape segments up to iterate N is encoded
in the product `N . Specifically, each u±1

0 factor in `N corresponds to a segment
that escapes at iterate N . More generally, the entire minimal set up to iterate
N is obtained from the following rules:

(1) Each u±1
n symbol in `N corresponds to a segment that escapes in N − n

iterates.
(2) The relative positions of the u±1

n symbols in `N are the same as the relative
positions of their corresponding escape segments along the θ-axis, with
symbols further to the left corresponding to segments at smaller θ.

This algebraic scheme is a modification of the symbolic dynamics developed in
Ref. [4]. There we showed how the symbolic dynamics results in the epistrophe
structure, including the Epistrophe Start Rule.

The rest of the algorithm constructs the (−o)-string associated with each
segment (i.e. each u±1

n ) within `N .

4.2 The A-string and 01-string of an escape segment

We label each escape segment in the minimal set by a unique string of symbols
from the alphabet A. To this end, we recognize that each u±1

0 symbol within
a given `n results from mapping forward a symbol sn−1 within `n−1, which
in turn results from a symbol sn−2 within `n−2, and so forth. Thus, each u±1

0

within `n is uniquely identified by a string of “ancestors” s1...sn−1u0, which we
call the ancestry string, or A-string, of the segment [to distinguish it from the
(−o)-string.] Omitting the common ancestor s0 = h0, we begin the A-string
at s1 = h1 and end it at sn = u0. Furthermore, we do not record the exponent
±1 of a symbol in the A-string.

As examples, we determine the A-strings of the A1, A2, and A3 segments in
Fig. 2. We first note that these are the rightmost segments at iterates 2, 3, and
4, respectively, meaning that they correspond to the rightmost u0-factors in
Eqs. (4c) – (4e). Then, tracing the ancestry of each of these factors yields the
A-strings h1u0, h1Fu0, and h1FFu0, respectively. Table 1 shows the A-strings
for a selection of escape segments.
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Table 1
The A-strings, 01-strings, and (−o)-strings for a selection of escape segments.

Segment A-string 01-string (−o)-string

A1 h1u0 1u − o

A2 h1Fu0 10u −− o

A3 h1FFu0 100u −−−o

Ak, k ≥ 1 h1F
k−1u0 10k−1u −ko

B1 h1h0h1u0 111u −o − o

B2 h1h0h1Fu0 1110u −o −−o

B3 h1h0h1FFu0 11100u −o −−− o

Bk, k ≥ 1 h1h0h1F
k−1u0 1110k−1u (−o) −k o

C1 h1Fc1u0 101u −− oo

C2 h1Fc1Fu0 1010u −o −−o

C3 h1Fc1FFu0 10100u −o −−− o

Ck, k ≥ 2 h1Fc1F
k−1u0 1010k−1u (−o) −k o

D1 h1Fc1F̃ u0 1011u −− o − o

D2 h1Fc1F̃Fu0 10110u −− o −−o

D3 h1Fc1F̃FFu0 101100u −− o −−− o

Dk, k ≥ 1 h1Fc1F̃F k−1u0 10110k−1u (−− o) −k o

E1 h1FFc1u0 1001u −−−oo

E2 h1FFc1Fu0 10010u −−−o − o

E3 h1FFc1FFu0 100100u −− o −−− o

Ek, k ≥ 3 h1FFc1F
k−1u0 10010k−1u (−− o) −k o

F1 h1Fc1Fc1u0 10101u −o −−oo

F2 h1Fc1Fc1Fu0 101010u −− oo −−o

F3 h1Fc1Fc1FFu0 1010100u −− oo −−− o

Fk, k ≥ 2 h1Fc1Fc1F
k−1u0 101010k−1u (−− oo) −k o

G1 h1Fc1F̃ c1u0 10111u −− oo − o

G2 h1Fc1F̃ c1Fu0 101110u −− oo −−o

G3 h1Fc1F̃ c1FFu0 1011100u −− oo −−− o

Gk, k ≥ 1 h1Fc1F̃ c1F
k−1u0 101110k−1u (−− oo) −k o
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We simplify a given A-string to a string of symbols {0, 1, u} using the following
identifications, denoted by Σ,

Σ(h0) = Σ(h1) = Σ(c1) = Σ(F̃ ) = 1, (5a)

Σ(F ) = 0, (5b)

Σ(u0) = u. (5c)

We call the result a 01-string, read as either “zero-one string” or “naught-one
string”. Table 1 shows the 01-strings for various escape segments. It is not
difficult to show that Eqs. (3) permit a unique reconstruction of the A-string
from its corresponding 01-string. Thus, both the A-string and the 01-string
label a unique escape segment in the minimal set [unlike the (−o)-string.]

4.3 Computing the (−o)-string

From the 01-string S = s1...sn of an escape segment, we can compute the
(−o)-string. Each symbol si of S is mapped to either o or − according to the
following:

Translation Rules

(1) First, S begins with a string of 1’s whose length m is odd. This string
1...1 maps to the alternating sequence −o − o...− of length m.

(2) Each 0 within a substring 0...0 maps to −, except for the final 0, which
can map to either − or o, as determined by Rule 3 or 4.

(3) The symbol u translates to o. Furthermore, the substring 0u translates
to −o.

(4) Any substring 01...1 is analyzed as follows (assuming this substring is
maximal, i.e. the next symbol is not 1.) First, break the string into con-
secutive pairs:

[01][11]...[11] if length is even,

[01][11]...[11]1 if length is odd.

The terminal unpaired 1, which occurs for odd length, maps to −. Each
pair [sκ1] maps to either −o or o− according to the “Pair Test” below.
Here, κ is the position of the first symbol of the pair within the entire
string S.
Pair Test
(a) Construct the infinite periodic sequence Q̄ = QQ..., where Q =

s1...sκ1sκ...s2. Denote the symbols within Q̄ by qi, i.e. Q̄ = q1q2....
(b) Let λ be the first index where S and Q̄ disagree, i.e. λ = min{i|si 6=

qi}.
(c) Let α be the number of 1’s within the substring qκ+1...qλ of Q̄.
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(d) Then,

sκ1 translates to











o− if α is even,

−o if α is odd.

4.4 Examples

The rules for translating a 01-string into a (−o)-string are best understood
through examples. We apply these rules, from left to right, on several 01-strings
from Table 1.

A1: Considering the string 1u, 1 maps to − according to Rule 1, and u maps
to o according to Rule 3.

A2: Considering 10u, 1 maps to − (Rule 1) and 0u maps to −o (Rule 3).

A3: Considering 100u, 1 maps to − (Rule 1), 0 maps to − (Rule 2), and 0u
maps to −o (Rule 3).

A4: Considering 1000u, 1 maps to − (Rule 1), 00 maps to −− (Rule 2), and
0u maps to −o (Rule 3).

B1: Considering 111u, 111 maps to −o− (Rule 1), and u maps to o (Rule 3).

B2: Considering 1110u, 111 maps to −o− (Rule 1), and 0u maps to −o (Rule
3).

B3: Considering 11100u, 111 maps to −o− (Rule 1), 0 maps to − (Rule 2),
and 0u maps to −o (Rule 3).

C1: Considering 101u, 1 maps to − (Rule 1). Then, 01 is analyzed according
to Rule 4. That is, we apply the Pair Test to 01, for which κ = 2.

a. Q = s1s21s2 = 1010 and Q̄ = (1010)(1010)... .
b. Comparing S = 101u to Q̄ = 1010..., the first difference occurs at λ = 4.
c. The substring qκ+1...qλ = q3q4 is 10. Hence α = 1.
d. Since α is odd, 01 maps to −o.

Finally, u maps to o (Rule 3), and hence 101u maps to −− oo.

C2: Considering 1010u, we only describe how to implement Rule 4, having
sufficiently illustrated the other rules. The Pair Test applies to 01 with κ = 2.
We skip Step (a) of the Pair Test, since it is identical to Step (a) for C1.

b. Comparing S = 1010u to Q̄ = 101010..., λ = 5.
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c. qκ+1...qλ = q3q4q5 = 101. Hence α = 2.
d. Since α is even, 01 maps to o−.

Here, the Pair Test returns o−, the transpose of the result returned for C1.
One can verify that the result for C3 is the same as for C2.

A more involved application of the Pair Test occurs for the E epistrophe.

E1: Considering 1001u, the Pair Test applies to 01 with κ = 3.

a. Q = s1s2s31s3s2 = 100100.
b. Comparing S = 1001u to Q̄ = 10010..., λ = 5.
c. qκ+1...qλ = q4q5 = 10. Hence α = 1.
d. Since α is odd, 01 maps to −o.

E2: Considering 10010u, the Pair Test applies to 01 with κ = 3. We skip Step
(a), since it is identical to that of E1.

b. Comparing S = 10010u to Q̄ = 100100..., λ = 6.
c. qκ+1...qλ = q4q5q6 = 100. Hence α = 1.
d. Since α is odd, 01 maps to −o.

E3: Considering 100100u, the Pair Test applies to 01 with κ = 3. We again
skip Step (a).

b. Comparing S = 100100u to Q̄ = 1001001..., λ = 7.
c. qκ+1...qλ = q4q5q6q7 = 1001. Hence α = 2.
d. Since α is even, 01 maps to o−.

Notice that for C1, E1, and E2, the Pair Test returns −o, but for C2, E3 and
all subsequent Ck’s and Ek’s the test returns o−. The Pair Test thus produces
both the asymptotic pattern of the epistrophe segments, as well as the initial
behavior that breaks the pattern.

G3: The string S = 1011100u requires two applications of the Pair Test. We
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illustrate this with the following diagram

Rule # 1 4 4 4 4 2 3 3

− [ − o ][ o − ] − − o

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
S = 1 [ 0 1 ][ 1 1 ] 0 0 u

Q̄1 = ( 1 0 1 0 )( 1 0 1 0 )...

κ1 λ1

Q̄2 = ( 1 0 1 1 1 1 1 0 )...

κ2 λ2

(6)

Here, each symbol of S is connected to its corresponding {−, o}-symbol by
an upward pointing arrow. Above each {−, o}-symbol is the number of the
Translation Rule used. The first three rules are easily applied, and so we
concentrate here on the application of the Pair Test to the two pairs, which
are set off by square brackets.

The first pair begins at κ1 = 2. Directly below S we record Q̄1 = Q1Q1..., with
each factor Q1 = s1s21s2 enclosed in parentheses. The first three symbols of
Q̄1 and S agree, with the first discrepancy occurring at λ1 = 4. The string
qκ1+1...qλ1

= q3q4 = 10 is underlined for visibility. Since this string contains
only one 1, we find α = 1 and hence s21 translates to −o.

For the second pair, which begins at κ2 = 4, we record Q̄2 = Q2Q2... . The
first discrepancy now occurs at λ2 = 6, meaning that the string qκ2+1...qλ2

=
q5q6 = 11 contains two 1’s, and hence α = 2 and s41 translates to o−.

The reader is encouraged to work through the remaining examples Dk, Fk, and
Gk in Fig. 4 and Table 1. In summary, all the preceding examples illustrate
that the algorithm correctly predicts the qualitative structure of the ionizing
trajectories that occur within the minimal set of escape segments.

5 Conclusions

In previous work, we predicted that hydrogen atoms in parallel electric and
magnetic fields can decay by emitting a train of electron pulses. The ionizing
trajectories that form a given pulse lie within a particular interval, or escape
segment, of the initial launch angle θ. All trajectories within such an interval
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exhibit similar qualitative behavior. In the present work, we studied the spatial
shapes of these trajectories. In particular, we developed an algorithm, based on
symbolic dynamics, whose output is the qualitative shape of trajectories that
lie within a certain minimal set of escape segments. Although this algorithm
is nontrivial, it has simple consequences, which were summarized by Facts 1
and 2.
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A Justification of the Algorithm

We explain here the geometry underlying the algorithm presented in Sect. 4.
The algorithm takes essential information about the history of an orbit within
a Poincaré surface of section (the A-string) and converts it into information
about the orbit in configuration space [the (−o)-string]. The structure of the
dynamics in the surface of section is described in terms of a homoclinic tangle.
For a selection of important work on tangles and phase space transport, see
Ref. [15].

A.1 The surface of section and homoclinic tangle

Within the three-dimensional energy shell of the four-dimensional phase space
(ρ, z, pρ, pz), we define a two-dimensional Poincaré surface of section consisting
of the negative z-axis and its conjugate momentum pz. More precisely, the
surface of section is the constraint surface defined by H = E, ρ = 0, z ≤ 0,
where the two branches pρ > 0 and pρ < 0 are mathematically identified
into a single component. We define M to be the associated Poincaré return
map which maps this surface to itself. To regularize the infinite momentum
at the Coulomb singularity, we express M in new canonical coordinates q =

(1 − p2
z)

√

−z/(1 + p2
z) and p = −2pz

√

−z/(1 + p2
z) on the surface of section.

Figure A.1 shows the qualitative structure of a surface-of-section plot in these
coordinates. For further details see Refs. [1,2].

The prominent unstable periodic orbit, shown as the shaded line in Figs. 3
and 4, intersects the negative z-axis, forming an unstable fixed point zX of
the Poincaré map M, as shown in Fig. A.1. This fixed point has stable (S)
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and unstable (U) manifolds that intersect in a complicated pattern, called a
homoclinic tangle.

The intersection of S and U at P0 defines a region of the qp-plane which we
call the complex. The S- and U -boundaries of the complex are the segments
of S and U that join P0 to zX.

The ensemble of initial states, located at the nucleus and spanning all launch
angles θ, forms a line of initial conditions L0 in the qp-plane. This line is
parameterized by θ, beginning at the origin (q, p) = (0, 0), with θ = 0, and
continuing horizontally to the left past P0. (The origin is a fixed point of
M.) The discrete escape time is formally defined as the number of iterates of
M required for a point on L0 to map out of the complex. Once a trajectory
escapes the complex, it never returns.

The intersection P0 maps to an infinite sequence of intersections Pn = Mn(P0),
−∞ < n < ∞. Likewise, the intersection Q0, shown in Fig. A.1, maps to
Qn = Mn(Q0). These intersections define regions En (escape lobes) and Cn

(capture lobes), −∞ < n < ∞. The S- and U -boundaries of En are the seg-
ments of S and U that join Pn to Qn, whereas the S- and U -boundaries of Cn

join Qn−1 to Pn.

Under the Poincaré map, M(En) = En+1 and M(Cn) = Cn+1. Thus, the
escape lobe E−1, which is inside the complex, maps to E0, which is outside
the complex. In fact, the lobe E−1 contains all points that map out of the
complex. Similarly, C0 contains all points that map into the complex.

We describe the topology of the tangle by the minimum delay time D, defined
as the smallest n such that Cn+1 intersects E0. It is the minimum number
of iterates a scattering trajectory may spend inside the complex. In Fig. A.1,
D = 1. For more details on homoclinic tangles and phase space transport, see
Ref. [15].

We approximate the true Poincaré map by a map having the simplest topolog-
ical structure consistent with D = 1. Such a map is topologically equivalent to
a Smale horseshoe. This approximation produces only escape segments that
are in the minimal set; there are no additional strophe segments. To justify the
algorithm for the exact dynamics exhibited by the hydrogen system requires a
more detailed mathematical treatment than is appropriate here. The symbol
M will henceforth refer to the approximate map.
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Fig. A.1. This figure shows a qualitative picture of the tangle and one representative
curve from each class. The unstable manifold U is the thick curve, and the stable
manifold S is the corresponding thin curve. The capture lobes C1 and C2 are shaded
dark. The escape lobe E−1 is bounded below by U and above by S; it is the reflection
of C1 through the horizontal axis. The intersection between E−1 and C1 yields the
minimum delay time D = 1.

A.2 Topological significance of the symbols in A

Each symbol in A [Eq. (2)] represents a class of directed curves in the qp-
plane. Only the endpoints of these curves can intersect the S-boundary of the
complex. Furthermore, they satisfy (see Fig. A.1):

h0: Curves go directly from the origin to the S-boundary of E0, denoted E0,
without intersecting C1, C2, or L0.

h1: Curves go directly from the origin to the S-boundary of E1, denoted E1,
without intersecting C1, C2, or L0.

c1: Curves go from E0 to E1, passing between C1 and the origin and not inter-
secting L0.

F̃ : Curves go from E0 to E1, passing under both C1 and the origin, intersecting
L0 once, but staying above C2.

F : Curves go from E0 to the segment of S joining P2 to zX, passing under C2,
and intersecting L0 once.

un, n ≥ 0: Curves stay within En, beginning and ending on the S-boundary
of En, and passing clockwise over Cn+2 ∩ En.

The inverse a−1 of a symbol a ∈ A is defined as the same class of curves as a,
except with the directions reversed. The product ab of two symbols a, b ∈ A,
as used in Eqs. (3) and (4), is defined as a new class of directed curves, defined
by concatenating a curve in a with a curve in b, such that the last point of a
agrees with the first point of b. (Note, however, that juxtaposition of symbols
in an A-string does not indicate multiplication or concatenation.)

Under the Poincaré map M on the qp-plane, each class of curves a ∈ A is
mapped to another class of curves, described by a product of elements in A.
This mapping is given by Eqs. (3). These equations can be justified by scrutiny
of Fig. A.1. (See Ref. [4] for further detail.)

Since the line of initial conditions L0 intersects C2, it is not of type h0, ac-
cording to the above definition. However, L0 does map to a curve of type h1,
and for that reason we begin with `0 = h0 in Eqs. (4).

18



Fig. A.2. (a) The regions D0 and D1 (shaded). (b) The regions D′
0 and D′

1, which
are the reflections of D0 and D1, respectively.

Finally, since u0 lies within E0, a u±1
0 factor within `N represents a piece of

the curve LN that intersects E0. That is, each u±1
0 factor represents a segment

that escapes on the Nth iterate.

A.3 Topological significance of the symbols {0, 1, u}

We define two regions of the complex, D0 and D1, as shown in Fig. A.2(a).
We define a map Σ that takes a point z ∈ D0 ∪ D1 ∪ E0 and returns 0, 1, or
u according to

Σ(z) = ν for z ∈ Dν, ν = 0, 1, (A.1)

Σ(z) = u for z ∈ E0. (A.2)

Since all symbols in A, except un, n > 0, label classes of curves that lie entirely
within either D0, D1, or E0, the map Σ can be extended to act directly on
these symbols, which leads to Eqs. (5).

A.4 A criterion for encircling the nucleus

We imagine interpolating between a point z and its image M(z) by a curve
that begins at z and moves clockwise (about the origin) to M(z). If this clock-
wise motion crosses L0, we assert that the corresponding electron trajectory
in the ρz-plane encircles the nucleus; and if the clockwise motion does not
cross L0, then the electron does not encircle the nucleus [16]. To be more
specific, consider a point in h1. (We say “a point in h1” as shorthand for “a
point on a curve in the class h1”.) If this point maps clockwise to a point in
h0, it must cross over L0, and therefore the corresponding electron trajectory
encircles the nucleus. Since each appearance of the substring h1h0 within an
A-string describes a point of the escaping trajectory that maps from h1 to h0,
this substring translates to τo, with τ ∈ {−, o} undetermined. The symbol
h0 translates to o because the trajectory encircles the nucleus before arriving
at the point in h0, as specified by the conventions for − and o introduced in
Sect. 3.

Conversely, a point in h0 maps clockwise to a point in h1 without crossing L0.
It therefore does not encircle the nucleus, and each appearance of h0h1 in an
A-string translates to τ−.

If a point in h1 maps clockwise to a point in F , it crosses L0 if and only if it
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arrives in that piece of F above L0 (i.e. if it lands between E0 and L0.) This
piece of F we call Fa, i.e. Fa contains curves that lie between E0 and L0. The
piece of F below L0 we call Fb. Then, h1Fa translates to τo and h1Fb translates
to τ−. We apply similar logic to all possible pairs and find:

h1h0, h1u0, h1Fa, c1F̃a, c1u0, c1Fa,

Fbc1, F̃bc1, Fbu0, F̃bu0, FbFa, F̃bFa











→ τo, (A.3)

h0h1, h1Fb, c1F̃b, c1Fb,

Fac1, F̃ac1, FbFb, F̃bFb











→ τ−, (A.4)

where the arrow means “translate to”. From Eqs. (A.3) and (A.4), we deduce
the following simpler translations

Fb, F̃b → −, (A.5)

Fa, F̃a → o, (A.6)

and

h1 → −, (A.7)

h0, u0 → o. (A.8)

Furthermore, Eqs. (A.3) and (A.4) together with (A.5) and (A.6) yield

Fac1, F̃ac1 → o−, (A.9)

Fbc1, F̃bc1 → −o. (A.10)

Notice that FaFa, FaFb, Fau0, F̃aFa, F̃aFb, and F̃au0 are missing from the list
of all possible pairs in Eqs. (A.3) and (A.4). This is because a point in Fa

or F̃a must map to a point in c1. This observation, together with Eq. (A.5),
implies

FF = FbF

F̃F = F̃bF

Fu0 = Fbu0

F̃ u0 = F̃bu0







































→ −τ. (A.11)

Equations (A.7)–(A.11) are sufficient to determine the (−o)-string given the
A-string, with one stipulation: we must determine whether the F in each
substring Fc1 is Fa or Fb (and similarly with F̃ c1). This issue is addressed in
Sect. A.5, where it is more naturally treated using the 01-string rather than
the A-string.

First, we show how the Translation Rules 1 – 4 (except for the Pair Test)
follow from Eqs. (A.7)–(A.11).
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Rule 1: The initial string 1...1 corresponds to an A-string h1h0h1h0...h1. By
Eqs. (A.7) and (A.8), this translates to −o − o...−.

Rule 2: A substring 0...0 corresponds to an A-string F...F . By Eq. (A.11) this
maps to a string of −’s, except for the final symbol.

Rule 3: By Eq. (A.8), u translates to o. Furthermore, 0u, which corresponds
to Fu0, translates to −o by Eq. (A.11).

Rule 4: An even substring [01][11]...[11] corresponds to [Fc1][F̃ c1]...[F̃ c1] and
an odd substring [01][11]...[11]1 corresponds to [Fc1][F̃ c1]...[F̃ c1]F̃ . In the odd
case, the terminal 1, which corresponds to F̃ , must be followed by either 0,
which corresponds to F , or u, which corresponds to u0. Thus, the terminal F̃
translates to − by Eq. (A.11).

Since each pair [01] corresponds to [Fc1] and each pair [11] corresponds to
[F̃ c1], these pairs translate to either o− or −o according to Eqs. (A.9) and
(A.10). The Pair Test, which resolves this ambiguity, determines on which side
of L0 a point in F lies, i.e. whether the point is in Fa or Fb (and similarly with
a point in F̃ .)

A.5 Closed orbits

Each F or F̃ factor within `κ, for some κ > 0, determines a segment of Lκ that
intersects L0. Since L0 consists of states at the nucleus, this intersection de-
termines a closed orbit, i.e. a trajectory that begins at, and eventually returns
to, the nucleus (after κ iterates.)

Since the dividing point between Fa and Fb is a closed orbit, these orbits
warrant further study. In particular, given the first κ symbols in the infinite
A-string of a closed orbit, we shall determine the subsequent behavior of the
orbit. We describe this behavior using the 01-string.

As a result of time-reversal symmetry, after the first κ iterates of the closed
orbit in the qp-plane, z1...zκ, the orbit retraces its steps, reflected about the
q-axis, i.e.

zκ+i = R(zκ−i), −∞ < i < ∞, (A.12)

where R is the reflection about the q-axis. Thus z2κ = z0, and hence an
orbit that is closed after κ iterates is periodic with period 2κ (though its
fundamental period may be less than 2κ.) Consequently, all points zi lie inside
the complex for −∞ < i < ∞.

In addition to the regions D0 and D1 in Fig. A.2(a), we define two regions D′

0
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and D′

1 in Fig. A.2(b). These regions are related by

M2(D′

ν) = Dν, ν = 0, 1, (A.13)

R(Dν) = D′

ν, ν = 0, 1. (A.14)

Analogous to Eq. (A.1), we define

Σ′(z) = µ for z ∈ D′

µ, µ = 0, 1. (A.15)

Then
Σ′(zi) = Σ(zi+2) (A.16)

follows immediately from Eqs. (A.1), (A.13), and (A.15), and

Σ′(z) = Σ(R(z)) (A.17)

follows from Eqs. (A.1), (A.14), and (A.15). Combining Eqs. (A.12), (A.16),
and (A.17) yields

Σ(zκ+1−i) = Σ′(zκ−1−i) = Σ(R(zκ−1−i))

= Σ(zκ+1+i).
(A.18)

Furthermore, since L0 maps to a curve of type h1, we find

Σ(zκ+1) = 1 (A.19)

by Eq. (5a). Thus, denoting the first κ symbols in the 01-string of the trajec-
tory by si = Σ(zi), i = 1, ..., κ, the first 2κ symbols are

Q = s1...sκ1sκ...s2, (A.20)

by Eqs. (A.18) and (A.19). Since the trajectory has period 2κ, its full 01-string
is Q̄ = QQ... .

A.6 Symbol parity

In Sect. 4.2 we defined an A-string to be the list of ancestors for a given u0

within `N . These ancestors appear as factors of `n, n < N , as shown in Eqs. (4).
Each of these factors has an exponent ±1 (although this exponent is omitted
in the A-string). We call the exponent ±1 the parity (or sense) of a given
symbol. The parity of a symbol in an A-string is naturally inherited by the
corresponding symbol in the 01-string. For a given symbol in such a 01-string,
how do we recover its parity? The parity of each 1 in the initial string 1...1,
which corresponds to h0h1...h0, is +1 by Eqs. (3a) and (3b). Furthermore,

For a symbol si that is either 0 or a noninitial 1, its parity is (−1)β+1, where
β equals the number of 1’s in the substring s1...si.
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This fact follows recursively from Eqs. (3) and the identifications (5): in the
01-string, each new F̃ or c1 (identified with 1) switches the parity, but each
new F (identified with 0) does not.

A.7 An ordering of 01-strings

For two 01-strings S and S ′, we write S < S ′ if the segment of L0 specified
by S is left of the segment specified by S ′ in Fig. 2, i.e. S is at smaller launch
angle θ than S ′. This order can be determined directly from S and S ′. To this
end, let λ be the first index where S and S ′ differ, i.e.

S = s1...sλ−1sλ..., (A.21)

S ′ = s1...sλ−1s
′

λ..., (A.22)

with sλ 6= s′λ. If sλ−1 has parity +1, then the order of S and S ′ is determined
solely by the order of sλ and s′λ, using the relations 1 < u < 0. If sλ−1 has
parity −1, then the relations 1 > u > 0 are used instead. This result follows
from interpreting the right hand side of Eqs. (3) in terms of the identifications
(5).

A.8 Comparing an escaping orbit to a closed orbit

We can now resolve the ambiguity of a pair [sκ1] within the 01-string S =
s1...sκ−1[sκ1]sκ+2...u of an escaping orbit. We assume for definiteness that [sκ1]
corresponds to [Fc1]. (The following argument still applies if it corresponds to
[F̃ c1] instead.) We construct the string Q̄ = QQ... [with Q given by Eq. (A.20)]
which describes the closed orbit that separates Fa from Fb within the segment
F , which corresponds to sκ. Now, if

(S < Q̄ and sκ has parity + 1) or

(S > Q̄ and sκ has parity − 1),
(A.23)

then [sκ1] corresponds to [Fac1], which translates to o− by Eq. (A.9). However,
if

(S < Q̄ and sκ has parity − 1) or

(S > Q̄ and sκ has parity + 1),
(A.24)

then [sκ1] corresponds to [Fbc1], which translates to −o by Eq. (A.10).

Combining the ordering analysis of Sect. A.7 with the parity test in Sect. A.6,
we find that the two cases (A.23) and (A.24) are distinguished simply by the
parity of α, defined as the number of 1’s within the substring qκ+1...qλ, where
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λ is the first index where S and Q̄ differ. Case (A.23) is α even and case (A.24)
is α odd. Thus we have justified the Pair Test. This completes the justification
of the rules for translating a 01-string into a (−o)-string.

B Proof of Fact 1

An arbitrary segment in the minimal set, whose A-string we denote Ŝ = B̂u0,
spawns an epistrophe on either side. Here, B̂ denotes all A-symbols of Ŝ except
for the final u0. Equations (3) imply that on one side, the epistrophe segments
have the form B̂F c1F

k−1u0, whereas on the other side, they have the form
B̂abF k−1u0, where ab is either h0h1, F̃ c1, or c1F̃ . As a result, a segment with
01-string S = Bu, of total length n, spawns epistrophes of the form

Rk = r1...rn+k+1 = Brn10k−1u, (B.1)

where rn = 0 on one side and rn = 1 on the other. Here, a hat above S or B
distinguishes an A-string from a 01-string.

We now prove Fact 1 of Sect. 3. There is an easy technique to compute the total
number of o’s produced by a given 01-string: by Translation Rule 1, the initial
string 1...1 of odd length m contributes b(m/2) o’s, where the floor function b
rounds down to the nearest integer; similarly, by Rule 4, each maximal string
01...1 of length m also contributes b(m/2) o’s; finally, by Rule 3, u contributes
one o.

We use the above technique to compare the string B within Bu to the string
Brn1 within Brn10k−1u and show that the latter has one more o. If rn = 0,
then any maximal string of 1’s within Bu is also maximal within B01 and
thus has the same value of m, meaning that it produces the same number of
o’s regardless of whether it is a substring of Bu or B01. Hence, the substring
01 within B01 produces one extra o total. We leave the analysis of the case
rn = 1 to the reader. (Hint: consider the two subcases rn−1 = 0 and rn−1 = 1
separately.)

C Proof of Fact 2

Fact 2 is a corollary of

Theorem 1 Let Rk label the kth segment in an epistrophe spawned by a seg-
ment S, which itself occurs at iterate n. Then the first m {−, o}-symbols gen-
erated by S agree with the first m symbols generated by Rk, for all m ≤ n
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and for all k ≥ k0(m). Here, k0(m) is the first index at which this agreement
occurs. It satisfies k0(m) ≤ m. Furthermore, Rk translates to a (−o)-string
ending in o −k o for all k ≥ k0(n).

Proof of Theorem 1: From Eq. (B.1), we recall that a segment S = s1...sn =
Bu, of total length n, spawns two epistrophes whose segments have the form
Rk = r1...rn+k+1 = Brn10k−1u, with k ≥ 1 and rn = 0 on one side and rn = 1
on the other. The 01-strings S and Rk are converted into (−o)-strings, denoted
here by Υ(S) and Υ(Rk), using the Translation Rules of Sect. 4.3.

We first analyze the initial n − 1 symbols of Rk and S. Since these strings
are identical, i.e. s1...sn−1 = r1...rn−1, they translate to identical (−o)-strings
except for the following three conceivable cases:

1. Under the Pair Test, a pair [sκ1], κ < n − 1, within S could yield a
different (−o)-string than [sκ1] within Rk.

2. sn−1sn = 0u within S translates to −o (Rule 3). However, rn−1rn = 01
within Rk might translate to o− under the Pair Test.

3. sn−1sn = 1u within S translates to −o if sn−1 = 1 is unpaired (as de-
scribed in Rule 4). However, rn−1rn = 11 within Rk might then translate
to o− under the Pair Test.

We discover below that Cases 2 and 3 are in fact forbidden. We address Case
1 with

Lemma 1 Any pair [sκ1], κ < n − 1, within S translates to the same (−o)-
string as the corresponding pair [sκ1] within Rk, for k ≥ k0. Here, k0 is the
first index of Rk at which this agreement occurs, and it satisfies k0 ≤ κ < n−1.

Proof of Lemma 1: Let a pair [sκ1], κ < n − 1, of S be given. The equality of
the first n − 1 symbols of S and Rk guarantees that Step (a) of the Pair Test
returns the same Q for both S and Rk. For Step (b), let λ ≤ length(S) = n
and λ′ ≤ length(Rk) = n + k + 1 be the first indices where S and Rk differ
from Q̄, respectively. Then, Steps (c) and (d) of the Pair Test imply

Lemma 2 The Pair Test yields different results for S and Rk if and only
if ∆α = α′ − α is odd, where ∆α equals the number of 1’s in the substring
qλ+1...qλ′ of Q̄.

When can ∆α be odd? This is addressed by

Lemma 3 If ∆α is odd, then λ = n and λ′ = n + k + 1.

To prove Lemma 3, we first note that ∆α odd implies λ < λ′, which implies
λ = n and n < λ′ ≤ n + k + 1.
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Suppose λ = n and λ′ = n + 1. Then since rn+1 = 1 in Rk, the definition of
λ′ implies qλ′ = qn+1 = 0 in Q̄. Hence, qλ+1...qλ′ = qn+1 = 0 and so ∆α = 0.
Thus, ∆α odd implies λ = n and n + 1 < λ′ ≤ n + k + 1.

Suppose λ = n and n + 1 < λ′ < n + k + 1. The definition of λ′ implies Q̄
agrees with Rk for all indices i < λ′ and differs at i = λ′. Hence, Eq. (B.1)
implies qλ+1...qλ′ = qn+1...qλ′ = 10λ′−n−21, and thus ∆α = 2. This completes
the proof of Lemma 3.

We now show that if [sκ1] yields the same (−o)-string within Υ(S) as within
Υ(Rk), for some k, then it does for k + 1 as well. Let k be given such that
these (−o)-strings agree. If λ′ ≤ n + 1, then by Lemmas 2 and 3, [sκ1] in S
translates to the same (−o)-string as [sκ1] in Rk, for all k ≥ 1. We thus need
only consider the case λ′ > n+1 and λ = n. Since Lemma 2 implies ∆α even,
qn+1...qλ′ must have an even number of 1’s. Since qn+1 = rn+1 = 1, there must
be a second 1 within qn+2...qλ′ , which can only be qλ′ = 1. Given the form of
Rk in Eq. (B.1), the value of λ′ is the same for [sκ1] within Rk as for [sκ1]
within Rk+1. Hence, ∆α is also even for [sκ1] within Rk+1, and by Lemma 2,
[sκ1] yields the same (−o)-string within Υ(Rk+1) as within Υ(S).

We now show k0 ≤ κ, for which we need only prove that [sκ1] yields the same
(−o)-string within both Υ(S) and Υ(Rκ). If λ′ 6= n+κ+1, then Lemmas 2 and
3 directly prove this fact. Therefore, we need only consider the case λ′ = n +
κ + 1 and λ = n. In this case, qλ+1...qλ′ = qn+1...qn+κ+1 = rn+1...rn+κqn+κ+1 =
10κ−1qn+κ+1. To determine qn+κ+1, we note that Q in Step (a) of the Pair Test
has at most κ−1 successive 0’s (note that Q begins with 1), and hence Q̄ also
has at most κ−1 successive 0’s. Since qn+κ+1 is preceded by 0κ−1, qn+κ+1 must
equal 1. Therefore, ∆α = 2 and by Lemma 2, [sκ1] yields the same (−o)-string
within both Υ(S) and Υ(Rκ). QED (Lemma 1).

Having addressed the start of Rk by Lemma 1, we now address the end of Rk.
In particular, we examine how the symbols rn−1...rn+k+1 of Rk translate. Since
rn−1...rn+k+1 = sn−1rn10k−1u, the final k symbols translate to −k−1o (Rules
2 and 3). Next, since sn−1 and rn equal either 0 or 1, the substring sn−1rn1
exhibits four possibilities: 001, 011, 101, 111.

1. sn−1rn = 00 yields

sn−1rn10k−1u = 0[01]0k−1u

→ −[στ ] −k−1 o, for all k ≥ 1,
(C.1)

where Rule 2 yields the initial − and the Pair Test yields στ . The ap-
plication of the Pair Test follows similar logic to Lemma 1. Skipping the
details,

sn−1rn10k−1u → −o −k o, for all k ≥ k0, (C.2)
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where k0 is the index of Rk at which στ first equals o−. It satisfies k0 ≤
κ = n.

2. sn−1rn = 01 yields

sn−1rn10k−1u = [01]10k−1u

→ [−o] −k o, for all k ≥ 1,
(C.3)

where the first two symbols are translated by a simple application of the
Pair Test (omitted here) and the third, being an unpaired 1, by Rule 4.

3. sn−1rn = 10 yields

sn−1rn10k−1u = 1[01]0k−1u

→ σ[τω] −k−1 o, for all k ≥ 1.
(C.4)

The Pair Rule yields τω = −o for k = 1 and τω = o− for k > 1. Hence,

sn−1rn10k−1u → σo −k o, for all k > 1, (C.5)

where σ equals either − or o.
4. For sn−1rn = 11, if sn−1 = 1 is paired with rn,

sn−1rn10k−1u = [11]10k−1u

→ [−o] −k o, for all k ≥ 1,
(C.6)

where the first pair is translated by the Pair Test, using the fact that
sn−2 must equal 1, and the third symbol by Rule 4.

If sn−1 = 1 is paired with sn−2, then

...sn−1rn10k−1u = ...1][11]0k−1u

→ ...σ]o −k o, for all k ≥ 1,
(C.7)

where σ equals either − or o and the pair [11] is translated by a simple
application of the Pair Test.

Equations (C.3) and (C.6) imply that Cases 2 and 3, mentioned before Lemma 1,
do not occur for any k. Thus, Lemma 1 proves Theorem 1 for m < n. Further-
more, Eqs. (C.2), (C.3), and (C.5)–(C.7) imply that Υ(Rk) ends in o −k o for
all k ≥ k0(n), where k0(n) is the first index at which this occurs and where
k0(n) ≤ n. QED (Theorem 1).
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